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Since the introduction of the Staudinger ligation, the field 
of bioorthogonal chemistry has grown rapidly, and today’s 
bioorthogonal toolbox includes a plethora of reactions that 
are highly selective and function in aqueous and complex 
media at physiological pH. Among these, the inverse-electron-
demand Diels–Alder (IEDDA) cycloaddition between strained 
alkenes and tetrazines (TZs) has proven to be an extraordinary 
tool due to exceptional speed allowing very low reagent con-
centrations, potentially enabling in vivo click chemistry for 
medical applications. This reaction has already been applied 
in a range of fields, such as materials chemistry, chemical bio-
logy (protein modification in vivo, study of dynamic processes 
in living cells, and high-resolution imaging, among others) 
and nuclear medicine (radiolabeling of sensitive molecules, 

and pretargeted radioimmunoimaging and therapy). At first, 
the IEDDA reaction was viewed only as a powerful ligation 
tool. Until a few years ago.

In 2013 Dr. Marc Robillard from Tagworks Pharmaceuticals 
(The Netherlands) and co-workers developed a bioorthogonal 
bond cleavage reaction, the IEDDA pyridazine elimination, 
to enable selective elimination chemistry in living systems 
(Angew. Chem. Int. Ed. 2013, 52, 14112–14116). “In this mo-
dification of the IEDDA cycloaddition, the strained alkene 
is a trans-cyclooctene (TCO) modified at the allylic position 
with a suitable leaving group, which in our first design was an 
amine linked to the TCO as a carbamate (Scheme 1),” said Dr. 
Robillard. He continued: “We hypothesised that, upon TCO re-
action with a TZ and release of N2, the 4,5-dihydropyridazine 
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Scheme 1 A) IEDDA conjugation B) IEDDA pyridazine elimination of the axial isomers of TCO carbamate, carbonate, esters, and 
ethers. R. M. Versteegen et al. Click-to-Release from trans-Cyclooctenes: Mechanistic Insights and Expansion of Scope from  
Established Carbamate to Remarkable Ether Cleavage Angew. Chem. Int. Ed. 2018, 57, 10494–10499 © Wiley-VCH Verlag GmbH & 
Co. KGaA. Reproduced with permission.
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(6) tautomerises to the 1,4 analogue (7) which then under-
goes an electron cascade resulting in elimination of CO2 and 
free amine. We set out to apply this new elimination reaction 
in the chemically triggered release of drugs from tumour-
bound antibody–drug conjugates (ADCs) to expand the scope 
of amenable ADC targets from internalizing cancer receptors 
to those that do not internalise, and to targets in the tumour 
stroma. Current ADCs are designed to release their drug in-
side the cancer cell by means of proteases, pH-induced linker 
hydrolysis, or disulfide-to-thiol reduction promoted by reduc-
tases, and therefore can only be used with internalizing cancer 
receptors. The IEDDA pyridazine elimination has been used in 
other applications as well, including local prodrug activation 
for cancer therapy (ACS Cent. Sci. 2016, 2, 476-482), T-cell 
activation (ACS Chem. Biol. 2018, 13, 1569–1576), and protein 
profiling and uncaging in living cells (ACS Cent. Sci. 2016, 2, 
325–331; Chem. Commun. 2017, 53, 8443–8446), amongst 
others.”

In a recent article (Angew. Chem. Int. Ed. 2018, 57, 10494–
10499) the group further expanded the scope of the IEDDA 
pyridazine elimination by demonstrating that, besides car-

bamate-derived amines, other chemical functionalities can 
also be liberated following the reaction between an allylic-
substituted TCO and a TZ. “In this work, we synthesised TCOs 
comprising a range of allylic substituents (Scheme 1): aroma-
tic carbonate (5b), aromatic and aliphatic esters (5c,d), and 
aromatic, benzylic and aliphatic ethers (5e–g),” explained Dr. 
Robillard. With these TCO derivatives the group carried out a 
thorough evaluation on the formation and disappearance of 
the dihydropyridazine tautomers and elimination products 
formed after IEDDA reaction with TZs. The relatively slow 
tautomerisation in CDCl3 allowed them to study closely the re-
lease reaction using 1H NMR and GCMS before moving to more 
relevant buffered aqueous solutions. “We were able to further 
support our original hypothesis, namely that the 1,4-dihydro
pyridazine tautomer is the species producing fast release,” 
remarked Dr. Robillard. He continued: “We also found that 
the non-releasing 2,5-tautomer can convert slowly into the 
1,4-tautomer, thereby contributing to the release and leading 
to a biphasic release profile. Furthermore, we were particular-
ly pleased to find that ethers, even aliphatic ethers, could also 
be cleaved in a high yield with this strategy, given the stability 

Figure 1 Triggered drug release using “click-to-release” chemistry in vivo: on-tumour liberation of a cell-permeable drug (mono-
methylauristatin E; MMAE) from a TCO-linked ADC following systemic administration of a TZ activator. Reprinted from R. Rossin 
et al. Nat. Commun. 2018, 9, 1484 (Creative Commons Attribution 4.0 International license http://creativecommons.org/licenses/
by/4.0/).
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of the ether bond and the poor leaving group nature of alkox
ides.” This indicated that the elimination is mainly governed 
by the formation of the rapidly eliminating 1,4-dihydro
pyridazine tautomer, and less by the nature of the leaving 
group. According to Dr. Robillard, expanding the scope of this 
cleavage reaction will allow the use of drugs lacking amenable 
amines, such as duocarmycins. Furthermore, it expands the 
scope of chemical functionalities that can be unmasked in the 
context of chemical biology and synthetic chemistry.

