Preface

V

Volume Editor's Preface

VII

Table of Contents

XI

Introduction

T. Imamoto ... 1

2.1 Product Class 1: Organometallic Complexes of Manganese

K. Oshima .. 13

2.2 Product Class 2: Organometallic Complexes of Technetium

I. D. Gridnev and T. Imamoto .. 91

2.3 Product Class 3: Organometallic Complexes of Rhenium

F. E. Kühn, C. C. Romão, and W. A. Herrmann 111

2.4 Product Class 4: Arene Organometallic Complexes of Chromium, Molybdenum, and Tungsten

E. P. Kündig and S. H. Pache .. 155

2.5 Product Class 5: Organometallic π-Complexes of Chromium, Molybdenum, and Tungsten Excluding Arenes

K. H. Theopold, A. Mommertz, and B. A. Salisbury 229

2.6 Product Class 6: Organometallic Complexes of Chromium, Molybdenum, and Tungsten without Carbonyl Ligands

R. Poli and K. M. Smith .. 283

2.7 Product Class 7: Carbonyl Complexes of Chromium, Molybdenum, and Tungsten with σ-Bonded Ligands

T. Ito and M. Minato ... 333

2.8 Product Class 8: Organometallic Complexes of Vanadium

T. Imamoto and I. D. Gridnev ... 385

2.9 Product Class 9: Organometallic Complexes of Niobium and Tantalum

K. Mashima and A. Nakamura ... 415

2.10 Product Class 10: Organometallic Complexes of Titanium

K. Mikami, Y. Matsumoto, and T. Shiono 457
Table of Contents

Introduction
T. Imamoto

Introduction .. 1

2.1 Product Class 1: Organometallic Complexes of Manganese
K. Oshima

2.1 Product Class 1: Organometallic Complexes of Manganese 13
2.1.1 Product Subclass 1: Manganese–Cyclopentadienyl Complexes 13
Synthesis of Product Subclass 1 13
2.1.1.1 Method 1: By Reaction between Cyclopentadienyl Anions and Manganese Halides 13
2.1.1.1 Variation 1: From Lithium Cyclopentadienide Salts and Manganese(II) Chloride 14
2.1.1.2 Variation 2: From Cyclopentadienyl Salts and Carbonyl(halo)manganese Complexes 15
2.1.1.2 Method 2: By Reaction between 5-Acetyl-1,2,3,4,5-pentamethylcyclopentadiene and Decacarbonyldimanganese(0) 17
2.1.1.3 Method 3: By Substitution Reactions on the Manganese-Coordinated Cyclopentadienyl Ring 18
2.1.1.4 Method 4: By Insertion of 5-Diazocyclopenta-1,3-diene into a Manganese–Halogen Bond 18

2.1.2 Product Subclass 2: Manganese–Dienyl and –Diene Complexes 19
Synthesis of Product Subclass 2 19
2.1.2.1 Method 1: (η⁵-Pentadienyl)manganese Complexes from Pentadienyl Anions 19
2.1.2.1 Variation 1: A Tetrakis(pentadienyl)trimanganese Complex from Manganese(II) Chloride and 3-Methylpentadienyl Anion 21
2.1.2.2 Method 2: (η⁴-Butadiene)manganese Complexes from the Butadiene–magnesium–Bis(tetrahydrofuran) Complex and Manganese(II) Chloride 22
2.1.2.3 Method 3: (η⁵-Pentadienyl)manganese Complexes from Potassium Pentadienide Salts 22
2.1.2.4 Method 4: (η⁵-Cyclohexadienyl)manganese Complexes by Reaction between Decacarbonyldimanganese(0) and Cyclohexa-1,3-dienes or by Reduction of Manganese–Arene Complexes 23
2.1.3 **Product Subclass 3: Manganese–\(\eta^3\)-Allyl Complexes** 24
 Synthesis of Product Subclass 3 .. 24
2.1.3.1 Method 1: From Carbonyl(halo)manganese Complexes and Allyl Bromide 24
2.1.3.2 Method 2: From (\(\eta^3\)-Alkene)- or (\(\eta^2\)-1,3-Diene)manganese Complexes 24
2.1.3.3 Method 3: From (\(\eta^1\)-Allyl)manganese Complexes by \(\eta^1\) to \(\eta^3\) Isomerization 25
 Applications of Product Subclass 3 in Organic Synthesis 26
2.1.3.4 Method 4: Reaction of (\(\eta^3\)-Allyl)manganese Complexes with Nucleophiles 26
2.1.4 **Product Subclass 4: Manganese–Alkyne Complexes** 27
 Synthesis of Product Subclass 4 .. 27
2.1.4.1 Method 1: By Ligand Substitution 27
2.1.5 **Product Subclass 5: Manganese–Alkene Complexes** 29
 Synthesis of Product Subclass 5 .. 29
2.1.5.1 Method 1: By Ligand Substitution 29
2.1.5.2 Method 2: By Ligand Transformation 30
2.1.6 **Product Subclass 6: Manganese–Carbene Complexes** 30
 Synthesis of Product Subclass 6 .. 30
2.1.6.1 Method 1: By Reaction between Alkylmetals and Carbonylmanganese Complexes 30
2.1.6.2 Method 2: Exocyclic Fischer Carbene Complexes by Reaction of Dibromoalkanes, Aziridines, or Oxiranes with Carbonylmanganese Complexes 33
2.1.6.3 Method 3: Manganese–Ethenylidene Complexes from Ethyldyne Complexes 34
2.1.6.4 Method 4: From Manganese–Acetylene Complexes 35
 Applications of Product Subclass 6 in Organic Synthesis 36
2.1.6.5 Method 5: Reaction with Enynes, \(\alpha,\beta\)-Unsaturated Esters, or Alkynes 36
2.1.7 **Product Subclass 7: Manganese–Carbyne Complexes** 38
 Synthesis of Product Subclass 7 .. 38
2.1.7.1 Method 1: From Manganese–Carbene Complexes 38
2.1.8 **Product Subclass 8: Manganese–\(\sigma\)-Alkyl Complexes** 39
 Synthesis of Product Subclass 8 .. 39
2.1.8.1 Method 1: From Alkyl Halides and Sodium Pentacarbonylmanganate(–I) 39
2.1.8.2 Method 2: From Alkylmetals and Manganese(II) Halides 40
2.1.8.2.1 Variation 1: Preparation of Tetraalkylmanganate(II) 40
2.1.8.2.2 Variation 2: Preparation of Mono-, Di-, and Trialkylmanganate(II) Complexes 41
 Applications of Product Subclass 8 in Organic Synthesis 43
2.1.8.3 Method 3: Use of Organomanganese Reagents 43
2.1.8.4 Method 4: Use of Alkylpentacarbonylmanganese(I) Complexes 44
2.1.9 Product Subclass 9: Manganese–\(\eta^1 \)-Allyl Complexes

Synthesis of Product Subclass 9

2.1.9.1 Method 1: From Allyl Halides and Metallic Manganese or Low-Valent Manganese Generated by the Reduction of Manganese(II) Halides

2.1.9.2 Method 2: From Allylmagnesium Halides and Manganese(II) Halides

2.1.9.3 Method 3: From Allylic Halides and Tetrabutylmanganate(II)

2.1.9.4 Method 4: From 1,3-Dienes and Pentacarbonylhydridomanganese(I)

Applications of Product Subclass 9 in Organic Synthesis

2.1.9.5 Method 5: Allylation of Carbonyl and Other Unsaturated Compounds

2.1.10 Product Subclass 10: Manganese–Aryl, –Alkenyl, and –Alkynyl Complexes

Synthesis of Product Subclass 10

2.1.10.1 Method 1: Arylmanganese Complexes from Arylmetals and Manganese(II) Halides

2.1.10.2 Method 2: Arylmanganese Complexes from Acetophenones and Carboxyliermanganese Complexes

2.1.10.3 Method 3: Arylmanganese Complexes by Acylation–Decarbonylation

2.1.10.4 Method 4: Alkenylmanganese Complexes from Alkynes and Alkyl(carbonyl)manganese Complexes by Alkyn Insertion

2.1.10.5 Method 5: Alkynyl(carbonyl)manganese Complexes from Alkynes and Carbonyl(halo)manganese Complexes

Applications of Product Subclass 10 in Organic Synthesis

2.1.10.6 Method 6: Reaction of Alkenyl-, Aryl-, and Alkynylmanganese Halides with Acid Chlorides

2.1.10.7 Method 7: Demetalation of Aryl- and Alkenylmanganese Complexes

2.1.11 Product Subclass 11: Manganese–Hydrido Complexes

Synthesis of Product Subclass 11

2.1.11.1 Method 1: Preparation of Pentacarbonylhydridomanganese(I)

2.1.11.2 Method 2: Preparation of Substituted Carbonylhydridomanganese(I) Complexes

2.1.11.3 Method 3: Preparation of Tetracarbonylmanganate(–III) and Tris[tetracarbonylhydridomanganese(I)]

2.1.11.4 Method 4: Preparation of (\(\eta^5 \)-Arene)dicarbonylhydridomanganese(I) Complexes

2.1.11.5 Method 5: Preparation of (\(\eta^5 \)-Cyclopentadienyl)dihydridomanganese(III) Complexes

2.1.11.6 Method 6: Preparation of Hydrido(iodo)manganese(II)

Applications of Product Subclass 11 in Organic Synthesis

2.1.11.7 Method 7: Reduction of Activated C=C Bonds

2.1.12 Product Subclass 12: Neutral Dimanganese–Carbonyl Complexes

Synthesis of Product Subclass 12

2.1.12.1 Method 1: Homoleptic Dimanganese–Carbonyl Complexes by Reduction under Carbon Monoxide
<table>
<thead>
<tr>
<th>Section</th>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1.12.2</td>
<td>Method 2:</td>
<td>Dimanganese–Carbonyl Complexes Substituted with Group 15 Ligands</td>
</tr>
<tr>
<td>2.1.12.3</td>
<td>Method 3:</td>
<td>Nonacarbonyldimanganese(0)–Aldehyde Complexes</td>
</tr>
<tr>
<td>2.1.13</td>
<td>Product Subclass 13: Anionic Manganese–Carbonyl Complexes</td>
<td></td>
</tr>
<tr>
<td>2.1.13.1</td>
<td>Method 1:</td>
<td>Synthesis of Product Subclass 13</td>
</tr>
<tr>
<td>2.1.13.2</td>
<td>Variation 1:</td>
<td>By Reduction</td>
</tr>
<tr>
<td>2.1.13.3</td>
<td>Variation 2:</td>
<td>With Sodium/Mercury Amalgam</td>
</tr>
<tr>
<td>2.1.13.4</td>
<td>Variation 3:</td>
<td>With Trialkylborohydride or Potassium Hydride</td>
</tr>
<tr>
<td>2.1.13.5</td>
<td>Variation 4:</td>
<td>With Sodium Bis(2-methoxyethoxy)aluminum Hydride</td>
</tr>
<tr>
<td>2.1.14</td>
<td>Product Subclass 14: Cationic Manganese–Carbonyl Complexes</td>
<td></td>
</tr>
<tr>
<td>2.1.14.1</td>
<td>Method 1:</td>
<td>Synthesis of Product Subclass 14</td>
</tr>
<tr>
<td>2.1.14.2</td>
<td>Method 2:</td>
<td>From Carbonyl(halo)manganese(I) Complexes by Substitution of a Halide for a Neutral Monohapto Ligand in the Presence of a Halide Acceptor</td>
</tr>
<tr>
<td>2.1.14.3</td>
<td>Method 3:</td>
<td>From (Alkoxycarbonyl)manganese Complexes by Treatment with Acid</td>
</tr>
<tr>
<td>2.1.14.4</td>
<td>Method 4:</td>
<td>By Oxidation of Decacarbonyldimanganese(0) by Nitrosium Hexafluorophosphate in the Presence of a Neutral Ligand</td>
</tr>
<tr>
<td>2.1.14.5</td>
<td>Method 5:</td>
<td>From Carbonyl(halo)manganese(I) Complexes by Substitution of a Halo for an Arene Ligand To Form Cationic (Arene)tricarbonylmanganese(I) Complexes</td>
</tr>
<tr>
<td>2.1.14.6</td>
<td>Method 6:</td>
<td>From Carbonylhydridomanganese(I) Complexes by Substitution of the Hydrido for a Neutral Ligand</td>
</tr>
<tr>
<td>2.1.15</td>
<td>Product Subclass 15: Miscellaneous Complexes</td>
<td></td>
</tr>
<tr>
<td>2.1.15.1</td>
<td>Method 1:</td>
<td>Synthesis of Product Subclass 15</td>
</tr>
<tr>
<td>2.1.15.2</td>
<td>Method 2:</td>
<td>Preparation of Carbonylmanganese–Halo Complexes</td>
</tr>
<tr>
<td>2.1.15.3</td>
<td>Method 3:</td>
<td>Preparation of Carbonylmanganese–Pseudohalo Complexes</td>
</tr>
<tr>
<td>2.1.15.4</td>
<td>Method 4:</td>
<td>Preparation of Nitrosylmanganese Complexes</td>
</tr>
<tr>
<td>2.1.15.5</td>
<td>Method 5:</td>
<td>Preparation of Isocyanidemanganese Complexes</td>
</tr>
<tr>
<td>2.1.15.6</td>
<td>Method 6:</td>
<td>Preparation of Silylmanganese Complexes</td>
</tr>
</tbody>
</table>
2.1.7 Method 7: Preparation of (1-Hydroxyalkyl)manganese Complexes

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preparation of (1-Hydroxyalkyl)manganese Complexes</td>
<td>84</td>
</tr>
</tbody>
</table>

2.1.8 Method 8: Preparation of Tetracarbonyl(octahydrotriborato(1–))manganese

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preparation of Tetracarbonyl(octahydrotriborato(1–))manganese</td>
<td>84</td>
</tr>
</tbody>
</table>

2.2 Product Class 2: Organometallic Complexes of Technetium

I. D. Gridnev and T. Imamoto

2.2.1 Product Subclass 1: Technetium–Arene Complexes

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synthesis of Product Subclass 1</td>
<td>92</td>
</tr>
</tbody>
</table>

2.2.1.1 Method 1: By Interelement Synthesis

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>By Interelement Synthesis</td>
<td>92</td>
</tr>
</tbody>
</table>

2.2.1.2 Method 2: From Technetium(IV) Chloride or Sodium Pertechnetate

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>From Technetium(IV) Chloride or Sodium Pertechnetate</td>
<td>92</td>
</tr>
</tbody>
</table>

