Graphical Abstracts

The graphical abstract is the most important scheme of your manuscript and determines whether a reader continues to read on about your research. A well-prepared graphical abstract is the best advertisement for your paper and draws attention to your findings. Synthetic chemistry is visual, and most of us scan the literature using just abstracts. Time spent on a nice graphical abstract is time well spent.

The take-home message of your paper should be clear from the graphical abstract. Please use colors to clearly highlight substantive information and to make it easy to interpret. Think about what’s interesting to the reader. Yield ranges, the number of examples reported, the reaction conditions used, and an indication of the substrate scope. It should be possible for readers to identify the relevance of the research described in your paper to their own interest. The inclusion of color is free of charge of course, as is the publication of your graphical abstract on the journal cover, if selected! All electronic versions will be in color. You may notice, however, than in the print version, the graphical abstract within the paper may appear in black and white.

The following ten samples should help you to prepare your own graphical abstract. The maximum dimensions are 11 × 5 cm (4.3 × 2.0 in.). We like the first example because the tasteful use of color helps to illustrate the chemistry. It is immediately clear that the enantioselectivity is excellent, that the yields are very good, and that the substrate scope is reasonable. In addition, it is evident that the reaction conditions are straightforward, and that the reaction should be operationally simple.

Synthesis

Asymmetric N-Heterocyclic Carbene Catalyzed Annulation of 2-Alkenylbenzothiazoles with α-Chloro Aldehydes

X. Sang
Q. Ni
C. Zhu
G. Roehr
D. Enders
ETH Zürich, University, Germany

Synthesis

Reagent and Catalyst Design for Asymmetric Hypervalent Iodine Oxidations

F. Bertin
Université Joseph Fourier, France

Synthesis

Design of a Chiral Secondary Amine Ligand for Copper-Catalyzed anti-Selective Henry Reaction

T. Arai
M. Jako
K. Sato
Chiba University, Japan

Paper

421

Review

587

Letter

209
Sample Graphical Abstracts for SYNTHESIS and SYNLETT

Synthesis

A Scalable, Chromatography-Free Synthesis of Benzotetramisole

D. S. B. Darrell
S. B. Smith
T. Lebl
P. Shapland
A. D. Smith

University of St Andrews, UK

2 steps

(RP-)(S)- and (a)-DAMT ca. 90% yield
10 g scale
chromatography-free

Synthesis

Effect of Substituents and Stability of Transient Aluminum–Aminals in the Presence of Nucleophiles

F. J. Barrios
B. C. Springer
R. A. Hazlett
D. A. Colby

University of Mississippi, USA

Effect of Substituents and Stability of Transient Aluminum–Aminals in the Presence of Nucleophiles

R¹ = Me, OMe
R² = Me, iBu
R³ = Me, Et, allyl, Bn
R⁴ = Me, Bn, 4-methoxybenzyl, napthylmethyl