Decomposition of \(N\)-Sulfonylhydrazones to Diazoalkanes Goes to Room Temperature and Application to [2+1] Cyclopropenation with Alkynes

It is well known that diazo compounds are outstanding building blocks in organic synthesis. Since their discovery over 100 years ago, these reagents have been frequently employed in a variety of processes, starting from homologation reactions to metal-catalyzed C–H insertions. However, due to their toxic and explosive nature, direct use of diazo compounds in many of these chemically interesting reactions and their utilization in large-scale production has been very difficult. To avoid these difficulties, chemists have developed a range of diazo surrogates as an alternative diazo source in numerous organic transformations. Thus, the organic chemistry community has devoted a lot of effort and interest in developing efficient protocols where these reagents could be generated in situ. To date, \(N\)-tosylhydrazones have proved to be some of the most useful diazo surrogates, because of their rapidly expanding repertoires of organic transformations. However, high dissociation temperature (≥70 °C) remains an inherent drawback of \(N\)-tosylhydrazones, and severely limits their use in synthetic areas where low reaction temperatures are generally employed, such as reactions of highly strained small rings, asymmetric and natural product synthesis. Great efforts have been devoted towards solving this challenging issue, but room-temperature decomposable \(N\)-sulfonylhydrazones remain unknown thus far.

Recently, this challenging issue has been addressed by the research group of Professor Xihe Bi at the Northeast Normal University (P. R. of China), who discovered for the first time the room-temperature decomposable property of \(N\)-nosylhydrazones. “We initially investigated the NaH-promoted dissociation of \(N\)-nosylhydrazone 1a and \(N\)-tosylhydrazone 1a′ at 25 °C and observed that the former smoothly released 4-chlorophenyl diazomethane, whereas the latter remained...”
intact (Figure 1a),” said Professor Bi. “The significance of this discovery was demonstrated by overcoming the long-standing challenge in cyclopropene chemistry of non-stabilized diazo compounds not being suitable partners in the cyclopropenation of alkynes (Figure 1b,c).”

The reaction scope is quite broad (Scheme 1). “All the internal alkynes that we tested underwent the cyclopropenation with N-nosylhydrazones to afford the corresponding cyclopropenes (2a–n) with useful efficiencies (43–91% yield),” added Professor Bi. He continued: “A remarkable steric hindrance effect of alkyne substrates on the cyclopropenation reaction was observed. For example, the linear alkynes generally gave high yields (2a–c, 86–91%), whereas those with branched chains or a bulky phenyl ring led to gradually decreased product yields (2d–h, 43–56%). Notably, the most bulky 1,2-di-phenylethyne also proved to be reactive, albeit with AgOTFA as catalyst. Diverse functionalities, including alkynyl, halogen, ester, and amino groups, were well tolerated, thus affording a range of functionalized cyclopropenes (2i–n, 60–82%).” The tolerance of the bromo group in the presence of a halophilic silver catalyst was especially noteworthy. Furthermore, under slightly modified conditions (Ag$_2$CO$_3$ as catalyst, highly diluted reaction solution), terminal alkynes also proved to be suitable reaction partners in this silver-catalyzed protocol, and afforded a group of difficult to synthesize 1-alkyl-3-arylcyclopropenes in good yields (3a–f, 48–77%).

Subsequently, Bi and co-workers applied this silver-catalyzed protocol to the synthesis and isolation of more strained cyclopropenes that are otherwise difficult to obtain by other methods. As shown in Scheme 2, they eventually isolated the eight-member-fused cyclopropene 5a in moderate yield (42%) starting from N-nosylhydrazone 4a, in a diluted solution (0.03 M). In contrast, the reaction of substrate 4b, which has one less carbon atom in the side-chain, progressed beyond the step of

![Scheme 1 Reaction scope](image-url)
forming fused cyclopropene 5b, giving the pharmacologically interesting benzo[b]azepine 6 in 85% yield by a regioselective ring-opening reaction. The structure of 6 was confirmed by X-ray crystallographic analysis.

“Interestingly, we found that the present silver-catalyzed protocol was applicable for the chemoselective cyclopropenation of enyne systems 7a and 7b with N-nosylhydrazones, thus providing the corresponding cyclopropenes 8a and 8b in good yields,” said Professor Bi. However, the same reaction was carried out with rhodium catalysts, affording the alkynyl cyclopropanes 9 in 86% yield as a 2:1 mixture of cis and trans isomers. “Normally, silver catalysts do not favor the cyclopropanation selectivity in an enyne system, as reported by Davies and co-workers, who observed complete cyclopropanation of enyne 7a with α-diazocarbonyl compounds under silver catalysis,” said Professor Bi, who remarked: “These results clearly indicate the difference in the reactivity between N-nosylhydrazone and α-diazocarbonyl compounds. It is noteworthy

Scheme 2 Intramolecular reaction

Scheme 3 Switchable chemoselectivity of cyclopropenation vs cyclopropanation
that the chemoselectivity, i.e. cylopropenation vs cyclopropa-
nation, of the enyne system can be altered by choosing the
appropriate diazo species and metal catalysts.”

Finally, Professor Bi concluded: “N-Nosylhydrazones
have been found for the first time as a room-temperature-
decomposable diazo surrogate, and its synthetic application
was demonstrated in the cyclopropenation of alkynes with
donor-diazo compounds by silver catalysis. We have no doubt
that this N-nosylhydrazone strategy will have a broad impact
across diazo chemistry, especially for applications in asymme-
tric synthesis.”

About the authors

Zhaohong Liu received his B.S. de-
gree from Sichuan University (P. R.
of China) in 2006. In the same year,
he joined Asymchem Laboratories
Co., Ltd. as a synthetic chemist. Since
2012, he has been a graduate stu-
dent in Professor Xihe Bi’s group at
Northeast Normal University (P. R.
of China). His research interest concerns
silver-catalyzed transfer reactions of
carbene.

Qiangqiang Li was born in Shanxi (P.
R. of China) in 1990, and received his
B.S. degree in chemistry from Datong
University (P. R. of China) in 2014.
He then joined the Bi group at the
Northeast Normal University (P. R.
of China) as a Master’s student. His re-
search interest concerns silver-catal-
yzed transfer reactions of carbenes.

Peiqiu Liao received her B.S. degree
in 2001 from Wuhan University (P. R.
of China). In 2008, she received her
Ph.D. from Changchun Institute of
Applied Chemistry, Chinese Acade-
my of Science (P. R. of China). Then,
she joined the Bi group at Northeast
Normal University (P. R. of China) as
an Engineer in 2008 and became a
Senior Engineer in 2012. Her current
research interest concerns transition-
metal-catalyzed annulation reactions.

Xihe Bi obtained his Ph.D. in 2006
from Northeast Normal University
(P. R. of China). He then joined the
group of Professor Michael Famulok
at University of Bonn (Germany) as an
Alexander von Humboldt Research
Fellow. At the end of 2008, he started
his independent research at Northeast
Normal University. Professor Bi’s re-
search team mainly focuses on silver
catalysis in organic synthesis. He has
received honors and awards including
the Young Scholar of the Changjiang Scholars Program of Chi-
na (2016), the NSFC Foundation for Excellent Young Scientist
(2015), the Thieme Chemistry Journals Award (2014), and the