2.2.1.3 Method 3: Synthesis of Mixed Arene–Diene Complexes by Reduction of Bis(arene) Complexes

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synthesis of Mixed Arene–Diene Complexes by Reduction of Bis(arene) Complexes</td>
<td>93</td>
</tr>
</tbody>
</table>

2.2.1.4 Method 4: Synthesis of (η¹-Benzene)tricarbonyltechnetium Chloride from Sodium Nonacarbonylheptamethoxytritechnetate(1–)

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synthesis of (η¹-Benzene)tricarbonyltechnetium Chloride from Sodium Nonacarbonylheptamethoxytritechnetate(1–)</td>
<td>93</td>
</tr>
</tbody>
</table>

2.2.2 Product Subclass 2: Technetium–Cyclopentadienyl and Substituted Cyclopentadienyl Complexes

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synthesis of Product Subclass 2</td>
<td>94</td>
</tr>
</tbody>
</table>

2.2.2.1 Method 1: By the Reactions of Technetium Halides with Metal Cyclopentadienides

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>By the Reactions of Technetium Halides with Metal Cyclopentadienides</td>
<td>94</td>
</tr>
</tbody>
</table>

2.2.2.2 Method 2: From Decacarbonylditechnetium

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>From Decacarbonylditechnetium</td>
<td>95</td>
</tr>
</tbody>
</table>

2.2.2.3 Method 3: From Pentacarbonyltechnetium Iodide

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>From Pentacarbonyltechnetium Iodide</td>
<td>96</td>
</tr>
</tbody>
</table>

2.2.2.4 Method 4: From Sodium Nonacarbonylheptamethoxytritechnetate(1–)

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>From Sodium Nonacarbonylheptamethoxytritechnetate(1–)</td>
<td>96</td>
</tr>
</tbody>
</table>

2.2.3 Product Subclass 3: Technetium–Carbene Complexes

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synthesis of Product Subclass 3</td>
<td>96</td>
</tr>
</tbody>
</table>

2.2.3.1 Method 1: From Technetium–Carbonyls and Organolithium Compounds

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>From Technetium–Carbonyls and Organolithium Compounds</td>
<td>97</td>
</tr>
</tbody>
</table>

2.2.3.2 Method 2: By the Reactions of Chlorobis[1,2-bis(diphenylphosphino)ethane]technetium with Terminal Alkynes

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>By the Reactions of Chlorobis[1,2-bis(diphenylphosphino)ethane]technetium with Terminal Alkynes</td>
<td>97</td>
</tr>
</tbody>
</table>

2.2.3.3 Method 3: Reaction of a Benzoylcarbonyltechnetium Complex with Triethylxonium Tetrafluoroborate

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reaction of a Benzoylcarbonyltechnetium Complex with Triethylxonium Tetrafluoroborate</td>
<td>98</td>
</tr>
</tbody>
</table>

2.2.3.4 Method 4: From Carbyne Complexes

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>From Carbyne Complexes</td>
<td>98</td>
</tr>
</tbody>
</table>

2.2.4 Product Subclass 4: Technetium–Carbyne Complexes

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synthesis of Product Subclass 4</td>
<td>99</td>
</tr>
</tbody>
</table>

2.2.4.1 Method 1: By Protonation of Carbene Complexes

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>By Protonation of Carbene Complexes</td>
<td>99</td>
</tr>
</tbody>
</table>

2.2.4.2 Method 2: By Reaction of Carbene Complexes with Boron Trichloride

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>By Reaction of Carbene Complexes with Boron Trichloride</td>
<td>100</td>
</tr>
</tbody>
</table>

2.2.5 Product Subclass 5: Technetium–σ-Alkyl Complexes

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synthesis of Product Subclass 5</td>
<td>100</td>
</tr>
</tbody>
</table>

2.2.5.1 Method 1: Reaction of Technetium(VII) Oxide with Tetramethylstannane

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reaction of Technetium(VII) Oxide with Tetramethylstannane</td>
<td>100</td>
</tr>
</tbody>
</table>

2.2.5.2 Method 2: Reaction of Technetium–Imido Complexes with Grignard Reagents

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reaction of Technetium–Imido Complexes with Grignard Reagents</td>
<td>101</td>
</tr>
</tbody>
</table>
2.2.6 **Product Subclass 6: Technetium–Carbonyl Complexes** ... 102
 Synthesis of Product Subclass 6 ... 102
2.2.6.1 Method 1: Synthesis of Decacarbonylditechnetium .. 102
2.2.6.2 Method 2: Synthesis of Pentacarbonylttechnetium Halides and Related Complexes .. 102
2.2.6.3 Method 3: Synthesis of Technetium–Carbonyl Complexes Containing Triphenylphosphine and Other Ligands .. 104
2.2.6.4 Method 4: Synthesis of Technetium–Aquacarbonyl Complexes 104
2.2.7 **Product Subclass 7: Technetium–Isocyanide Complexes** .. 105
 Synthesis of Product Subclass 7 .. 105
2.2.7.1 Method 1: Reduction of Pertechnetate Ion in the Presence of Isocyanide Ligands .. 105
2.2.7.2 Method 2: By Substitution Reactions .. 106
2.2.8 **Product Subclass 8: Miscellaneous Technetium Complexes** 107
 Synthesis of Product Subclass 8 .. 107
2.2.8.1 Method 1: Synthesis of Hydridotechnetium Complexes 107
2.2.8.2 Method 2: Synthesis of Technetium Dinitrogen Complexes 107

2.3 **Product Class 3: Organometallic Complexes of Rhenium**
F. E. Kühn, C. C. Romão, and W. A. Herrmann

2.3 **Product Class 3: Organometallic Complexes of Rhenium** ... 111
2.3.1 **Product Subclass 1: Rhenium–Arene Complexes** .. 111
 Synthesis of Product Subclass 1 ... 112
2.3.1.1 Method 1: Reductive Synthesis from Rhenium Halides 112
2.3.1.2 Method 2: Synthesis from Low-Oxidation-State Rhenium Precursors 113
2.3.1.2.1 Variation 1: By Metal-Vapor Synthesis ... 113
2.3.1.2.2 Variation 2: By Ligand Substitution from Rhenium–Carbonyl Complexes ... 114
2.3.2 **Product Subclass 2: Rhenium–Dienyl Complexes** ... 114
 Synthesis of Product Subclass 2 ... 116
2.3.2.1 Method 1: Ligand Substitutions .. 116
2.3.2.1.1 Variation 1: Synthesis from Trioxo(η^3-pentamethylcyclopentadienyl)rhe-
 niuim(VII) and Tetrachloro(η^3-pentamethylcyclopentadienyl)
 rhenium(V) .. 117
2.3.2.1.2 Variation 2: Synthesis from Rhenium(VII) Oxide 119
2.3.2.2 Method 2: Oxidation Reactions ... 119
2.3.2.2.1 Variation 1: Synthesis from Tricarbonyl(η^3-pentamethylcyclopentadienyl)
 rhenium(I) .. 120
2.3.2.2.2 Variation 2: Synthesis from Bis(η^2-cyclopentadienyl)hydridorhenium(III) .. 121
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.3.3</td>
<td>Product Subclass 3: Rhenium–Alkyne Complexes</td>
<td>121</td>
</tr>
<tr>
<td>2.3.3.1</td>
<td>Method 1: Reduction of Rhenium(VII) Precursors</td>
<td>121</td>
</tr>
<tr>
<td>2.3.4</td>
<td>Product Subclass 4: Rhenium–Alkene Complexes</td>
<td>122</td>
</tr>
<tr>
<td>2.3.4.1</td>
<td>Method 1: Nucleophilic Additions</td>
<td>122</td>
</tr>
<tr>
<td>2.3.4.2</td>
<td>Variation 1: Nucleophilic Addition to ((\eta^5\text{-Cyclopentadienyl})(\text{nitrosyl})(\text{tri-phenylphosphine})\text{rhenium}(1+))</td>
<td>122</td>
</tr>
<tr>
<td>2.3.4.2.2</td>
<td>Variation 2: Nucleophilic Addition to Pentacarbonylrhenium(1+)</td>
<td>123</td>
</tr>
<tr>
<td>2.3.5</td>
<td>Product Subclass 5: Rhenium–Carbene Complexes</td>
<td>124</td>
</tr>
<tr>
<td>2.3.5.1</td>
<td>Method 1: Photolysis of an Organorhenium(VII) Oxide</td>
<td>124</td>
</tr>
<tr>
<td>2.3.6</td>
<td>Product Subclass 6: Rhenium–Carbyne Complexes</td>
<td>125</td>
</tr>
<tr>
<td>2.3.6.1</td>
<td>Method 1: Ligand Substitution</td>
<td>125</td>
</tr>
<tr>
<td>2.3.6.2</td>
<td>Method 2: Alkene Metathesis</td>
<td>126</td>
</tr>
<tr>
<td>2.3.7</td>
<td>Product Subclass 7: Rhenium–Alkyl Complexes</td>
<td>127</td>
</tr>
<tr>
<td>2.3.7.1</td>
<td>Method 1: By Nucleophilic Reactions of Pentacarbonylrhenate(1–)</td>
<td>127</td>
</tr>
<tr>
<td>2.3.7.2</td>
<td>Method 2: Ligand Substitutions</td>
<td>128</td>
</tr>
<tr>
<td>2.3.7.2.1</td>
<td>Variation 1: From Rhenium(VII) Oxide</td>
<td>128</td>
</tr>
<tr>
<td>2.3.7.2.2</td>
<td>Variation 2: From Silver(I) Perrhenate</td>
<td>129</td>
</tr>
<tr>
<td>2.3.7.2.3</td>
<td>Variation 3: Synthesis of Alkyl(peroxo)rhenium(VII) Complexes</td>
<td>130</td>
</tr>
<tr>
<td>2.3.7.3</td>
<td>Method 3: Oxidation Catalysis</td>
<td>131</td>
</tr>
<tr>
<td>2.3.7.3.1</td>
<td>Variation 1: Alkene Epoxidation</td>
<td>131</td>
</tr>
<tr>
<td>2.3.7.3.2</td>
<td>Variation 2: Arene Oxidation</td>
<td>134</td>
</tr>
<tr>
<td>2.3.7.4</td>
<td>Method 4: Alkene Metathesis</td>
<td>136</td>
</tr>
<tr>
<td>2.3.7.5</td>
<td>Method 5: Alkenation of Aldehydes</td>
<td>137</td>
</tr>
<tr>
<td>2.3.8</td>
<td>Product Subclass 8: Rhenium–Hydride Complexes</td>
<td>139</td>
</tr>
<tr>
<td>2.3.8.1</td>
<td>Method 1: Substitution Reactions from Other Rhenium Hydrides</td>
<td>140</td>
</tr>
<tr>
<td>2.3.9</td>
<td>Product Subclass 9: Rhenium–Carbonyl Complexes</td>
<td>142</td>
</tr>
<tr>
<td>2.3.9.1</td>
<td>Method 1: From Decacarbonyldirhenium</td>
<td>142</td>
</tr>
<tr>
<td>2.3.9.1.1</td>
<td>Variation 1: Substitution Reactions</td>
<td>143</td>
</tr>
<tr>
<td>2.3.9.1.2</td>
<td>Variation 2: Redox Reactions</td>
<td>143</td>
</tr>
<tr>
<td>2.3.9.1.3</td>
<td>Variation 3: Nucleophilic Attack</td>
<td>144</td>
</tr>
</tbody>
</table>
2.3.9.4 Variation 4: Homolytic Cleavage .. 144
2.3.9.2 Method 2: Nucleophilic Reactions of Pentacarbonylrhenate(1−) 145
2.3.9.3 Method 3: Cationic Carbonylrhenium Complexes 146
2.3.9.4 Method 4: Carbonyl(halo)rhenium Complexes Prepared by Oxidative Addition .. 146
2.3.9.5 Method 5: Carbonyl(halo)- and Carbonyl(pseudohalo)rhenium Complexes Prepared from Pentacarbonylrhenium(I) Tetrafluoroborate 147

2.4 Product Class 4: Arene Organometallic Complexes of Chromium, Molybdenum, and Tungsten
E. P. Kündig and S. H. Pache

2.4 Synthesis of Product Class 4 .. 155
2.4.1 Method 1: Direct Synthesis of Metal–Bis(arene) Complexes via Metal Evaporation .. 155
2.4.2 Method 2: Synthesis of Metal–Bis(arene) Complexes by Reductive Methods .. 157
2.4.3 Method 3: Synthesis of Metal–Bis(arene) Complexes by Arene Exchange, by Arene Transformation Reactions, and by Cyclic Condensation Reactions ... 158
2.4.4 Method 4: Synthesis of Tricarbonylmetal–Arene Complexes from Metal–Carbonyls ... 159
2.4.4.1 Variation 1: From Hexacarbonylmetal Complexes 159
2.4.4.2 Variation 2: From [M(CO)3L3] Complexes ... 162
2.4.4.3 Variation 3: By Arene and Heteroarene Exchange 163
2.4.4.4 Variation 4: From (Carbene)pentacarbonylmetal Complexes 164
2.4.5 Method 5: Synthesis of Tricarbonylmetal–Arene Complexes by Arene Modification ... 165
2.4.5.1 Variation 1: Via Lithiation and Reaction with Electrophiles 166
2.4.5.2 Variation 2: Via Nucleophilic Substitution ... 168
2.4.5.3 Variation 3: Via Palladium-Catalyzed Reactions 170
2.4.6 Method 6: Synthesis of Tricarbonylmetal–Arene Complexes by Side-Chain Modification ... 172
2.4.6.1 Variation 1: Via Nucleophile Addition .. 172
2.4.6.2 Variation 2: Via Benzylc Cations .. 176
2.4.6.3 Variation 3: Via Benzylc Anions .. 180
2.4.6.4 Variation 4: Via Cycloaddition Reactions ... 182
2.4.6.5 Variation 5: Via Radical Coupling Reactions 186
2.4.6.6 Variation 6: Via Ring Expansion Rearrangements 187
2.4.7 Method 7: Synthesis of Optically Active Arene Complexes 188
2.4.7.1 Variation 1: Resolution of Racemates ... 188
2.4.7.2 Variation 2: Diastereoselective Complexation 189
2.4.7.3 Variation 3: Diastereo- and Enantioselective Lithiation–Electrophilic Addition Reactions ... 191
2.4.7.4 Variation 4: Diastereo- or Enantioselective Nucleophile Addition Followed by endo-Hydride Abstraction 195
2.4.7.5 Variation 5: Palladium-Catalyzed Reactions ... 196
2.4.7.6 Variation 6: Diastereo- or Enantioselective Benzannulation Reactions ... 198
2.4.8 Method 8: Synthesis of [M(arene)(CO),(L),x] Complexes ... 199
2.4.9 Method 9: Synthesis of Heteroarene Complexes ... 203

