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The importance of fluorinated organic molecules in applica-
tions such as pharmaceuticals, agrochemicals, new materials 
and imaging agents for positron-emission tomography (PET) 
has become well understood within the scientific communi-
ty. While carbon–fluorine bond construction is a challenging 
chemical transformation that, until recently, was limited to 
simple substrates that could tolerate harsh conditions, a re-
markable number of novel synthetic methodologies for C–F 
bond construction has been reported in the past decade.1–3 
Notable improvements in aryl fluoride bond formation have 
involved the use of transition metals to facilitate this transfor-
mation.4–6 While these methods have considerably improved 
the accessibility of fluorinated arenes, many of them require 
the use of electrophilic fluorinating sources (e.g., Selectfluor, 
N-fluoropyridinium salts) which are not useful for applica-
tions in PET, a powerful noninvasive imaging technique that 
can provide information about molecular targets in vivo. The 
positron-emitting radioisotope fluorine-18 (18F) is generated 
as nucleophilic fluoride and thus fluorination methods using 
electrophilic fluorine sources are not broadly useful for PET 
molecular imaging applications.

The group of Professor Jennifer Murphy at the Univer-
sity of California Los Angeles (UCLA, USA) was interested in 
expanding the methods available for 18F-radiofluorination to-
wards applications in PET and this led them to investigate oxi-
dative fluorination chemistry. “Oxidative fluorination trans-
formations, which utilize a nucleophilic fluoride source and 
an external oxidant, are conceptually challenging due to the 
fact that fluorine is the most oxidizing element known. Such 
oxidative fluorination transformations have been reported, 
yet they require the synthesis of complex starting materials, 
use of directing groups, long reaction times or a large excess of 
transition metal,7–11” said Professor Murphy, who explained: 
“Our group sought to develop a mild, relatively quick, oxi-
dative fluorination reaction using nucleophilic fluoride and 
synthetically accessible starting materials. Aryl stannanes are 
highly stable and can be readily obtained with a wide range 
of complex functionality, attracting our attention to their use 
over other starting materials. In addition, reports confirming 
reductive elimination of high-valent Cu(III) species initiated 
our interest in evaluating this transition metal to facilitate C–F 
bond formation with nucleophilic fluoride.”

Copper-based methods for C–F bond formation are 
known11,12 and mechanistic studies suggest that copper plays 
a dual role of transition-metal mediator for aryl–F coupling as  
well as the oxidant to access a Cu(III) intermediate, requiring  
excess copper reagent. “In agreement with the proposed dual 
role of copper, our initial experiments screening the fluorina- 
tion of aryl stannanes required upwards of four equivalents 
of copper to obtain moderate yields, which dramatically  
dropped off when less than two equivalents were used,” said 
Professor Murphy. She continued: “We hypothesized that initial  
formation of a Cu(II)(OTf)(F) complex might facilitate the trans- 
metalation more efficiently and tested this hypothesis by 
pre-stirring the fluoride source and copper(II) triflate before  
adding the stannane to the reaction mixture. Gratifyingly, this  
stepwise protocol resulted in significant improvement in yield  
of the aryl fluoride, 70% compared to 46% obtained from single  
addition (Scheme 1). Of note, these effects were more appar
ent with CsF as the fluoride source, which enabled the reaction 
to proceed with only two equivalents of copper(II) triflate.”

In their evaluation of solvent effects on the reaction, the 
authors of this study found that the presence of acetonitrile  
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Scheme 1 Effects of pre-stir towards oxidative fluorination of 
aryl stannanes (Yields were determined by 19F NMR spectro-
scopy with 1-fluoro-3-nitrobenzene as an internal standard.) 
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was required for efficient fluorination to proceed. The use 
of various other solvents provided no detectable fluorinated 
products; however, when these solvents were spiked with as 
little as 10% acetonitrile, the fluorination proceeded in mode-
rate to good yields.  Professor Murphy remarked: “We hypo-
thesize that acetonitrile plays a key role as a ligand for cop-
per, perhaps to stabilize the copper center to promote rapid 
transmetalation and to support reductive elimination of the 
arylcopper(III) intermediate. Further evaluation of fluoride 
sources revealed tetrabutylammonium triphenyldifluorosili
cate (TBAT) gave the highest yields while, in the context of  
alkali metal fluoride sources, CsF gave comparable yields.”

This reaction demonstrates broad compatibility and 
a large functional group tolerance (Scheme 2). Common 
functionality including esters, nitriles, aldehydes, ketones, 
ethers, sulfones and alcohols survive the reaction conditions 
and provide the corresponding arylfluorides in good yields  
(Scheme 2). Notably, arenes bearing protic groups or nucleo-

philic moieties, such as amines or thioethers, also participated 
in fluorination in modest yields. Professor Murphy concluded:  
“Given the versatility of this method, we expect other oxida
tive fluorination methods such as this one to become more 
prevalent amongst the broad chemistry community. Transla
tion of this methodology into 18F-radiofluorination for appli-
cations in PET is currently being investigated in our laborato-
ry.”

A11

Scheme 2 Oxidative fluorination of aryl stannanes with Cu(OTf)2 and TBAT.a
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