“In parallel with the abovementioned mechanistic studies, 
we conducted the first therapeutic evaluation of chemically 
cleavable ADCs in mouse models of human cancer, which 
recently appeared in Nature Communications (Nat. Commun. 
2018, 9, 1484),” said Dr. Robillard. This was a collaborative  
project between Tagworks and several other companies  
(SyMO-Chem, Avipep, Levena, Syncom) and was carried out 
at the laboratories of the Radboud University Medical Center 
and Radboud University, in The Netherlands. “The ADC used 
in this study is based on a diabody targeting TAG72, a non-
internalizing pan-carcinoma target widely expressed in a 
range of epithelial-derived human adenocarcinomas such as 
ovarian, colorectal and breast cancers. The ADC carries four 
bifunctional TCOs linked via a carbamate to monomethyl
auristatin E (MMAE), a potent and cell-permeable antimitotic 
agent (Figure 1),” explained Dr. Robillard.

This click-cleavable ADC (tc-ADC) was tested in two mouse 
models of colon and ovarian carcinomas, in a side-by-side 
comparison with an analogous ADC containing the protease-
sensitive valine–citrulline linker (vc-ADC), designed for intra-
cellular release and used in the marketed ADC Adcetris. “At 
first, however, we dedicated considerable effort to developing 
a suitable TZ-based activator, capable of effective on-tumour 
reaction with the TCO and efficient MMAE release from the 

ADC,” said Dr. Robillard. He continued: “After our first proof-
of-concept study on chemically triggered drug release in vivo 
(Bioconjugate Chem. 2016, 27, 1697–1706), we realised that 
sustained circulation of the activator is the key for success. 
The 3,6-bisalkyl TZs that give high release have a relatively 
low reactivity and, as small molecules, they clear from circula
tion too quickly, precluding quantitative on-tumour reaction. 
Therefore, in our recent study we designed a 3,6-bisalkyl TZ 
activator containing a PEG11-DOTA (DOTA = 1,4,7,10-tetraaza-
cyclododecane-1,4,7,10-tetraacetic acid) moiety that showed 
a 12 minute half-life in blood and low retention in non-target 
tissues. Sequential administration of the tc-ADC and activator 
pair was shown to lead to high ADC uptake in tumours and 
complete on-tumour IEDDA reaction, producing high tumour 
levels of free MMAE one and three days post-ADC activation. 
The presence of a DOTA chelator in the activator structure 
presented the opportunity to add a gamma-emitting radio-
metal (indium-111) and to demonstrate by SPECT-CT imaging 
that ADC activation took place throughout the tumour.” The 
group’s subsequent efficacy studies demonstrated a potent 
therapeutic effect for the chemically cleavable tc-ADC, with 
a markedly delayed tumour growth in the human colorectal 
cancer model (LS174T) and pronounced and durable tumour 
regression for at least four months (the duration of the stu-
dy) in the ovarian cancer tumour model (OVCAR-3; Figure 2). 
On the contrary, the gold standard (enzymatically cleavable) 
vc-ADC failed to control tumour growth in both models. The 
limited therapeutic effect observed in the ovarian model for 
vc-ADC was most likely due to extracellular protease-based 
MMAE release.

“Overall, the IEDDA pyridazine elimination has already 
proven to be a very versatile reaction with diverse applica-
tions in medicine, chemical biology and synthetic chemistry 

Figure 2 Mean OVCAR-3 tumour volumes (with SEM) in mice that within two weeks received i.v. (a) four cycles of the combination 
of tc-ADC with activator, activator alone, or vehicle, in comparison to mice that received i.v. four cycles of (b) tc-ADC alone, vc-ADC 
alone, or the combination of non-binding nb-ADC with activator. (c) Survival curves. The bars below the x axis indicate the treat-
ment periods. Adapted from R. Rossin et al. Nat. Commun. 2018, 9, 1484 (Creative Commons Attribution 4.0 International license 
http://creativecommons.org/licenses/by/4.0/).
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and we expect the number of applications to continue to 
grow,” said Dr. Robillard. He concluded: “We believe that 
extracellular click-to-release is one of the key applications 
for this powerful technology, as it expands the scope of cur-
rent ADC therapy and it allows other therapeutic targets to be 

addressed. The therapeutic proof of concept shown in Nature 
Communications is an important step towards the use of such 
click-to-release approaches in the clinic.” 
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