Applications of Product Class 4 in Organic Synthesis ... 207
2.4.10 Method 10: (Arene)tricarbonylchromium(0) Complexes as Catalysts ... 207
2.4.11 Method 11: (Arene)tricarbonylchromium(0) Complexes as Auxiliaries and Building Blocks ... 209
2.4.11.1 Variation 1: (Arene)tricarbonylchromium(0) Complexes as Chiral Ligands ... 209
2.4.11.2 Variation 2: Arene Decomplexation ... 210
2.4.11.3 Variation 3: Aromatic Substitution via Nucleophile Addition–Oxidation of (Arene)tricarbonylchromium(0) Complexes ... 214
2.4.11.4 Variation 4: Dearomatization Reactions ... 216

2.5 Product Class 5: Organometallic π-Complexes of Chromium, Molybdenum, and Tungsten Excluding Arenes
K. H. Theopold, A. Mommerz, and B. A. Salisbury

2.5 Product Class 5: Organometallic π-Complexes of Chromium, Molybdenum, and Tungsten Excluding Arenes ... 229
2.5.1 Product Subclass 1: Metal–Triene and –Trienyl Complexes ... 229

Synthesis of Product Subclass 1 ... 229
2.5.1.1 Method 1: Ligand Substitution Reactions of Hexacarbonylchromium(0) or Hexacarbonylmolybdenum(0) with Trienes ... 229
2.5.1.1.1 Variation 1: Substitution of Nitriles with Trienes ... 231
2.5.1.2 Method 2: Synthesis of η⁶-Fulvene Complexes by Photocatalytic Substitution of Arenes in (η⁶-Arene)tricarbonylchromium(0) ... 231
2.5.1.3 Method 3: Synthesis of η⁷-Cycloheptatrienyl Complexes by Abstraction of Hydride from Coordinated Cycloheptatriene ... 232
2.5.1.3.1 Variation 1: Hydride Abstraction with Oxonium Salt ... 233
2.5.1.4 Method 4: Reduction of Metal Halides in the Presence of Cycloheptatriene ... 233
2.5.1.5 Method 5: Metal–Vapor Synthesis ... 234

Applications of Product Subclass 1 in Organic Synthesis ... 235
2.5.1.6 Method 6: Allylic Alkylation Catalyzed by a Tungsten–Cycloheptatriene Complex ... 235

2.5.2 Product Subclass 2: Metal–Dienyl Complexes ... 235

Synthesis of Product Subclass 2 ... 236
2.5.2.1 Method 1: Ligand Substitution with Alkali Metal–Dienyl Complexes ... 236
<table>
<thead>
<tr>
<th>Section</th>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5.2.2</td>
<td>Method 2:</td>
<td>Ligand Substitution with Dienes</td>
</tr>
<tr>
<td>2.5.2.2.1</td>
<td>Variation 1:</td>
<td>Ligand Substitution of Metal Oxychlorides with Dienes</td>
</tr>
<tr>
<td>2.5.2.3</td>
<td>Method 3:</td>
<td>Intramolecular Reactions with Allylic Halides</td>
</tr>
<tr>
<td>2.5.2.4</td>
<td>Method 4:</td>
<td>Synthesis of Metal–Cycloadienyl Complexes from Metal–Arene or –Cycloheptatriene Complexes by Nucleophilic Addition</td>
</tr>
<tr>
<td>2.5.2.5</td>
<td>Method 5:</td>
<td>Protonation of Metal–Triene Complexes</td>
</tr>
<tr>
<td>2.5.2.6</td>
<td>Method 6:</td>
<td>Carbonyl Reduction with Molybdenum–Cyclopentadienyl Complexes</td>
</tr>
<tr>
<td>2.5.2.7</td>
<td>Method 7:</td>
<td>Hydrodehalogenation with Molybdenum–Cyclopentadienyl Complexes</td>
</tr>
<tr>
<td>2.5.2.8</td>
<td>Method 8:</td>
<td>Hydrogenation with Molybdenum–Cyclopentadienyl Complexes</td>
</tr>
<tr>
<td>2.5.3</td>
<td>Product Subclass 3: Metal–Diene Complexes</td>
<td>Synthesis of Product Subclass 3</td>
</tr>
<tr>
<td>2.5.3.1</td>
<td>Method 1:</td>
<td>Ligand Metathesis with Dienes</td>
</tr>
<tr>
<td>2.5.3.1.1</td>
<td>Variation 1:</td>
<td>Substitution of Electron-Deficient (\eta^1)-Acetylenes</td>
</tr>
<tr>
<td>2.5.3.1.2</td>
<td>Variation 2:</td>
<td>Substitution of Nitriles</td>
</tr>
<tr>
<td>2.5.3.2</td>
<td>Method 2:</td>
<td>Photolysis in the Presence of Dienes</td>
</tr>
<tr>
<td>2.5.3.3</td>
<td>Method 3:</td>
<td>Nucleophilic Addition to Metal–Cyclopentadienyl Complexes</td>
</tr>
<tr>
<td>2.5.3.4</td>
<td>Method 4:</td>
<td>Addition of Radicals to Metal–Cyclopentadienyl Complexes</td>
</tr>
<tr>
<td>2.5.3.5</td>
<td>Method 5:</td>
<td>Reduction of Metal Halides in the Presence of Dienes</td>
</tr>
<tr>
<td>2.5.3.6</td>
<td>Method 6:</td>
<td>Coupling of Metal-Bound Allyl Groups</td>
</tr>
<tr>
<td>2.5.3.7</td>
<td>Method 7:</td>
<td>([2 + 2]) Cycloadition of Metal-Bound Alkynes</td>
</tr>
<tr>
<td>2.5.3.8</td>
<td>Method 8:</td>
<td>Metal-Vapor Synthesis</td>
</tr>
<tr>
<td>2.5.4</td>
<td>Product Subclass 4: Metal–Allyl Complexes</td>
<td>Synthesis of Product Subclass 4</td>
</tr>
<tr>
<td>2.5.4.1</td>
<td>Method 1:</td>
<td>Substitution by Photolysis in the Presence of Alkynes</td>
</tr>
<tr>
<td>2.5.4.2</td>
<td>Method 2:</td>
<td>Deprotonation of Metal-Bound Dienes</td>
</tr>
<tr>
<td>2.5.4.3</td>
<td>Method 3:</td>
<td>Oxidative Addition of Allylic Compounds</td>
</tr>
<tr>
<td>2.5.4.4</td>
<td>Method 4:</td>
<td>Addition of Allylic Anions to Metal Complexes</td>
</tr>
<tr>
<td>2.5.4.5</td>
<td>Method 5:</td>
<td>Nucleophilic Substitution of Anionic Metal Complexes</td>
</tr>
<tr>
<td>2.5.4.6</td>
<td>Method 6:</td>
<td>Addition of Nucleophiles to Metal-Bound Dienes</td>
</tr>
<tr>
<td>2.5.5</td>
<td>Product Subclass 5: Metal–Alkyne Complexes</td>
<td>Synthesis of Product Subclass 5</td>
</tr>
<tr>
<td>2.5.5.1</td>
<td>Method 1:</td>
<td>Substitution by Photolysis of a Heteroleptic Metal–Carbonyl Complex in the Presence of Alkyne</td>
</tr>
<tr>
<td>2.5.5.2</td>
<td>Method 2:</td>
<td>Substitution Reactions</td>
</tr>
<tr>
<td>2.5.5.3</td>
<td>Method 3:</td>
<td>Reduction of Metal Halides in the Presence of Alkyne</td>
</tr>
<tr>
<td>2.5.5.3.1</td>
<td>Variation 1:</td>
<td>Reduction with Magnesium</td>
</tr>
</tbody>
</table>
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5.4</td>
<td>Method 4: Coupling of Two Isocyanide Ligands</td>
<td>267</td>
</tr>
<tr>
<td></td>
<td>Applications of Product Subclass 5 in Organic Synthesis</td>
<td>268</td>
</tr>
<tr>
<td>2.5.5</td>
<td>Method 5: Cycloaddition of Metal-Bound Alkynes with Cyclo-octatetraene</td>
<td>268</td>
</tr>
<tr>
<td>2.5.6</td>
<td>Product Subclass 6: Metal–Alkene Complexes</td>
<td>269</td>
</tr>
<tr>
<td></td>
<td>Synthesis of Product Subclass 6</td>
<td>270</td>
</tr>
<tr>
<td>2.5.6.1</td>
<td>Method 1: Photosubstitutions of Carbonyl Complexes</td>
<td>270</td>
</tr>
<tr>
<td>2.5.6.2</td>
<td>Method 2: Thermal Ligand Substitutions</td>
<td>271</td>
</tr>
<tr>
<td>2.5.6.2.1</td>
<td>Variation 1: Shifting the Equilibrium in Favor of the Alkene Complexes</td>
<td>273</td>
</tr>
<tr>
<td>2.5.6.3</td>
<td>Method 3: β-Hydride Elimination/Abstraction from Metal–Alkyl Complexes</td>
<td>274</td>
</tr>
<tr>
<td>2.5.6.4</td>
<td>Method 4: Nucleophilic Attack on Metal–Allyl Complexes</td>
<td>276</td>
</tr>
<tr>
<td>2.5.6.5</td>
<td>Method 5: Reduction of Metal Halides in the Presence of Alkene</td>
<td>276</td>
</tr>
<tr>
<td>2.6</td>
<td>Product Class 6: Organometallic Complexes of Chromium, Molybdenum, and Tungsten without Carbonyl Ligands</td>
<td>283</td>
</tr>
<tr>
<td></td>
<td>R. Poli and K. M. Smith</td>
<td>283</td>
</tr>
<tr>
<td>2.6.1</td>
<td>Product Subclass 1: Metal–Carbene Complexes</td>
<td>283</td>
</tr>
<tr>
<td></td>
<td>Synthesis of Product Subclass 1</td>
<td>284</td>
</tr>
<tr>
<td>2.6.1.1</td>
<td>Method 1: By α-Hydrogen Elimination from Alkyl Complexes</td>
<td>284</td>
</tr>
<tr>
<td>2.6.1.1.1</td>
<td>Variation 1: Alkylation of Chloride Precursors</td>
<td>284</td>
</tr>
<tr>
<td>2.6.1.1.2</td>
<td>Variation 2: Ligand Addition</td>
<td>285</td>
</tr>
<tr>
<td>2.6.1.1.3</td>
<td>Variation 3: Replacement of an Oxo or Imido Ligand</td>
<td>286</td>
</tr>
<tr>
<td>2.6.1.1.4</td>
<td>Variation 4: Deprotonation with an External Base</td>
<td>287</td>
</tr>
<tr>
<td>2.6.1.2</td>
<td>Method 2: By Stoichiometric Alkene Metathesis</td>
<td>287</td>
</tr>
<tr>
<td>2.6.1.3</td>
<td>Method 3: By Carbene Transfer</td>
<td>288</td>
</tr>
<tr>
<td>2.6.1.4</td>
<td>Method 4: From Carbene Complexes</td>
<td>289</td>
</tr>
<tr>
<td></td>
<td>Applications of Product Subclass 1 in Organic Synthesis</td>
<td>290</td>
</tr>
<tr>
<td>2.6.1.5</td>
<td>Method 5: Alkene Metathesis</td>
<td>290</td>
</tr>
<tr>
<td>2.6.1.5.1</td>
<td>Variation 1: Ring-Opening Metathesis Polymerization (ROMP)</td>
<td>291</td>
</tr>
<tr>
<td>2.6.1.5.2</td>
<td>Variation 2: Alkyne Polymerization</td>
<td>291</td>
</tr>
<tr>
<td>2.6.1.5.3</td>
<td>Variation 3: Ring-Closing Metathesis</td>
<td>292</td>
</tr>
<tr>
<td>2.6.1.5.4</td>
<td>Variation 4: Other Selective Metathesis Processes</td>
<td>294</td>
</tr>
<tr>
<td>2.6.1.6</td>
<td>Method 6: Carbonylmethylenation</td>
<td>295</td>
</tr>
<tr>
<td>2.6.2</td>
<td>Product Subclass 2: Metal–Carbyne Complexes</td>
<td>296</td>
</tr>
<tr>
<td></td>
<td>Synthesis of Product Subclass 2</td>
<td>297</td>
</tr>
<tr>
<td>2.6.2.1</td>
<td>Method 1: By α,α-Hydrogen Elimination from Alkyl Complexes</td>
<td>297</td>
</tr>
<tr>
<td>2.6.2.2</td>
<td>Method 2: By Addition of Alkynes to Compounds with Metal–Metal Triple Bonds</td>
<td>298</td>
</tr>
</tbody>
</table>

