Negatively Curved Molecular Nanocarbons Containing Multiple Heptagons Are Enabled by the Scholl Reactions of Macrocyclic Precursors
Ka Man Cheung, Qian Miao*

Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China

Introduction

Embedding heptagons in polycyclic aromatic frameworks gives rise to negatively curved molecular nanocarbons, which are not only key fragments of long-sought-after carbon schwarzites but also bring new opportunities to explore unprecedented nanocarbons with interesting properties. This study demonstrates the Scholl reactions of macrocyclic precursors as a general strategy for synthesizing negatively curved molecular nanocarbons containing different numbers of heptagons. The π-backbones containing multiple heptagons are significantly curved and rigid as revealed by density functional theory calculations and X-ray crystallography.

Synthesis

Suzuki-Miyaura Coupling

Yamamoto Coupling

Scholl reaction

Crystal Structures

Conformational Flexibility

Figure 1. (a)-(b) Calculated pathway for inversion of 1 and 6; All of the structures were calculated at the B3LYP/6-31G(d) level of DFT

Organic Field Effect Transistors

Figure 3. Drain current (I_{DS}) versus gate voltage (V_{GS}) with drain voltage (V_{DS}) at –35 V for a typical OFET of 3 on the CDPA/AlOx/SiO2 as measured in air with an active channel of W = 975 μm and L = 195 μm.

Acknowledgement:
We are grateful to Dr. Chun Fai Ng and Ms. Hoi Shan Chan (the Chinese University of Hong Kong) for the single-crystal crystallography. We are grateful to the Research Grants Council of Hong Kong (GRF 14300721) for financially supporting this work.

References: