Over the last decade, the field of C–H activation has evolved from using bespoke strongly chelating functional groups to the development of much more appealing transformations which exploit the directing ability of native functionalities such as carboxylic acids, amides and amines, among others. In this regard, the group of Professor Matthew Gaunt at the University of Cambridge (UK) recently reported the first examples of a tertiary alkylamine directed C(sp³)–H activation reaction. “Tertiary alkylamines have been historically used in palladium-catalysed reactions to reduce a Pd(II) pre-catalyst into the desired active Pd(0) species to initiate, for example, a Suzuki cross-coupling reaction,” said Professor Gaunt, who continued: “A consequence of this reaction pathway is the oxidative decomposition of the tertiary alkylamine, which has precluded their use in C–H activation reactions.”

The Gaunt group discovered that a simple N-acetyl amino acid ligand was capable of preventing amine decomposition, thereby facilitating the desired C–H activation pathway and ultimately leading to a method of directly introducing functionalized aryl groups into the tertiary alkylamine scaffolds. “The tertiary alkylamine starting materials are readily available and a plentiful supply of diversely functionalized arylboronic acid coupling partners can be acquired from commercial sources; all other reaction components are available from commercial vendors,” said Professor Gaunt. He added: “We believe that the operational simplicity of this new high-yielding transformation, combined with its broad substrate scope, will be appealing to practitioners of the synthetic and medicinal communities in academic and industrial institutions. For example, starting from a common tertiary alkylamine, it is possible to incorporate many different aromatic features directly into the amine scaffold, enabling the rapid assembly of a library of compounds with potentially promising biological activity.”

“We aim to use this new platform to introduce other functionalisations into tertiary alkylamines, while continuing to improve the efficiency and sustainability of the process,” explained Professor Gaunt. He concluded: “Furthermore, we are also investigating the capacity of this transformation to effect enantioselective C–H bond functionalizations at the γ-methylene position in tertiary alkylamines, which would provide direct access to valuable non-racemic molecules of potential biological interest.”

![Figure 1 Mechanism of the reaction](image-url)
Scheme 1 Selected scope and applications of the palladium-catalysed arylation of tertiary alkylamines
Jesus Rodrígalvarez obtained his BS in 2016 at University of Barcelona (Spain), where he conducted undergraduate research with Prof. Félix Urpí and Prof. Pedro Romea. In 2016, he moved to University of Cambridge (UK) to complete an MPhil degree under the supervision of Prof. Matthew Gaunt. Currently, he is a PhD student in the same research group. His research focuses in C–H activation, computational chemistry, and reaction mechanisms.

Manuel Nappi was born in Torino (Italy), where he obtained his Bachelor’s (2008) and MPhil degrees in organic chemistry (2010). He completed his PhD studies in 2014 under the supervision of Prof. Paolo Melchiorre at ICIQ, Tarragona (Spain). During 2012, he joined Professor David MacMillan’s group at Princeton University (USA). Since 2015, he is a postdoctoral researcher in the group of Prof. Matthew J. Gaunt, University of Cambridge (UK). His research interests include photochemistry and photoredox catalysis, palladium-catalysed C–H activation, organocatalysis and biochemistry.

Hiroki Azuma was born in Japan and obtained his BS in 2009 from Tohoku University (Japan), where he carried out undergraduate research under the supervision of Prof. Hideo Takeuchi. He obtained his M.S. degree in 2011 and PhD in 2014 at the same university under the direction of Professor Hidetoshi Tokuyama. He works for Mitsubishi Tanabe Pharma Corporation (Japan) since 2014. From 2018 to 2019, he joined Prof. Matthew J. Gaunt’s research group as a postdoctoral researcher at the University of Cambridge (UK).

Nils J. Flodén was born in Sweden and received his MSci degree from Imperial College London (UK) in 2016. He then began PhD studies at the University of Cambridge (UK) where he develops radical methods for the synthesis of aliphatic amines under the supervision of Prof. Matthew J. Gaunt.

Matthew Burns received his PhD from the University of Bristol (UK) in 2014 under the supervision of Prof. V. K. Aggarwal. Subsequently, he moved to Colorado State University (USA) as a Marie-Curie postdoctoral research fellow in the lab of Prof. T. Rovis, working there from 2014–2017. He returned to the UK in 2017 and joined the group of Prof. Matthew J. Gaunt at Cambridge University (UK) to complete his fellowship. Currently, he works as a senior process chemist for AstraZeneca.

Prof. Matthew Gaunt is the 1702 Yusuf Hamied Professor of Chemistry in the Department of Chemistry at the University of Cambridge (UK). Matthew began his higher education at the University of Birmingham and graduated with first class honours in 1995. He moved to Cambridge for his PhD studies to work under the supervision of the late Dr Jonathan Spencer. He graduated in 1999 before moving to the University of Pennsylvania, Philadelphia (USA) as a GlaxoWellcome Postdoctoral Fellow. In 2000, he returned to Cambridge as a Junior Research Fellow at Magdalene College and a Ramsay Memorial Trust Fellow, where he worked with Professor Steven V. Ley. Matthew began his independent research career in 2003 and was awarded a Royal Society University Research Fellowship at the University of Cambridge in 2004. He was promoted to Lecturer in 2006, Reader in 2010, Full Professor in 2012, and was Elected to the 1702 Chair in 2019.