Science of Synthesis Original Edition Volume 2 © Georg Thieme Verlag KG

<table>
<thead>
<tr>
<th>Subclass</th>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.6.3</td>
<td>Method 3</td>
<td>By Stoichiometric Alkyne Metathesis</td>
</tr>
<tr>
<td>2.6.4</td>
<td>Method 4</td>
<td>By Oxidation of Fischer-Type Carbyne Complexes</td>
</tr>
<tr>
<td>2.6.5</td>
<td>Method 5</td>
<td>By Rearrangement of Vinyl Complexes</td>
</tr>
<tr>
<td>2.6.6</td>
<td>Method 6</td>
<td>By Other Rearrangement Processes</td>
</tr>
<tr>
<td>2.6.7</td>
<td>Method 7</td>
<td>Alkyne Metathesis</td>
</tr>
<tr>
<td>2.6.8</td>
<td>Product Subclass 3</td>
<td>Metal(\alpha)-Alkyl and (\alpha)-Aryl Homoleptic Complexes</td>
</tr>
<tr>
<td>2.6.9</td>
<td>Method 1</td>
<td>By Transmetalation</td>
</tr>
<tr>
<td>2.6.10</td>
<td>Product Subclass 4</td>
<td>Metal(\alpha)-Alkyl and (\alpha)-Aryl Non-homoleptic Complexes</td>
</tr>
<tr>
<td>2.6.11</td>
<td>Method 1</td>
<td>By Transmetalation</td>
</tr>
<tr>
<td>2.6.12</td>
<td>Method 2</td>
<td>By Oxidative Addition of Alkyl Halides</td>
</tr>
<tr>
<td>2.6.13</td>
<td>Method 3</td>
<td>By Oxidative Addition of Alkanes and Arenes</td>
</tr>
<tr>
<td>2.6.14</td>
<td>Method 4</td>
<td>By Protonation of Carbene and Carbyne Ligands</td>
</tr>
<tr>
<td>2.6.15</td>
<td>Product Subclass 5</td>
<td>Metallacyclic Complexes</td>
</tr>
<tr>
<td>2.6.16</td>
<td>Method 1</td>
<td>By Transmetalation</td>
</tr>
<tr>
<td>2.6.17</td>
<td>Method 2</td>
<td>By Reductive Coupling of Alkenes</td>
</tr>
<tr>
<td>2.6.18</td>
<td>Method 3</td>
<td>By Addition of Alkenes to Carbyne Complexes</td>
</tr>
<tr>
<td>2.6.19</td>
<td>Product Subclass 6</td>
<td>Complexes with Triply Bonded Heteroelement Ligands</td>
</tr>
<tr>
<td>2.6.20</td>
<td>Product Subclass 7</td>
<td>Complexes with Doubly Bonded Heteroelement Ligands</td>
</tr>
</tbody>
</table>

Applications of Product Subclass 2 in Organic Synthesis

Applications of Product Subclass 4 in Organic Synthesis

Application of Product Subclass 5 in Organic Synthesis

Application of Product Subclass 6 in Organic Synthesis

Application of Product Subclass 7 in Organic Synthesis
2.6.7.3 Method 3: From Complexes Containing Triply Bonded Heteroelement Ligands .. 320
2.6.7.4 Method 4: By Oxidative Processes .. 321
Applications of Product Subclass 7 in Organic Synthesis 322
2.6.7.5 Method 5: Catalytic Epoxidation of Alkenes 322

2.6.8 Product Subclass 8: Complexes with Singly Bonded Heteroelement Ligands

Synthesis of Product Subclass 8 .. 323
2.6.8.1 Method 1: By Oxidative Addition of Compounds with Single Bonds between Heteroelements 323
2.6.8.2 Method 2: By Transmetalation .. 324
2.6.8.3 Method 3: From α-Alkyl Complexes 324
2.6.8.4 Method 4: From Carbene or Carbyne Complexes 325
2.6.8.5 Method 5: From Complexes Containing Doubly Bonded Heteroelement Ligands .. 326

2.6.9 Product Subclass 9: Miscellaneous Complexes

Synthesis of Product Subclass 9 .. 326
2.6.9.1 Method 1: Allylidene Complexes from Cyclopropenes 326

2.7 Product Class 7: Carbonyl Complexes of Chromium, Molybdenum, and Tungsten with σ-Bonded Ligands

T. Ito and M. Minato

2.7.1 Product Subclass 1: Metal–Carbene Complexes 333
Synthesis of Product Subclass 1 .. 333
2.7.1.1 Method 1: Fischer Method .. 334
2.7.1.1.1 Variation 1: From Anionic Carbene Complexes 336
2.7.1.1.2 Variation 2: From Dianionic Complexes 337
2.7.1.1.3 Variation 3: From Acyloxycarbene Complexes 339
2.7.1.1.4 Variation 4: Synthesis of Miscellaneous Carbene Complexes 340
Application of Product Subclass 1 in Organic Synthesis 341
2.7.1.2 Method 2: Cyclohexadiene and Cyclohexadienone Annulation 341

2.7.2 Product Subclass 2: Metal–Carbyne Complexes 343
Synthesis of Product Subclass 2 .. 343
2.7.2.1 Method 1: From Fischer-Type Carbene Complexes 343
2.7.2.1.1 Variation 1: By Formal Oxygen Abstraction from Acyl Ligands 344
2.7.2.1.2 Variation 2: From Acetylides .. 345
2.7.2.1.3 Variation 3: Synthesis of Miscellaneous Carbyne Complexes 345
Applications of Product Subclass 2 in Organic Synthesis 348

2.7.2.2 Method 2: Synthesis of Phenol Derivatives 348

2.7.3 Product Subclass 3: Metal–Isocyanide Complexes 349

Synthesis of Product Subclass 3 .. 349

2.7.3.1 Method 1: By Substitution of Carbonyl Complexes 350

2.7.3.1.1 Variation 1: By Catalytic Substitution Using Palladium(II) Oxide 350

2.7.3.1.2 Variation 2: From Cyano Anionic Complexes 351

2.7.3.1.3 Variation 3: Synthesis of Miscellaneous Isocyanide Complexes 352

Applications of Product Subclass 3 in Organic Synthesis 353

2.7.3.2 Method 2: Synthesis of Functionalized Isocyanides 353

2.7.4 Product Subclass 4: Metal–Nitrile Complexes and –Cyanide Complexes 354

Synthesis of Product Subclass 4 .. 354

2.7.4.1 Method 1: Synthesis of Nitrile Complexes 354

2.7.4.1.1 Variation 1: Synthesis of Acrylonitrile–Carbonyl Complexes 355

2.7.4.2 Method 2: Synthesis of Cyanide Complexes 355

2.7.4.2.1 Variation 1: By Reaction of Hexacarbonyl Complexes with Sodium Bis(trimethylsilyl)amide .. 356

2.7.5 Product Subclass 5: Metal–Carbonyl Complexes with Ligands Containing Group 15 Elements .. 357

Synthesis of Product Subclass 5 .. 357

2.7.5.1 Method 1: Synthesis of Carbonyl Complexes of Phosphine, Arsine, or Stibine ... 357

2.7.5.1.1 Variation 1: Synthesis of Phosphine Complexes 358

2.7.5.1.2 Variation 2: Synthesis of Complexes with Chelating Ligands 358

2.7.5.2 Method 2: Synthesis of Amino Acid Complexes 359

Applications of Product Subclass 5 in Organic Synthesis 360

2.7.5.3 Method 3: Ring-Opening Polymerization 360

2.7.6 Product Subclass 6: Metal–Carbonyl Complexes with Ligands Containing Group 16 Elements .. 360

Synthesis of Product Subclass 6 .. 360

2.7.6.1 Method 1: Synthesis of Pentacarbonyl(dialkyl sulfide) Complexes 361

2.7.6.2 Method 2: Synthesis of Alkoxide Complexes 361

2.7.6.2.1 Variation 1: Synthesis of Hydroxide Complexes 362

2.7.6.2.2 Variation 2: Synthesis of Aryloxo Complexes 363

2.7.6.2.3 Variation 3: Synthesis of Catecholato Complexes 364

2.7.6.2.4 Variation 4: Synthesis of Miscellaneous Complexes 365

2.7.7 Product Subclass 7: Carbonyl Halides 366

Synthesis of Product Subclass 7 .. 366

2.7.7.1 Method 1: By Reaction of Metal–Hexacarbonyl Complexes with Chlorine or Bromine .. 366

2.7.7.1.1 Variation 1: From Metal–Hexacarbonyl Complexes 367
2.7.1.2 Variation 2: Using a Phase-Transfer Agent .. 368
2.7.1.3 Variation 3: By Photoreaction in the Presence of Crown Ethers 369
2.7.1.4 Variation 4: Synthesis of Miscellaneous Complexes 370

2.7.8 **Product Subclass 8: Carbonyl Hydrides** .. 370

Synthesis of Product Subclass 8 .. 370

2.7.8.1 Method 1: By Reduction of Hexacarbonyl Complexes with Sodium Borohydride ... 370

2.7.8.1.1 Variation 1: By Ion-Pair Extraction .. 371

2.7.8.1.2 Variation 2: By Reaction of Hydridochromium Pentacarbonyl Anion with Metal Pentacarbonyl(piperidine) Complexes 372

2.7.8.2 Method 2: From Carbonylmetalate Tetraanions 372

2.7.8.3 Method 3: Utilizing a Phase-Transfer Agent .. 373

Applications of Product Subclass 8 in Organic Synthesis 373

2.7.9 **Product Subclass 9: Anionic Carbonyl Complexes** 374

Synthesis of Product Subclass 9 .. 374

2.7.9.1 Method 1: By Reduction of Hexacarbonyl Complexes with Sodium in Liquid Ammonia ... 375

2.7.9.1.1 Variation 1: By Reduction with Alkali Metal Amalgam 376

2.7.9.2 Method 2: By Reduction of Hexacarbonylchromium(0) with Potassium-Graphite ... 376

2.7.9.3 Method 3: From Carbonyl Derivatives .. 377

2.8 **Product Class 8: Organometallic Complexes of Vanadium**
T. Imamoto and I. D. Gridnev

2.8 **Product Class 8: Organometallic Complexes of Vanadium** 385

2.8.1 **Product Subclass 1: Vanadium–Arene Complexes** 385

Synthesis of Product Subclass 1 .. 386

2.8.1.1 Method 1: Reduction of Vanadium Chlorides 386

2.8.1.2 Method 2: By Metal-Vapor Deposition .. 387

2.8.1.3 Method 3: By Ring Substitution .. 388

2.8.1.4 Method 4: From Vanadocene ... 388

2.8.2 **Product Subclass 2: Vanadium–Cyclopentadienyland Substituted Cyclopentadienyl Complexes** .. 389

Synthesis of Product Subclass 2 .. 389

2.8.2.1 Method 1: Synthesis of Bis(\(\eta^5\)-cyclopentadienyl)vanadium(II)
(\(\eta^5\)-Cyclopentadiene) and Ring-Substituted Derivatives 389

2.8.2.2 Method 2: Synthesis of Vanadocene Halides and Ring-Substituted Derivatives .. 390

2.8.2.3 Method 3: Synthesis of Ring-Bridged Vanadocene Dichlorides 390

2.8.2.4 Method 4: Synthesis of Tetracarbonyl(\(\eta^5\)-cyclopentadienyl)vanadium and Ring-Substituted Derivatives 391
2.8.5 Method 5: By the Reaction of Pentafulvenes with Alkylstannyl(carbonyl)-
vanadium Complexes .. 392
2.8.6 Method 6: Synthesis of Mono(η\(^5\)-cyclopentadienyl)vanadium Halides .. 393
2.8.7 Method 7: Synthesis of Tripledecker (η\(^5\)-Cyclopentadienyl)vanadium
Complexes .. 394
Applications of Product Subclass 2 in Organic Synthesis 395

2.8.3 Product Subclass 3: Vanadium–Alkyne Complexes 395
Synthesis of Product Subclass 3 395
2.8.3.1 Method 1: From Vanadocene 395
2.8.3.2 Method 2: Synthesis of Mono(η\(^5\)-cyclopentadienyl)vanadium(I)–Alkyne
Complexes .. 396

2.8.4 Product Subclass 4: Vanadium–Alkene Complexes 396
Synthesis of Product Subclass 4 396
2.8.4.1 Method 1: Reaction of Vanadocene with Electron-Deficient Alkenes 396
2.8.4.2 Method 2: Synthesis of η\(^2\)-Ethene Complexes from a 1,4-Di-Grignard
Species ... 397

2.8.5 Product Subclass 5: Vanadium–Carbene Complexes 398
Synthesis of Product Subclass 5 398
2.8.5.1 Method 1: Synthesis of Fischer-Type Vanadium–Carbene Complexes 398
2.8.5.2 Method 2: Synthesis of Schrock-Type Vanadium–Carbene Complexes .. 399

2.8.6 Product Subclass 6: Vanadium–σ-Alkyl and –σ-Aryl Complexes 400
Synthesis of Product Subclass 6 400
2.8.6.1 Method 1: Synthesis of Homoleptic Complexes 400
2.8.6.2 Method 2: Synthesis of Non-homoleptic Complexes 401
2.8.6.2.1 Variation 1: Photochemical Insertion of Alkenes into a V–H Bond 402
2.8.6.2.2 Variation 2: By the Reaction of Vanadocene with Iodomethane or
Bromomethane .. 402
Applications of Product Subclass 6 in Organic Synthesis 403
2.8.6.3 Method 3: Reaction of Organovanadium Complexes with Aldehydes 403
2.8.6.4 Method 4: Synthesis of 1H-1,2-Azaphospholes from Imidovanadium(V)
Complexes and Phosphaalkynes 403

2.8.7 Product Subclass 7: Vanadium–Carbonyl Complexes without
Cyclopentadienyl and Related Groups 404
Synthesis of Product Subclass 7 404
2.8.7.1 Method 1: Synthesis of Hexacarbonylvanadium 404
2.8.7.2 Method 2: Synthesis of Hexacarbonylvanadate(1–) Complexes 405

2.8.8 Product Subclass 8: Vanadium–Isocyanide Complexes 406
Synthesis of Product Subclass 8 406
2.8.8.1 Method 1: By Ligand Substitution 406
2.8.2 Method 2: Complex Formation Accompanying Oxidation or Reduction of the Central Vanadium Atom 407

2.8.9 Product Subclass 9: Hydridovanadium Complexes ... 407

Synthesis of Product Subclass 9 ... 408

2.8.9.1 Method 1: Synthesis of Carbonylhydridovanadium Complexes Stabilized by Oligotertiary Phosphines 408

2.8.9.2 Method 2: Synthesis of Bis(η^5-pentamethylcyclopentadienyl)hydridovanadium(III) ... 409

2.8.9.3 Method 3: Synthesis of Anionic Hydridovanadium(1−) Complexes 409

Applications of Product Subclass 9 in Organic Synthesis ... 410

2.8.9.4 Method 4: Reduction of Organic Halides by Tricarbonyl(η^5-cyclopentadienyl)hydridovanadate(1−) Anion under Phase-Transfer Conditions ... 410

