Alveolarides are a class of agriculturally important cyclodepsipeptides, which were isolated from cultures of the fungus *Microascus alveolaris* in 2018 by researchers at Dow AgroSciences (DAS) in the USA who partially elucidated the structures of alveolarides A–C (*J. Nat. Prod.* 2018, 81, 10–15). These are 17-membered macrocyclic compounds having the rarely found 2,3-dihydroxy-4-methyltetradecanoic acid (DHMTDA) as the common nonpeptide unit. The stereochemistry of asymmetric centers on the DHMTDA segment remained unassigned. The group of Professor Rajib Kumar Goswami at the Indian Association for the Cultivation of Science (Jadavpur, India) has targeted alveolaride C (Figure 1) with the intention of solving the mystery of its structural assignment using total synthesis as the key tool. Professor Goswami remarked: “There are three asymmetric centers in the DHMTDA fragment of alveolaride C, whose configuration is unknown, giving rise to the possibility of eight configurational isomers (Figure 2); finding the actual structure of alveolaride C was quite challenging.”

A convergent synthetic route was adopted by Professor Goswami and his co-workers. To narrow down the search for structural possibilities, four isomers (1a–d) (Figure 2) of the DHMTDA fragment were synthesized initially and their data were compared with the reported data. “The data of isomer 1d matched nicely with the reported one,” explained Professor Goswami. He continued: “However, isomer ent-1d was also taken into account, as no specific rotational value of the DHMTDA fragment was reported by the DAS team.” According to Professor Goswami, selective esterification of a β-hydroxyl group in the presence of a free α-hydroxyl on the key D-serine-DHMTDA synthetic intermediate (first step in Scheme 1) was one of the crucial steps, which was likely possible due to the presence of hydrogen bonding between the α-hydroxyl and the amide carbonyl. This possibility was conceived from the crystal structure of isomer ent-1d. “Two possible structures (2a and 2b) of alveolaride C were synthesized from DHMTDA counterparts 1d and ent-1d and their NMR spectroscopic data were compared with the reported data of the isolated alveolaride C,” said Professor Goswami. He continued: “The isomer 2b, having 29S,30R,31S configuration of the DHMTDA unit, was close to the reported NMR data of isolated alveolaride C. However, a few noticeable discrepancies in the 1H NMR data were observed for the protons nearby the β-phenylalanine and the DHMTDA counterpart.” This observation led the group to...
Scheme 1 Total synthesis of alveolaride C and two of its diastereoisomers

1. N-HO
2. TBDPSO
3. BnO
4. Fmoc
5. HATU, HOAt, DIPEA, DMF, 0 °C to rt, 11 h (75% over two steps)

epi-2b
reconsider the absolute configuration of the β-phenylalanine fragment. Thus, the group synthesized the C-3 epimer (epi-2b) of the compound 2b which turned out to be in complete accordance with the data of the isolated natural product.

“The structural riddle of alveolaride C was solved successfully,” said Prof Goswami. “The absolute stereochemistry of three undetermined centres on the DHMTDA segment was established unambiguously as 2S,30R,31S. The stereochemistry of the β-phenylalanine unit was revised from S to R.” Professor Goswami concluded: “This synthetic study was crucial for determining the unassigned stereocenters common to all the members of this family and also a very important stepping-stone for the total synthesis of other members of this family.”

About the authors

Rajib Kumar Goswami obtained both his B.Sc. and M.Sc. degrees in chemistry from Calcutta University (India) in 1999 and 2001, respectively. In 2007, he completed his doctoral studies on chemical synthesis of natural products from Indian Institute of Chemical Technology, Hyderabad (India), under the supervision of Prof. Tushar K. Chakraborty. He was awarded his Ph.D. in chemistry by the University of Kalyani (India) in 2008. He moved to The Scripps Research Institute, San Diego (USA) in 2007 with a postdoctoral fellowship and worked with Prof. Subhash C. Sinha until 2011. He is currently a Professor in the School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata, India. His research interests focus on asymmetric total synthesis of bioactive natural products and evaluation of their bio-medicinal applications.

Sanu Saha received his B.Sc. and M.Sc. degrees in chemistry from Calcutta and Jadavpur Universities (India) in 2015 and 2017, respectively. Currently he is working in the group of Prof. Goswami at the Indian Association for the Cultivation of Science in the School of Chemical Science. His research interest is the synthesis of natural products.

Debobrata Paul is pursuing his Ph.D. under the supervision of Prof. Goswami at the School of Chemical Sciences, Indian Association for the Cultivation of Science. He completed both his B.Sc. and M.Sc. degrees in chemistry from The University of Burdwan (India) in 2012 and 2014, respectively. He is currently working on the total synthesis of bioactive macrocyclic natural products.