An NHC-Stabilized Disilavinylidene: Synthesis, Structure and Reactivity

P. Ghana, S. Krämer, G. Schnakenburg, A. C. Filippou*
Institut für Anorganische Chemie, Rheinische Friedrich-Wilhelms Universität Bonn Gerhard-Domagk-Strasse 1, GER-53121, Bonn, e-mail: filippou@uni-bonn.de, pghana@uni-bonn.de

Introduction

The behavior of silicon in multiply bonded compounds differs markedly from that of its lighter homologue carbon. This is exemplified by the presence of four energetic minimum structures $\mathbf{A}-\mathbf{D}$ for $\mathrm{Si}_{2} \mathrm{H}_{2}$ (Chart 1) on the potential energy hypersurface (PES), in contrast to only two minimum structures ($\mathrm{HC}=\mathrm{CH}$ and $\mathrm{H}_{2} \mathrm{C}=\mathrm{C}$:) for $\mathrm{C}_{2} \mathrm{H}_{2}$. ${ }^{[1]}$ The dibridged (A) and monobridged (B) $\mathrm{Si}_{2} \mathrm{H}_{2}$ molecules were identified by spectroscopic studies, ${ }^{[2]}$ and trans-bent disilynes $\mathrm{Si}_{2} \mathrm{R}_{2}$ of type \mathbf{D} with bulky substituents were isolated in the condensed phase. ${ }^{[3]}$ However, no experimental evidence for disilavinylidenes (C) has been reported to date. Using N-heterocyclic carbenes (NHCs), we herein present an efficient two-step synthesis and some initial reactivity studies of the first NHC-stabilized disilavinylidene. ${ }^{[4]}$

Results

NHC-Stabilized Bromo(silyl)silylenes
The entry into this chemistry was provided by the NHC -stabilized $\mathrm{Si}(I I)$ dibromide $\mathrm{SiBr}_{2}(\mathrm{SIdipp})$, which upon reaction with $(E)-\mathrm{Tbb}(\mathrm{Br}) \mathrm{Si}=\mathrm{Si}(\mathrm{Br}) \mathrm{Tbb}$ or LiTbb afforded the first NHC-stabilized bromo(silyl)silylene $\operatorname{SiBr}\left(\mathrm{SiBr}_{2} \mathrm{Tbb}\right)(\mathrm{SIdipp})(1)$ (Scheme 1). Compound $\mathbf{1}$ was isolated as an extremely air-sensitive, yellow solid in $50-61 \%$ yield.

The ${ }^{29} \mathrm{Si}$ NMR spectrum of $\mathbf{1}$ displays four characteristic singlets at $\delta=-11.3$, $-1.9,2.45$ and 2.64 ppm , among which the first two signals were assigned by ${ }^{1} \mathrm{H}-$ ${ }^{29} \mathrm{Si}$ correlation spectroscopy to the $S \not \mathrm{Br}_{2}$ and SBr nuclei, respectively.

The reduction of $\mathbf{1}$ with two equivalents of KC_{8} in benzene leads to the first NHC stabilized disilavinylidene (Z)-(SIdipp) $\mathrm{Si}=\mathrm{Si}(\mathrm{Br}) \mathrm{Tbb}$ (2) (Scheme 2), which after work-up was isolated as an extremely air-sensitive, bright-red solid in 60% yield.

2

The molecular structure of $\mathbf{1}$ reveals an antiperiplanar conformation of the bulky Tbb and Sldipp groups, a tetrahedral geometry at the $\mathrm{Si1}$ atom and a trigonalpyramidal geometry at the Si 2 center. The Si1-Si2 bond length is 2.391 (1) \AA, which is expected for a $\mathrm{Si}-\mathrm{Si}$ single bond.

The molecular structure of 2 reveals a planar core composed of the atoms C1, $\mathrm{Si1}, \mathrm{Br}, \mathrm{Si} 2$ and C 25 , and a transarrangement of the bulky Tbb and Sldipp groups (Figure 3). The $\mathrm{Si} 1-\mathrm{Si} 2$ bond of $\mathbf{2}$ (2.167(2) \AA) is markedly shorter than that observed in 1 (2.391(1) Å) and indicates the presence of a Si-Si double bond.

Scheme 2. Synthesis of the NHC-stabilized disilavinylidene $\mathbf{2}$ upon two-electron reduction of $\mathbf{1}$.
a)

Figure 2. a) ${ }^{1} \mathrm{H}-{ }^{29} \mathrm{Si}$ HMBC correlation spectrum of 2; b) UV-Vis spectrum of $\mathbf{2}$ in n-hexane.

$\begin{array}{ll}\mathrm{n}(\mathrm{Si} 2) & \pi(\mathrm{Si}-\mathrm{Si}) \\ -4.93 \mathrm{eV}\end{array}$
$-4.93 \mathrm{eV} \quad-3.86 \mathrm{eV}$

$\mathrm{LUMO}+1$
$\pi^{*}(\mathrm{Si}-\mathrm{Si})$
$\pi^{*}(\mathrm{Si}-\mathrm{Si})$
-1.83 eV
Figure 4. Selected Kohn-Sham orbitals of $(Z)-R(B r) S i=S i(N H C)\left(R=C_{6} H_{3}-2,6-\left[C H\left(\mathrm{SiH}_{3}\right)_{2}\right]\right.$

Reactivity of the NHC-Stabilized Disilavinylidene 2

The NHC-stabilized disilavinylidene 2 contains multiple reactive sites, such as the $\mathrm{Si}-\mathrm{Br}$ and $\mathrm{Si}=\mathrm{Si}$ bonds, the Si lone pair or the displaceable NHC group, which opens up many potential reaction pathways. Some initial results of the exploration of the fascinating reactivity of $\mathbf{2}$ are presented in Scheme 3 and Figure 5 .

zinco(silyl)silylene (4)

NHC-stabilized
benzyldisilavinylidene (3)

NHC-stabilized
$\left[\mathrm{Si}_{2} \mathrm{R}\right]^{+}(5-\mathrm{Br}, \mathrm{R}=\mathrm{Tbb})$

$d(\mathrm{Si} 1-\mathrm{Si} 2)=2.190(2) \AA$
3
4
4

$d(\mathrm{Si} 1-\mathrm{Si} 2)=2.430(2) \AA$
5^{+}

Figure 5. Molecular structures of $\mathbf{3 , 4}$ and 5^{+}; methyl groups were omitted for clarity.

Summary

The first NHC-stabilized bromo(silyl)silylenes and disilavinylidenes $(\mathbf{1}, \mathbf{2})$ were isolated and fully characterized by X-ray diffraction analysis, NMR spectroscopy and quantum chemical calculations. Both compounds feature many reactive sites, which facilitated the isolation of many novel and exciting low-valent Si compounds.

References

[1] M. Lein, A. Krapp, G. Frenking, J. Am. Chem. Soc. 2005, 127, 6290.
[2] a) M. Bogey, H. Bolvin, C. Demuynck, J. L. Destombes, Phys. Rev. Lett. 1991, 66, 413; b) M. Cordonnier, M. Bogey, C. Demuynck, J.-L. Destombes, J. Chem. Phys. 1992, 97, 7984. [3] A. Sekiguchi, R. Kinjo, M. Ichinohe, Science 2004, 305, 1755.
[4] P. Ghana, M. I. Arz, U. Das, G. Schnakenburg, A. C. Filippou, Angew. Chem. Int. Ed. 2015, 54, 9980.