2.9 Product Class 9: Organometallic Complexes of Niobium and Tantalum

K. Mashima and A. Nakamura

2.9.1 Product Subclass 1: Metal–Arene Complexes ... 419

Synthesis of Product Subclass 1 ... 419

2.9.1.1 Method 1: By Reduction of Metal Halides 419

2.9.1.2 Method 2: Via Alkyne Cyclotrimerization 421

2.9.2 Product Subclass 2: Metal–Triene and Metal–Tetraene Complexes 421

Synthesis of Product Subclass 2 ... 422

2.9.2.1 Method 1: Reductive Synthesis from Metal(V) Halides 422

2.9.2.2 Method 2: Using Dipotassium Cyclooctatetraene 422

2.9.2.3 Method 3: From Tetrachloro(η^5-cyclopentadienyl)niobium 423

2.9.2.4 Method 4: From Niobium Hydride Derivatives 423

2.9.3 Product Subclass 3: Metal–Cyclopentadienyl and Metal–Tris(pyrazolyl)borate Complexes ... 423

Synthesis of Product Subclass 3 ... 423

2.9.3.1 Method 1: From Metal(V) Halides 423

2.9.3.2 Method 2: Via Halide–Ligand Exchange 424

2.9.3.3 Method 3: By Sodium Reduction 425

2.9.3.4 Method 4: Tris(pyrazolyl)borate Complexes 425

2.9.4 Product Subclass 4: Metal–Diene Complexes ... 426

Synthesis of Product Subclass 4 ... 427

2.9.4.1 Method 1: By Reaction of Magnesium Butadiene 427

2.9.4.2 Method 2: Via Halide–Ligand Exchange 428
2.9.5 **Product Subclass 5: Metal–Allyl Complexes** ... 428
Synthesis of Product Subclass 5 ... 429
2.9.5.1 Method 1: From Allyl Grignard Reagents .. 429
2.9.5.2 Method 2: From Butadiene ... 429
2.9.6 **Product Subclass 6: Metal–Alkyne Complexes** ... 430
Synthesis of Product Subclass 6 ... 430
2.9.6.1 Method 1: Via Ligand Exchange ... 430
2.9.6.2 Method 2: By Reduction ... 433
Applications of Product Subclass 6 in Organic Synthesis 434
2.9.7 **Product Subclass 7: Metal–Alkene Complexes** ... 434
Synthesis of Product Subclass 7 ... 434
2.9.7.1 Method 1: By Alkylation Reactions ... 434
2.9.7.2 Method 2: By Reaction of Ethene and an Alkylidene Complex 436
Applications of Product Subclass 7 in Organic Synthesis 436
2.9.8 **Product Subclass 8: Metal–Alkylidene Complexes** ... 436
Synthesis of Product Subclass 8 ... 437
2.9.8.1 Method 1: Via α-Hydrogen Elimination ... 437
2.9.8.2 Method 2: By Addition of a Chelating Ligand 437
2.9.8.3 Method 3: By Proton Abstraction ... 438
2.9.8.4 Method 4: By Alkylation of Tetrachloro(η5-pentamethylcyclopentadienyl) tntalam ... 438
2.9.8.5 Method 5: By Ligand Exchange ... 439
2.9.8.6 Method 6: By Sodium Reduction ... 440
2.9.8.7 Method 7: Dialkylation Followed by Alkane Elimination 440
Applications of Product Subclass 8 in Organic Synthesis 440
2.9.9 **Product Subclass 9: Metal–Alkylidyne Complexes** ... 441
Synthesis of Product Subclass 9 ... 441
2.9.9.1 Method 1: From Carbene Complex by Addition of Trimethylaluminum ... 441
2.9.9.1.1 Variation 1: By Addition of Trimethylphosphine 442
Applications of Product Subclass 9 in Organic Synthesis 442
2.9.10 **Product Subclass 10: Metal–α-Alkyl Homoleptic Complexes** 442
Synthesis of Product Subclass 10 ... 443
2.9.10.1 Method 1: By Alkylation ... 443
2.9.11 **Product Subclass 11: Metal–α-Alkyl Non-homoleptic Complexes** 444
Synthesis of Product Subclass 11 ... 445
2.9.11.1 Method 1: By Alkylation ... 445
2.9.11.2 Method 2: By Addition of Cyclopentadienyl Ligands 446
Applications of Product Subclass 11 in Organic Synthesis 447
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.9.12</td>
<td>Product Subclass 12: Metal–Hydride Complexes</td>
<td>447</td>
</tr>
<tr>
<td>2.9.12.1</td>
<td>Method 1: From Niobium(V) Chloride</td>
<td>448</td>
</tr>
<tr>
<td>2.9.13</td>
<td>Product Subclass 13: Metal–Carbonyl Complexes</td>
<td>448</td>
</tr>
<tr>
<td>2.9.14</td>
<td>Product Subclass 14: Metal–Alkoxy Complexes</td>
<td>451</td>
</tr>
<tr>
<td>2.10</td>
<td>Product Class 10: Organometallic Complexes of Titanium</td>
<td>457</td>
</tr>
<tr>
<td>2.10.1</td>
<td>Product Subclass 1: Titanium–Arene Complexes</td>
<td>458</td>
</tr>
<tr>
<td>2.10.1.1</td>
<td>Method 1: Titanium(0)–Arene Complexes</td>
<td>458</td>
</tr>
<tr>
<td>2.10.1.2</td>
<td>Method 2: Titanium(II)–Arene Complexes</td>
<td>458</td>
</tr>
<tr>
<td>2.10.1.2.1</td>
<td>Variation 1: Titanium(II)–Arene Complexes by the Fischer–Hafner Method</td>
<td>459</td>
</tr>
<tr>
<td>2.10.1.2.2</td>
<td>Variation 2: Titanium(II)–Arene Complexes by Ligand Exchange of Aluminum–Titanium(II) Halide Complexes with Arenes</td>
<td>459</td>
</tr>
<tr>
<td>2.10.1.2.3</td>
<td>Variation 3: Titanium(II)–Arene Complexes by Ligand Exchange with Aluminum Reagents</td>
<td>460</td>
</tr>
<tr>
<td>2.10.1.3</td>
<td>Method 3: Titanium(IV)–Arene Complexes by Cationic Complex Formation</td>
<td>460</td>
</tr>
<tr>
<td>2.10.2</td>
<td>Product Subclass 2: Titanium–Triene, –Trienyl, and –Tetraene Complexes</td>
<td>461</td>
</tr>
<tr>
<td>2.10.2.1</td>
<td>Method 1: Titanium–Tetraene Complexes by Reaction of Tetrabutoxytitanium(IV) with Cyclooctatetraene</td>
<td>461</td>
</tr>
<tr>
<td>2.10.2.2</td>
<td>Method 2: Titanium–Tetraene Complexes by Reaction of Trichloro(pentamethylcyclopentadienyl)titanium(IV) with Dipotassium Cyclooctatetraene</td>
<td>461</td>
</tr>
<tr>
<td>2.10.2.3</td>
<td>Method 3: Titanium–Tetraene and –Triene Complexes by Reaction of Trichloro(η^5-cyclopentadienyl)titanium(IV) Complexes with Cyclooctatetraene or Cycloheptatriene in the Presence of Magnesium</td>
<td>462</td>
</tr>
<tr>
<td>Section</td>
<td>Method</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>--------</td>
<td>-------------</td>
</tr>
<tr>
<td>2.10.2.4</td>
<td>Method 4:</td>
<td>Titanium–Trienyl Complexes by Functionalization of the Cycloheptatrienyl Ligand</td>
</tr>
<tr>
<td>2.10.2.5</td>
<td>Method 5:</td>
<td>Titanium(II)–Trienyl Complexes by Reaction of Titanium(II) with Cycloheptatriene</td>
</tr>
<tr>
<td>2.10.3</td>
<td>Product Subclass 3:</td>
<td>Bis(η²-cyclopentadienyl)titanium Complexes without Allyl Functionalities or Titanacycles</td>
</tr>
<tr>
<td>2.10.3.1</td>
<td>Method 1:</td>
<td>Salt Elimination Reactions between Cyclopentadienyllithium Compounds and Titanium(IV) Chloride</td>
</tr>
<tr>
<td>2.10.3.1.1</td>
<td>Variation 1:</td>
<td>Salt Elimination Reactions between Sodium Cyclopentadienide Compounds and Titanium(III) Chloride</td>
</tr>
<tr>
<td>2.10.3.1.2</td>
<td>Variation 2:</td>
<td>Salt Elimination Reactions between Titanium(IV)–Chloro Complexes, Potassium, and Cyclopentadienes</td>
</tr>
<tr>
<td>2.10.3.1.3</td>
<td>Variation 3:</td>
<td>Salt Elimination Reactions between Thallium Cyclopentadienide Compounds and Trichloro(η²-cyclopentadienyl)titanium(IV) Complexes</td>
</tr>
<tr>
<td>2.10.3.1.4</td>
<td>Variation 4:</td>
<td>Transmetalation between Tin Cyclopentadienide Complexes and Titanium Complexes</td>
</tr>
<tr>
<td>2.10.3.2</td>
<td>Method 2:</td>
<td>Transmetalation between Metal Cyclopentadienide Complexes and Titanium(III) Chloride, Followed by Oxidation</td>
</tr>
<tr>
<td>2.10.3.2.1</td>
<td>Variation 1:</td>
<td>Transmetalation between Magnesium Cyclopentadienide Salts and Titanium(III) Chloride</td>
</tr>
<tr>
<td>2.10.3.3</td>
<td>Method 3:</td>
<td>Hydrogenation of the Indenyl Ligand in Titanium(IV) Complexes</td>
</tr>
<tr>
<td>2.10.3.4</td>
<td>Method 4:</td>
<td>Titanium(IV) Complexes by Oxidation of Allylbis(η²-cyclopentadienyl)titanium(III) Complexes by Lead(II) Chloride</td>
</tr>
<tr>
<td>2.10.3.5</td>
<td>Method 5:</td>
<td>Halide Exchange between Titanium(IV)–Halo Complexes and Alkali Metal Halides</td>
</tr>
<tr>
<td>2.10.3.5.1</td>
<td>Variation 1:</td>
<td>Halide Exchange with Hydrogen Halides</td>
</tr>
<tr>
<td>2.10.3.5.2</td>
<td>Variation 2:</td>
<td>Halide Exchange with Boron Halides</td>
</tr>
<tr>
<td>2.10.3.6</td>
<td>Method 6:</td>
<td>Bis(η²-cyclopentadienyl)titanium Complexes as Alkene Polymerization Catalysts</td>
</tr>
<tr>
<td>2.10.4</td>
<td>Product Subclass 4:</td>
<td>Mono(η²-cyclopentadienyl)titanium Complexes</td>
</tr>
<tr>
<td>2.10.4.1</td>
<td>Method 1:</td>
<td>Reaction between Titanium(IV) Chloride and Metal Cyclopentadienide Compounds</td>
</tr>
<tr>
<td>2.10.4.1.1</td>
<td>Variation 1:</td>
<td>Reaction between Titanium(IV) Chloride and Silyl-Substituted Cyclopentadienyl Reagents</td>
</tr>
<tr>
<td>2.10.4.1.2</td>
<td>Variation 2:</td>
<td>Reaction between Titanium(III) Chloride and Lithium Cyclopentadienide Compounds, Followed by Oxidation</td>
</tr>
<tr>
<td>2.10.4.2</td>
<td>Method 2:</td>
<td>Reaction between Titanium(IV) Chloride and Unsaturated Hydrocarbons</td>
</tr>
</tbody>
</table>

Table of Contents

Science of Synthesis Original Edition Volume 2
© Georg Thieme Verlag KG
Table of Contents

2.10.3 Method 3: Trichloro(η⁵-cyclopentadienyl)titanium(IV) Complexes by Redistribution Reactions

- 2.10.4 Method 4: Trihalo(η⁵-cyclopentadienyl)titanium(IV) Complexes by Halogenation of Mono- and Bis(η⁵-cyclopentadienyl)titanium(IV) Complexes

- 2.10.5 Method 5: Replacement of Alkoxy Ligands in Alkoxy(η⁵-cyclopentadienyl)titanium Complexes by Halides

- 2.10.6 Method 6: Reaction between Tetraalkoxytitanium(IV) or Tetraamidotitanium(IV) Complexes and Cyclopentadienes

- 2.10.7 Method 7: Halide Exchange between Cyclopentadienyl(halo)titanium Complexes and Trimethyltin Fluoride or Arsenic Trifluoride

Applying Method 4 in Organic Synthesis

- 2.10.8 Method 8: Mono(η⁵-cyclopentadienyl)titanium Complexes as Styrene Polymerization Catalysts

- 2.10.9 Method 9: Mono(η⁵-cyclopentadienyl)titanium Complexes as Buta-1,3-diene Polymerization Catalysts

- 2.10.10 Method 10: Mono(η⁵-cyclopentadienyl)titanium Complexes as Alkene Polymerization Catalysts

2.10.5 Product Subclass 5: Trivalent Titanium(III) Complexes Including Bis- and Mono(η⁵-cyclopentadienyl)titanium–Hydrido Complexes

- Synthesis of Product Subclass 5

- 2.10.5.1 Method 1: Titanium–Hydrido Complexes by Reduction of Titanium(IV)–Methyl Complexes by Hydrogen

- 2.10.5.1.1 Variation 1: Hydridotitanium Complexes by Reduction of Alkyltitanium(IV) Complexes by Silanes

- 2.10.5.1.2 Variation 2: Hydridotitanium Complexes by Reduction of Chlorotitanium(IV) Complexes by Potassium or Sodium

- 2.10.5.2 Method 2: Titanium(III) Complexes by Reduction of Titanium(IV) Complexes by Lithium Nitride

- 2.10.5.2.1 Variation 1: Titanium(III) Complexes by Reduction of Titanium(IV) Complexes by Zinc and Magnesium

- 2.10.5.2.2 Variation 2: Titanium(III) Complexes by Reduction of Cobalt(II) Complexes

Applying Method 5 in Organic Synthesis

- 2.10.5.3 Method 3: Preparation of Alkene Hydrogenation Catalysts by Reduction with Aluminum Hydrides

- 2.10.5.3.1 Variation 1: Preparation of Alkene Hydrogenation Catalysts by Reduction with Alkyllithium Compounds

- 2.10.5.3.2 Variation 2: Preparation of Alkene Hydrogenation Catalysts by Reduction with Grignard Reagents

2.10.6 Product Subclass 6: Bis- or Mono(η⁵-cyclopentadienyl)titanium(II) Complexes

- Synthesis of Product Subclass 6

- 2.10.6.1 Method 1: Titanocenes by Reduction of Titanium(IV) Complexes
2.10.2 Method 2: Titanocene by Photochemical Reaction of Bis(η⁵-cyclopentadienyl)dimethyltitanium(IV)

2.10.3 Method 3: Dicarbonyl(η⁵-cyclopentadienyl)titanium(II) Complexes from Titanium–Alkyl and –Aryl Complexes

2.10.4 Method 4: Dicarbonyl(η⁵-cyclopentadienyl)titanium(II) Complexes by Photolysis of Titanium–Alkyl and –Aryl Complexes

2.10.5 Method 5: Titanium(II)–Carbonyl Complexes by Reduction of Chlorotitanium(IV) Complexes with Aluminum under Carbon Monoxide

2.10.6.1 Variation 1: Reduction with Sodium–Naphthalene

2.10.6.2 Variation 2: Reduction with Cobaltocene

2.10.6.3 Method 6: Dicarbonyl(η⁵-cyclopentadienyl)bistrimethylphosphine)titanium(II) by Reduction of Dichlorobis(η⁵-cyclopentadienyl)titanium(IV) with Magnesium

2.10.6.4 Method 7: Titanium(II)–Phosphine Complexes by Photolysis of Dicarbonyl(η⁵-cyclopentadienyl)titanium(II)

Applications of Product Subclass 6 in Organic Synthesis

2.10.6.8 Method 8: Titanium(II)–Carbonyl Complexes as Catalysts in the Pauson–Khand Reaction

2.10.7 Product Subclass 7: Titanium–Allyl, –Allenyl, and –Propargyl Complexes

2.10.7.1 Method 1: (η¹-Allyl)titanium(III) Complexes by Reaction between Chlorotitanium(III) Complexes and Allyl Grignard Reagents

2.10.7.2 Method 2: (η¹-Allyl)titanium(III) Complexes by Reaction between Chlorotitanium(IV) Complexes and Allyl Grignard Reagents

2.10.7.2.1 Variation 1: (η¹-Allyl)bis(η⁵-cyclopentadienyl)titanium(III) Complexes by Reaction of Dichlorobis(η⁵-cyclopentadienyl)titanium(IV) with a Grignard Reagent and a Diene

2.10.7.2.2 Variation 2: (η¹-Allyl)bis(η⁵-cyclopentadienyl)titanium(III) by Rearrangement of Bis(η⁵-cyclopentadienyl)(η²-ethene)(η²-vinyl)titanium(III)

2.10.7.3 Method 3: (η¹-Allyl)bis(η⁵-cyclopentadienyl)halotitanium(IV) Complexes by Reaction of (η¹-Allyl)bis(η⁵-cyclopentadienyl)titanium(III) Complexes with 1-Halobut-2-enes

2.10.7.4 Method 4: (η¹-Allyl)bis(η⁵-cyclopentadienyl)titanium(IV) Complexes by Reaction of Vinyl Halides, Vinyl Esters, or Carboxylic Esters with the Dichlorobis(η⁵-cyclopentadienyl)titanium(IV)–Trimethylaluminum Complex

2.10.7.5 Method 5: (η¹-Allyl)bis(isopropoxy)titanium(IV) Complexes by Reaction of Low-Valent Titanium Complexes with Allylic Halides, Acetates, Carbonates, Phosphates, Sulfonates, or Aryl Ethers

2.10.7.6 Method 6: Bis(isopropoxy)titanium(IV)–Propargyl or –Allenyl Complexes by Transmetalation of Titanium(IV) Complexes with Propargyl- or Allenyllithium Compounds
Method 7: Bis(isopropoxy)titanium(IV)–Propargyl or –Allenyl Complexes by Reaction of Low-Valent Titanium Complexes with Propargyl Halides, Acetates, Carbonates, Phosphates, or Sulfonates

Applications of Product Subclass 7 in Organic Synthesis

Method 8: Allylation of Carbonyl Compounds by Allyltris(amido)titanium(IV) Complexes

Method 9: Reactions of Bis(isopropoxy)titanium(IV)–Propargyl or –Allenyl Complexes with Electrophiles

Product Subclass 8: Titanium–Diene and Titanacyclopentene Complexes

Synthesis of Product Subclass 8

Method 1: [Bis(dimethylphosphino)ethane]bis(butadiene)titanium(0) by Reduction of [Bis(dimethylphosphino)ethane]tetrachlorotitanium(IV) by Sodium Amalgam in the Presence of Butadiene

Method 2: Chloro(η⁵-pentamethylcyclopentadienyl)titanium(II)–Diene Complexes by Reaction of Trichloro(η⁵-pentamethylcyclopentadienyl)titanium(IV) with the Magnesium–Diene Complex

Method 3: Titanium–Buta-1,3-diene Complexes from Titanium–η⁵-Methallyl Complexes

Method 4: Titanium–Cyclobutadiene Complexes by Reaction between Titanium–Arene Complexes and Alkynes

Product Subclass 9: Titanacycles

Synthesis of Product Subclass 9

Method 1: Reaction of Bis(η⁵-cyclopentadienyl)titanium(II)–Phosphine Complexes with Alkynes or Allenes

Method 2: Reduction of Dichlorobis(η⁵-cyclopentadienyl)titanium(IV) Complexes by Grignard Reagents in the Presence of Alkenes or Alkynes

Variation 1: Reactions of Bis(arylxy)dichlorotitanium(IV) Complexes with Butyllithium in the Presence of Dienes

Variation 2: Reduction of Titanium(IV)–Chloro Complexes by Sodium Amalgam in the Presence of Alkenes or Alkynes

Variation 3: Reaction of Dichlorobis(η⁵-cyclopentadienyl)titanium(IV) with Lithium Naphthalene in the Presence of an Alkene

Variation 4: Reduction of Dichlorobis(η⁵-cyclopentadienyl)titanium(IV) by Magnesium in the Presence of Alkynes

Method 3: Photolysis of Bis(η⁵-cyclopentadienyl)dimethyltitanium(IV) in the Presence of an Alkyne

Method 4: Substitution Reaction of Dichlorobis(η⁵-cyclopentadienyl)titanium(IV) with an Alkenediylidilithium Reagent

Method 5: Insertion Reactions of Alkenes with Alkyne- or Alkenediylidilithium Reagent and Titanacyclopentene Complexes
2.10.9.5.1 Variation 1: Reactions of Alkynes, Dialkynes, or Carbonyl Compounds with Alkyne- or Alkenetitanium Complexes .. 545

2.10.9.6 Method 6: Titanacycles from Ligand Exchange Reactions of Titanacypentanes ... 547

2.10.9.6.1 Variation 1: Large Metallacycles by Insertion Reactions of Smaller Titanacycles ... 548

2.10.9.7 Method 7: Titanacyclobutanes from Tebbe’s Reagent ... 549

2.10.9.7.1 Variation 1: Titanacyclobutanes via Vinylealuminum Complexes ... 551

2.10.9.7.2 Variation 2: Titanacyclobutanes by Reaction of Dichlorobis(η5-cyclopentadienyl)titanium(IV) with a Dimagnesium Reagent ... 551

2.10.9.7.3 Variation 3: Ligand Exchange of Titanacyclobutanes with Alkenes, Alkynes, or Allenes To Form Other Titanacyclobutanes or Titanacyclobutenes ... 552

Applications of Product Subclass 9 in Organic Synthesis ... 553

2.10.9.8 Method 8: Ring-Opening Metathesis Polymerization ... 553

2.10.9 Product Subclass 10: Titanium–Alkyne Complexes ... 555

Synthesis of Product Subclass 10 ... 557

2.10.10.1 Method 1: Reaction of an Alkyne with a Titanium(II)–Carbonyl Complex ... 557

2.10.10.1.1 Variation 1: Reaction of an Alkyne with a Titanium(II)–Phosphine Complex ... 557

2.10.10.2 Method 2: Reduction of Dichlorobis(η5-cyclopentadienyl)titanium(IV) by Magnesium in the Presence of an Alkyne ... 558

2.10.10.2.1 Variation 1: Reaction of Titanium(II) Complexes with Diynes or Polyynes ... 559

2.10.10.3 Method 3: Reaction of an Alkyne with Bis(isopropoxy)(η2-propene)titanium(II) ... 560

2.10.10.4 Method 4: Benzynetitanium Complexes by Thermolysis of Aryltitanium Complexes ... 560

2.10.10.4.1 Variation 1: Benzynetitanium Complexes by Thermolysis of Arylmethylene Complexes ... 561

2.10.10.4.2 Variation 2: A Benzynetitanium Complex from 1-Bromo-2-fluorobenzene and Dichlorobis(η5-cyclopentadienyl)titanium(IV) ... 562

2.10.11 Product Subclass 11: Titanium–Alkene Complexes ... 563

Synthesis of Product Subclass 11 ... 564

2.10.11.1 Method 1: (η2-Alkene)bis(η5-cyclopentadienyl)titanium(II) Complexes by Substitution of Bis(η5-cyclopentadienyl)bis(trimethylphosphine)titanium(II) by Alkenes ... 564

2.10.11.1.1 Variation 1: (η2-Ethene)bis(η5-pentamethylcyclopentadienyl)titanium(II) Complexes by Reaction of (-Dinitrogen)bisis[bis(η5-pentamethylcyclopentadienyl)titanium(II)] with Ethene ... 564

2.10.11.2 Method 2: (η2-Alkene)bis(η5-pentamethylcyclopentadienyl)titanium(II) Complexes by Reduction of
Dichlorobis(η⁵-pentamethylcyclopentadienyl)titanium(IV) by Sodium Amalgam in the Presence of an Alkene 565

2.10.11.2.1 Variation 1: (η²-Alkene)bis(η⁵-pentamethylcyclopentadienyl)titanium(II) Complexes by Reduction of Dichlorobis(η⁵-pentamethylcyclopentadienyl)titanium(IV) by an Alkyllithium in the Presence of an Alkene 565

2.10.11.2.2 Variation 2: (η²-Alkene)titanium(II) Complexes by Reduction of Titanium(IV) Complexes by Grignard Reagents in the Presence of an Alkene .. 565

2.10.11.3 Method 3: (η²-Alkene)titanium(II) Complexes by Ligand-Exchange Reactions ... 566

Applications of Product Subclass 11 in Organic Synthesis 566

2.10.11.4 Method 4: Titanium-Mediated Cyclization of Enynes 566

2.10.11.5 Method 5: Preparation of Cyclopropanols from Dialkoxotitanacyclopropanes 567

2.10.12 Product Subclass 12: Titanium–Carbene Complexes 567

Synthesis of Product Subclass 12 .. 567

2.10.12.1 Method 1: Preparation of Tebbe’s Reagent 567

Applications of Product Subclass 12 in Organic Synthesis 568

2.10.12.2 Method 2: Methyleneation of Amides, Esters, Ketones, and Aldehydes by Tebbe’s Reagent 568

2.10.12.2.1 Variation 1: Alkenation of Carbonyl Compounds by the Lead(II) Chloride/Dihaloalkane/Titanium(IV) Chloride/Zinc Reagent 569

2.10.12.2.2 Variation 2: Alkylidenation with Magnesium Analogues of Tebbe’s Reagent ... 570

2.10.12.2.3 Variation 3: Other Applications of Titanium–Carbene Complexes 570

2.10.13 Product Subclass 13: Titanium–Alkenyl, –Alkynyl, and –Aryl Complexes ... 572

Synthesis of Product Subclass 13 .. 572

2.10.13.1 Method 1: Alkenyltitanium Complexes by Reaction of Chlorotitanium Complexes with Vinyllithium Reagents 572

2.10.13.2 Method 2: Alkenyltitanium Complexes by Hydrotitanation 573

2.10.13.2.1 Variation 1: Alkenyltitanium Complexes by Carbotitanation 574

2.10.13.2.2 Variation 2: Alkenyltitanium Complexes by Silyltitanation 575

2.10.13.2.3 Variation 3: Alkenyltitanium Complexes by Partial Hydrolysis of Titanium–Silylalkyne and–Stannyalkyne Complexes 576

2.10.13.3 Method 3: Alkenyltitanium Heterotitanacycles by [2 + 2] Cycloadditions of Titanium(IV) Complexes with Alkynes 577

2.10.13.4 Method 4: Alkynyltitanium Complexes by Reaction of Titanium(IV) Complexes with Alkynes 577

2.10.13.5 Method 5: Aryltitanium Complexes by Reaction of Titanium Complexes with Arylmetal Reagents 578

2.10.13.5.1 Variation 1: Tetraaryltitanium(IV) Complexes by Reaction of Titanium(IV) Complexes with Grignard Reagents 579
2.10.14 **Product Subclass 14: Titanium–ω-Alkyl Complexes** .. 579

Synthesis of Product Subclass 14 ... 585

2.10.14.1 Method 1: Alkyltitanium Complexes by Transmetalation of
Chlorotitanium Complexes with Grignard Reagents 585

2.10.14.1.1 Variation 1: Alkylation of Alkoxy(halo)titanium Complexes by
Grignard Reagents .. 587

2.10.14.1.2 Variation 2: Alkyltitanium Complexes by Reaction of Titanium Complexes
with Alkyl lithium Reagents .. 587

2.10.14.1.3 Variation 3: Alkytris(alkoxy)titanium(IV) Complexes by Reaction of
Alkoxytitanium Complexes with Alkyl lithium Reagents 589

2.10.14.1.4 Variation 4: Alkyltitanium Complexes by Reaction of Titanium Complexes
with Dialkylaluminum Reagents .. 590

2.10.14.1.5 Variation 5: Alkyltitanium Complexes by Alkylation of Titanium Halides
with Dialkyl zinc Reagents .. 590

2.10.14.1.6 Variation 6: Alkyl- or Aryltitanium Complexes by Reaction of
Tetramethyltitanium(IV) with Alkyl- or Arylboranes 591

2.10.14.1.7 Variation 7: Alkyltitanium Complexes by Alkylation and Oxidation of
Titanium Complexes by Dimethyl cadmium(II) 591

2.10.14.2 Method 2: Acyltitanium Complexes by Oxidative Addition of Alkyl- or
Acyl Halides to Dicarbonylbis(η5-cyclopentadienyl)titanium(II) 592

2.10.14.3 Method 3: Alkyltitanium Complexes by Hydrotitanation of Alkenyl
Sulfides .. 592

2.10.14.4 Method 4: Alkyltitanium Complexes by Redistribution 593

2.10.14.5 Method 5: Alkyltitanium Complexes by Insertion 594

2.10.14.6 Method 6: Cationic Alkyltitanium Complexes 595

2.10.14.7 Method 7: Benzyl(halo)titanium Complexes from Tetrabenzyltitanium(IV)
and a Halide Source ... 595

Applications of Product Subclass 14 in Polymerization 596

2.10.14.8 Method 8: Alkyltitanium Complexes as Catalysts for Alkene
Polymerization ... 596

2.10.14.9 Method 9: Alkyltitanium Complexes as Catalysts for Styrene
Polymerization ... 598

2.10.14.10 Method 10: Alkyltitanium Complexes as Cocatalysts in Alkene
Polymerization ... 599

2.10.15 **Product Subclass 15: Titanium–Alkoxy Complexes** .. 600

Synthesis of Product Subclass 15 ... 601

2.10.15.1 Method 1: Titanium–Phenoxy Complexes from Alkyltitanium Complexes
by Ligand Exchange with Phenols ... 601

2.10.15.2 Method 2: Titanium–Alkoxy and –Phenoxy Complexes from
Chlorotitanium Complexes by Ligand Exchange with Alcohols
or Phenols in the Presence of Amines 602

2.10.15.2.1 Variation 1: Titanium–Alkoxy and –Phenoxy Complexes from
Chlorotitanium Complexes by Ligand Exchange with Alcohols
or Phenols ... 602
<table>
<thead>
<tr>
<th>Section</th>
<th>Method</th>
<th>Reaction Type</th>
<th>Key Reagents</th>
<th>Product Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.10.2</td>
<td>Variation 2</td>
<td>Cyclopentadienyltitanium–Alkoxy Complexes for Enantio- and Diastereomeric Reactions by Hydrolysis of Chlorotitanium Complexes with Alcohols</td>
<td></td>
<td>603</td>
<td></td>
</tr>
<tr>
<td>2.10.3</td>
<td>Variation 3</td>
<td>Titanium–Alkoxy and –Phenoxy Complexes from Chlorotitanium Complexes by Ligand Exchange with Lithium Alkoxides or Phenoxides</td>
<td></td>
<td>604</td>
<td></td>
</tr>
<tr>
<td>2.10.4</td>
<td>Variation 4</td>
<td>Titanium–Alkoxy and –Phenoxy Complexes from Chlorotitanium Complexes by Ligand Exchange with Sodium Alkoxides or Phenoxides</td>
<td></td>
<td>607</td>
<td></td>
</tr>
<tr>
<td>2.10.5</td>
<td>Variation 5</td>
<td>Titanium–Phenoxy Complexes from Chlorotitanium Complexes by Ligand Exchange with Aryl Silyl Ethers</td>
<td></td>
<td>607</td>
<td></td>
</tr>
<tr>
<td>2.10.6</td>
<td>Variation 6</td>
<td>Titanium–Phenoxy Complexes from Titanium–Alkoxy Complexes by Ligand Replacement with Esters</td>
<td></td>
<td>608</td>
<td></td>
</tr>
<tr>
<td>2.10.7</td>
<td>Method 3</td>
<td>Chiral Titanium–Phenoxy Complexes from Achiral Titanium–Alkoxy Complexes by Ligand Replacement with Esters</td>
<td></td>
<td>608</td>
<td></td>
</tr>
<tr>
<td>2.10.8</td>
<td>Method 4</td>
<td>Titanium–Alkoxy and –Phenoxy Complexes from Amidotitanium Complexes by Ligand Replacement with Alcohols or Phenols</td>
<td></td>
<td>609</td>
<td></td>
</tr>
<tr>
<td>2.10.9</td>
<td>Method 5</td>
<td>Titanium–Sulfanyl Complexes by Ligand Exchange with Alcohols or Phenols</td>
<td></td>
<td>610</td>
<td></td>
</tr>
<tr>
<td>2.10.10</td>
<td>Method 6</td>
<td>Catalytic Asymmetric Alkylation of Aldehydes</td>
<td></td>
<td>610</td>
<td></td>
</tr>
<tr>
<td>2.10.11</td>
<td>Method 7</td>
<td>Catalytic Asymmetric Alkylation</td>
<td></td>
<td>616</td>
<td></td>
</tr>
<tr>
<td>2.10.12</td>
<td>Method 8</td>
<td>Catalytic Asymmetric Ene Reaction</td>
<td></td>
<td>617</td>
<td></td>
</tr>
<tr>
<td>2.10.13</td>
<td>Method 9</td>
<td>Catalytic Asymmetric Mukaiyama Aldol Reaction</td>
<td></td>
<td>620</td>
<td></td>
</tr>
<tr>
<td>2.10.14</td>
<td>Method 10</td>
<td>Catalytic Asymmetric Diels–Alder and Hetero-Diels–Alder Reactions</td>
<td></td>
<td>621</td>
<td></td>
</tr>
<tr>
<td>2.10.15</td>
<td>Method 11</td>
<td>Catalytic Asymmetric [2 + 2]- and [2 + 3] Cycloaditions</td>
<td></td>
<td>624</td>
<td></td>
</tr>
<tr>
<td>2.10.16</td>
<td>Method 12</td>
<td>Catalytic Asymmetric Cyanization</td>
<td></td>
<td>625</td>
<td></td>
</tr>
<tr>
<td>2.10.17</td>
<td>Method 13</td>
<td>Other Catalytic Asymmetric Reactions</td>
<td></td>
<td>628</td>
<td></td>
</tr>
<tr>
<td>2.10.18</td>
<td>Method 14</td>
<td>Sharpless Epoxidation</td>
<td></td>
<td>628</td>
<td></td>
</tr>
<tr>
<td>2.10.19</td>
<td>Application</td>
<td>Applications of Product Subclass 15 in Organic Synthesis</td>
<td></td>
<td>612</td>
<td></td>
</tr>
<tr>
<td>2.10.20</td>
<td>Application</td>
<td>Applications of Product Subclass 15 in Polymerization</td>
<td></td>
<td>631</td>
<td></td>
</tr>
<tr>
<td>2.10.21</td>
<td>Method 15</td>
<td>Alkoxytitanium Complexes as Catalysts for Living Polymerization of Polar Monomers</td>
<td></td>
<td>632</td>
<td></td>
</tr>
<tr>
<td>2.10.22</td>
<td>Method 16</td>
<td>Chelating Bis(phenoxo)titanium Complexes as Catalysts for Alkene Polymerization</td>
<td></td>
<td>634</td>
<td></td>
</tr>
<tr>
<td>2.10.23</td>
<td>Product Subclass 16</td>
<td>Titanium–Amido Complexes</td>
<td></td>
<td>637</td>
<td></td>
</tr>
</tbody>
</table>

Synthesis of Product Subclass 16:

638
2.10.16.1 Method 1: Amidotitanium Complexes from Chlorotitanium Complexes by Transmetalation with Lithium or Magnesium Amides ... 638

2.10.16.1.1 Variation 1: Amidotitanium Complexes from Halotitanium Complexes and Silylamines ... 639

2.10.16.1.2 Variation 2: Titanium Complexes with Chelating Cyclopentadienyl–Amido Ligands from Titanium(III) or Titanium(IV) Halides by Transmetalation with Metal Amides 640

Applications of Product Subclass 16 in Organic Synthesis 644

2.10.16.2 Method 2: Stereoselective Organic Reactions Promoted by Amidotitanium Complexes ... 644

2.10.16.3 Method 3: Fixation of Atmospheric Nitrogen by Titanium Complexes 646

Applications of Product Subclass 16 in Polymerization 650

2.10.16.4 Method 4: Diamidotitanium Complexes as Alkene Polymerization Catalysts .. 650

2.10.16.5 Method 5: Titanium Complexes with Monocyclopentadienyl–Amido Ligands Bridged by Silylene Groups as Alkene Polymerization Catalysts .. 652

2.10.17 Product Subclass 17: Miscellaneous Titanium Complexes 654

Applications of Product Subclass 17 in Organic Synthesis 654

2.10.17.1 Method 1: McMurry Coupling .. 654

2.10.17.2 Method 2: Pinacol Coupling .. 656

2.10.17.3 Method 3: Carbonyl Coupling of Carbamoyl(oxo) Compounds Promoted by Low-Valent Titanium 657

2.10.17.4 Method 4: Dimerization of Imines and Iminium Salts Promoted by Low-Valent Titanium Species 659

2.10.17.5 Method 5: Reactions of Epoxides Promoted by Titanium Complexes 659

2.10.17.6 Method 6: Addition of Alkyl Halides to Alkenes Promoted by Titanium Complexes .. 660

2.11 Product Class 11: Organometallic Complexes of Zirconium and Hafnium E.-i. Negishi and T. Takahashi

2.11 Product Class 11: Organometallic Complexes of Zirconium and Hafnium 681

2.11.1 Product Subclass 1: Metal–η^8-Arene and –η^7-Arene Complexes 683

Synthesis of Product Subclass 1 .. 683

2.11.1.1 Method 1: By π-Complexation .. 683

2.11.1.2 Method 2: By Transmetalation .. 683

2.11.1.3 Method 3: Miscellaneous Transformations 685

Applications of Product Subclass 1 in Organic Synthesis 686

2.11.1.4 Method 4: Reactions of (η^8-Cyclooctatetraene)zirconium Derivatives 686
2.11.2 Product Subclass 2: Metal–η^5-Arene Complexes

Synthesis of Product Subclass 2

2.11.2.1 Method 1: By π-Complexation

2.11.2.1.1 Variation 1: Co-condensation of Metal Vapors with Arenes

2.11.2.1.2 Variation 2: Reduction of Zirconium(IV) and Hafnium(IV) Compounds

2.11.2.1.3 Variation 3: Complexation with Activated Zirconium(IV) and Hafnium(IV) Compounds of Low Electron Count

2.11.2.2 Method 2: By Transmetalation

2.11.2.3 Method 3: Other Methods

Applications of Product Subclass 2 in Organic Synthesis

2.11.3 Product Subclass 3: Metal–Triene Complexes

2.11.4 Product Subclass 4: Metal–η^5-cyclopentadienyl) Complexes and Related Derivatives of Oxidation State Four

Synthesis of Product Subclass 4

2.11.4.1 Bis(η^5-cyclopentadienyl)Metal(IV) Complexes Containing Two Electronegative Heteroatom Groups

2.11.4.1.1 Method 1: Synthesis of Bis(η^5-cyclopentadienyl)Dihalometal(IV) Complexes

2.11.4.1.2 Method 2: Synthesis of Bis(η^5-cyclopentadienyl)Dihalometal(IV) Complexes and Their Derivatives with Modified Cyclopentadienyl Ligands

2.11.4.1.3 Method 3: Synthesis of Bis(η^5-cyclopentadienyl)Metal(IV) Complexes Containing Monohalo and/or Group 16 or 15 Atom Ligands and Their Derivatives with Modified Cyclopentadienyl Ligands

2.11.4.2 Bis(η^5-cyclopentadienyl)Hydridometal(IV) Complexes

2.11.4.2.1 Method 1: By Transmetalation

2.11.4.3 Bis(η^5-cyclopentadienyl)Monometallo- and Bis(η^5-cyclopentadienyl)Dimetallo-Zirconium Complexes (Excluding Hydrido Derivatives)

2.11.4.4 Bis(η^5-cyclopentadienyl)Monooorganometal Complexes

2.11.4.4.1 Method 1: By Transmetalation

2.11.4.4.2 Method 2: By Hydrometalation

2.11.4.4.3 Method 3: By Carbometalation

2.11.4.4.4 Method 4: By Oxidative Addition

2.11.4.4.5 Method 5: Miscellaneous Methods

2.11.4.5 Bis(η^5-cyclopentadienyl)Diorganometal Complexes

2.11.4.5.1 Method 1: Synthesis of Bis(η^5-cyclopentadienyl)Diorganometal Complexes and Their Derivatives

Applications of Product Subclass 4 in Organic Synthesis

2.11.4.6 Bis(η^5-cyclopentadienyl)Hydridometal(IV) Complexes
2.11.4.6.1 Method 1: Stoichiometric Reactions of Bis(η^5-cyclopentadienyl)hydridozirconium(IV) and Bis(η^5-cyclopentadienyl)dihydridozirconium(IV) Complexes and Related Reagents ... 712
2.11.4.6.1.1 Variation 1: Hydrozirconation and Hydrogen-Transfer Hydrozirconation .. 712
2.11.4.6.1.2 Variation 2: Other Stoichiometric Reactions 715
2.11.4.6.1.3 Variation 3: Catalytic Reactions Involving Bis(η^5-cyclopentadienyl)hydridozirconium Derivatives 716
2.11.4.7 Bis(η^5-cyclopentadienyl)monoorganometal Complexes .. 718
2.11.4.7.1 Method 1: Protonolysis, Halogenolysis, Oxidation, and Related Heteroatom—Carbon Bond Formation 719
2.11.4.7.1.1 Variation 1: Protonolysis and Deuterolysis 719
2.11.4.7.1.2 Variation 2: Halogenolysis ... 720
2.11.4.7.1.3 Variation 3: Oxidation .. 720
2.11.4.7.2 Method 2: C—C Bond Formation via Polar Reactions of Chlorobis-(η^5-cyclopentadienyl)monoorganozirconium Complexes with Carbon Electrophiles ... 721
2.11.4.7.2.1 Variation 1: Reactions of Allylbis(η^5-cyclopentadienyl)zirconium Derivatives with Aldehydes 721
2.11.4.7.3 Method 3: C—C Bond Formation via Carbonylation and Other Migratory Insertion Reactions of Bis(η^5-cyclopentadienyl)monoorganozirconium Complexes ... 722
2.11.4.7.3.1 Variation 1: Carbonylation .. 723
2.11.4.7.3.2 Variation 2: Isocyanide Insertion 723
2.11.4.7.3.3 Variation 3: Other Migratory Insertion Reactions 725
2.11.4.7.4 Method 4: C—C Bond Formation via Stoichiometric Transmetalation ... 726
2.11.4.7.5 Method 5: C—C Bond Formation via Metal-Catalyzed Reactions of Bis(η^5-cyclopentadienyl)monoorganozirconium Complexes with Organic Electrophiles ... 727
2.11.4.7.5.1 Variation 1: Nickel- or Palladium-Catalyzed Cross Coupling of Alkenylchlorobis(η^5-cyclopentadienyl)zirconium Complexes .. 728
2.11.4.7.5.2 Variation 2: Nickel-Catalyzed Conjugate Addition of Alkenylchlorobis(η^5-cyclopentadienyl)zirconium Complexes ... 729
2.11.4.7.5.3 Variation 3: Copper-Catalyzed Conjugate Addition of Chlorobis(η^5-cyclopentadienyl)monoorganozirconium Complexes .. 730
2.11.4.7.6 Method 6: C—C Bond Formation Reactions of Organometals Catalyzed by Bis(η^5-cyclopentadienyl)monoorganozirconium Complexes ... 732
2.11.4.7.6.1 Variation 1: Zirconium-Catalyzed Carboalumination of Alkynes ... 732
2.11.4.7.6.2 Variation 2: Zirconium-Catalyzed Enantioselective Carboalumination of Alkenes .. 734
2.11.4.7.6.3 Variation 3: Other Zirconium-Catalyzed Carbometalation Reactions of Alkynes and Alkenes 736
2.11.4.8 Bis(η^5-cyclopentadienyl)diorganometal Complexes ... 736
2.11.4.8.1 Method 1: By β-Hydrogen Abstraction .. 736
2.11.5 Product Subclass 5: Five-Membered Metallocycle–Bis(η^5-cyclopentadienyl) Derivatives of Oxidation State Four .. 739

Synthesis of Product Subclass 5 .. 740
2.11.5.1 Method 1: By Transmetalation .. 740
2.11.5.2 Method 2: Carbometalative Ring-Expansion Reactions of Three- Membered Zirconocene and Hafnocene Derivatives 741
2.11.5.2.1 Variation 1: The Erker–Buchwald Protocol 747
2.11.5.2.2 Variation 2: The Negishi–Takahashi Protocol 750
2.11.5.2.3 Variation 3: Other Protocols for the Synthesis of Five-Membered Zirconacycles and Hafnacycles 753

Applications of Product Subclass 5 in Organic Synthesis 754
2.11.5.3 Method 3: Reactions of Five-Membered Zirconacycles Leading to the Formation of C–H(D) and C–X Bonds 755
2.11.5.3.1 Variation 1: Protonolysis, Deuterolysis, and Halogenolysis 755
2.11.5.3.2 Variation 2: Synthesis of Five-Membered Heterocycles 759
2.11.5.3.3 Variation 3: Reactions with Organometals Containing Electropositive Metals .. 759
2.11.5.4 Method 4: C–C Bond Formation via Polar Reactions of Five-Membered Zirconacycles with Carbon Electrophiles and Related π-Compounds ... 761
2.11.5.4.1 Variation 1: Reactions of Zirconocene–Conjugated Diene Complexes with π-Compounds ... 761
2.11.5.4.2 Variation 2: Ring Expansion of Zirconacyclopentenes and Zirconacyclo- pentanes with Aldehydes ... 763
2.11.5.4.3 Variation 3: Reactions of Zirconacyclopentenes with Allyl and Alkenyl Ethers and Halides ... 764
2.11.5.5 Method 5: C–C Bond Formation by the Reactions of Five-Membered Zirconacycles with Carbon Monoxide, Isocyanides, and Related Carbon Nucleophiles 765
2.11.5.5.1 Variation 1: Migratory Insertion Reactions of Zirconacycles with Carbon Monoxide and Isocyanides 765
2.11.5.6 Method 6: C–C Bond Formation by the Transition-Metal-Catalyzed Reaction of Five-Membered Zirconacycles 769
2.11.5.6.1 Variation 1: Copper-Catalyzed Allylation of Zirconacyclopentadienes ... 769
2.11.5.6.2 Variation 2: Copper-Catalyzed Allylation of Zirconacyclopentenes ... 770
2.11.5.6.3 Variation 3: Copper-Catalyzed Acylation of Zirconacycles ... 771
2.11.5.6.4 Variation 4: Synthesis of Arenes from Three Different Alkynes by Copper- or Nickel-Mediated Reactions of Alkynes with Zirconacyclopentadienes ... 772
2.11.5.6.5 Variation 5: Coupling Reaction of Diiodobenzene with Zirconacyclopentadienes ... 773
2.11.5.7 Method 7: Organometallic Reactions Catalyzed by Five-Membered Zirconacycles ... 774
2.11.6 Product Subclass 6: Metal–Bis(η^5-cyclopentadienyl) Derivatives Containing Carbene, Nitrène, and Other Doubly Bonded Ligands

Synthesis of Product Subclass 6

2.11.6.1 Method 1: By α-Hydrogen Elimination

2.11.6.1.1 Variation 1: Formation of Imido- or Hydrazidozirconium Complexes

2.11.6.1.2 Variation 2: Formation of Oxo-, Thioxo-, or Phosphinidenezirconium Complexes

2.11.6.1.3 Variation 3: Formation of Oxo-, Carbene, or Nitrène Complexes

2.11.6.2 Method 2: Zirconium–Nitrène Complexes by Cleavage of Metallacycles

2.11.6.3 Method 3: Oxo-, Thioxo-, Selenoxo-, or Telluroxozirconium Complexes by the Oxidative Reaction of a Zirconium(II) Complex

2.11.6.4 Method 4: Miscellaneous Reactions

Applications of Product Subclass 6 in Organic Synthesis

2.11.7 Product Subclass 7: Cationic Metal–Bis(η^5-cyclopentadienyl) Derivatives of Oxidation State Four

Synthesis of Product Subclass 7

2.11.7.1 Method 1: By Halogen or Alkyl Abstraction from Bis(η^5-cyclopentadienyl)organozirconium Complexes

2.11.7.1.1 Variation 1: Cationic Alkylbis(η^5-cyclopentadienyl)zirconium Complexes by Halogen Abstraction from Bis(η^5-cyclopentadienyl)halo-(methyl)zirconium

2.11.7.1.2 Variation 2: One-Electron Oxidation of Bis(η^5-cyclopentadienyl)dioorganozirconium Complexes

2.11.7.1.3 Variation 3: Cationic Alkylbis(η^5-cyclopentadienyl)zirconium Complexes by Alkyl Abstraction Using a Lewis Acid

2.11.7.2 Method 2: By Ligand Exchange of Cationic Alkylbis(η^5-cyclopentadienyl)zirconium Complexes

2.11.7.3 Method 3: By Insertion Reactions of Cationic Alkylbis(η^5-cyclopentadienyl)zirconium Complexes

Applications of Product Subclass 7 in Organic Synthesis

2.11.7.4 Method 4: Coupling of Propene and 2-Methylpyridine Catalyzed by Cationic Bis(η^5-cyclopentadienyl)zirconium Complexes

2.11.7.5 Method 5: Catalytic Oligomerization of Terminal Alkynes

2.11.7.6 Method 6: Addition of Alkyl(chloro)bis(η^5-cyclopentadienyl)zirconium Complexes to Aldehydes

2.11.8 Product Subclass 8: Metal–Bis(η^5-cyclopentadienyl) Derivatives of Oxidation States Two and Three

Synthesis of Product Subclass 8

2.11.8.1 Method 1: By Reduction with Metals
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.11.8.2</td>
<td>Method 2:</td>
<td>By β-Hydrogen Abstraction</td>
</tr>
<tr>
<td>2.11.8.2.1</td>
<td>Variation 1:</td>
<td>Formation of Bis(η⁵-cyclopentadienyl)zirconium Complexes with Allenes, Silenes, Imines, and Diphenyl diazene Derivatives</td>
</tr>
<tr>
<td>2.11.8.2.2</td>
<td>Variation 2:</td>
<td>Formation of Bis(η⁵-cyclopentadienyl)zirconium–Benzyne Complexes</td>
</tr>
<tr>
<td>2.11.8.2.3</td>
<td>Variation 3:</td>
<td>Formation of Bis(η⁵-cyclopentadienyl)zirconium–Alkyne Complexes</td>
</tr>
<tr>
<td>2.11.8.2.4</td>
<td>Variation 4:</td>
<td>Formation of Bis(η⁵-cyclopentadienyl)zirconium–Alkene Complexes</td>
</tr>
<tr>
<td>2.11.8.3</td>
<td>Method 3:</td>
<td>By π-Complexation</td>
</tr>
<tr>
<td>2.11.8.4</td>
<td>Method 4:</td>
<td>By Transmetalation</td>
</tr>
<tr>
<td>2.11.8.5</td>
<td>Method 5:</td>
<td>By Reductive Elimination or Migration</td>
</tr>
<tr>
<td>2.11.8.6</td>
<td>Method 6:</td>
<td>By β,γ-C=C Bond Cleavage</td>
</tr>
<tr>
<td>2.11.8.7</td>
<td>Method 7:</td>
<td>Formation of Bis(η⁵-cyclopentadienyl)zirconium(III) Complexes</td>
</tr>
<tr>
<td>2.11.8.8</td>
<td>Method 8:</td>
<td>Bis(η²-cyclopentadienyl)zirconium(II)-Catalyzed C=C Bond Formation</td>
</tr>
<tr>
<td>2.11.8.8.1</td>
<td>Variation 1:</td>
<td>Using Grignard or Other Magnesium Reagents</td>
</tr>
<tr>
<td>2.11.8.8.2</td>
<td>Variation 2:</td>
<td>Using Organoaluminum Reagents</td>
</tr>
<tr>
<td>2.11.8.8.3</td>
<td>Variation 3:</td>
<td>Using Organozinc Reagents</td>
</tr>
<tr>
<td>2.11.8.9</td>
<td>Method 9:</td>
<td>Bis(η²-cyclopentadienyl)zirconium(II)-Catalyzed Hydrosilylation of Alkenes</td>
</tr>
<tr>
<td>2.11.9</td>
<td>Product Subclass 9: Metal–Mono(η⁵-cyclopentadienyl) and –Tris(η⁵-cyclopentadienyl) Complexes and Related Derivatives</td>
<td></td>
</tr>
<tr>
<td>2.11.9.1</td>
<td>Method 1:</td>
<td>By Transmetalation</td>
</tr>
<tr>
<td>2.11.9.1.1</td>
<td>Variation 1:</td>
<td>Formation of Trichloromono(η⁵-cyclopentadienyl)metal Derivatives from Metal(IV) Tetrachloride–Bis(dimethyl sulfide) Complexes</td>
</tr>
<tr>
<td>2.11.9.1.2</td>
<td>Variation 2:</td>
<td>Formation of Trichloro(η⁵-cyclopentadienyl)zirconium from Thallium(I) Methylcyclopentadienide and Zirconium(IV) Chloride–Bis(tetrahydrofuran) Complex</td>
</tr>
<tr>
<td>2.11.9.1.3</td>
<td>Variation 3:</td>
<td>Formation of Zirconium Complexes Containing an Amido-Linked Cyclopentadienyl Ligand</td>
</tr>
<tr>
<td>2.11.9.1.4</td>
<td>Variation 4:</td>
<td>Formation of Tris(η⁵-cyclopentadienyl)metal Complexes</td>
</tr>
<tr>
<td>2.11.9.2</td>
<td>Method 2:</td>
<td>By Radical Chlorination of Dichlorobis(η⁵-cyclopentadienyl)-zirconium</td>
</tr>
<tr>
<td>2.11.9.3</td>
<td>Method 3:</td>
<td>By Amine Elimination</td>
</tr>
<tr>
<td>2.11.9.4</td>
<td>Method 4:</td>
<td>Aldol-Type Reactions of 1-Naphthol Catalyzed by Trichloro(η²-cyclopentadienyl)zirconium Derivatives</td>
</tr>
</tbody>
</table>

Science of Synthesis Original Edition Volume 2 © Georg Thieme Verlag KG
2.11.10 Product Subclass 10: “Ate” Complexes of Metal–Bis(η^5-cyclopentadieny1) and Other Derivatives ... 812
Synthesis of Product Subclass 10 .. 813
2.11.10.1 Method 1: Synthesis of Bis(η^5-cyclopentadieny1)metal(IV) “Ate” Complexes ... 813
2.11.10.1.1 Variation 1: Reactions of Bis(η^5-cyclopentadieny1)zirconium(IV) Derivatives with Alkyl- and Arylmetals Containing Lithium or Magnesium, or with Metal Hydrides .. 813
Applications of Product Subclass 10 in Organic Synthesis 815
2.11.10.2 Method 2: “Ate” Complexes of Bis(η^5-cyclopentadieny1)metal(IV) Derivatives ... 815
2.11.10.2.1 Variation 1: Reactions of Bis(η^5-cyclopentadieny1)zirconium(IV) Derivatives with Alkynylmetals Containing Lithium and Magnesium 815
2.11.10.2.2 Variation 2: Reactions of Bis(η^5-cyclopentadieny1)metal(IV) Derivatives with α- and γ-Hetero-Substituted Alkyl- and Alkenyllithiums 819
2.11.10.2.3 Variation 3: Zwitterionic Bis(η^5-cyclopentadieny1)zirconium(IV) Derivatives ... 822
2.11.10.3 Method 3: Zirconate Complexes of Bis(η^5-cyclopentadieny1)zirconium(II) Derivatives ... 823
2.11.11 Product Subclass 11: Metal π-Complexes Containing η^5-Ligands Other than η^5-Cyclopentadienyl .. 825
Synthesis of Product Subclass 11 .. 826
2.11.11.1 Method 1: By Transmetalation 826
2.11.11.2 Method 2: By Protonation with Carborane 827
2.11.12 Product Subclass 12: Metal π-Complexes Containing η^4, η^3, and η^2-Ligands .. 827
Synthesis of Product Subclass 12 .. 828
2.11.12.1 Method 1: By π-Complexation 828
2.11.12.2 Method 2: By Transmetalation 828
2.11.13 Product Subclass 13: Metal σ-Complexes without π-Ligands of Oxidation State Four ... 829
Synthesis of Product Subclass 13 .. 830
2.11.13.1 Method 1: By Transmetalation 830
2.11.13.2 Method 2: Miscellaneous Methods 832
Applications of Product Subclass 13 in Organic Synthesis 833
2.11.13.3 Method 3: Carbonyl Addition and Related Addition Reactions of σ-Organozirconium Complexes 833
2.11.13.4 Method 4: Migratory Insertion of Isocyanides and Carbon Monoxide ... 834
2.11.14 Product Subclass 14: Metal σ-Complexes of Oxidation States below Four ... 835
2.11.14.1 Method 1: By Reduction .. 835
2.11.14.2 Method 2: By Reductive Carbonylation 836
2.12 Product Class 12: Organometallic Complexes of Scandium, Yttrium and the Lanthanides
Z. Hou and Y. Wakatsuki

2.12.1 Product Subclass 1: Complexes in the Zero Oxidation State
Synthesis of Product Subclass 1

2.12.1.1 Method 1: By Co-condensation of Metal Vapor with a Ligand Compound

2.12.1.2 Method 2: By Reduction of Lanthanide(II) Species
Applications of Product Subclass 1 in Organic Synthesis

2.12.1.3 Method 3: Catalytic Conversion of Carbon Dioxide and Epoxides into Dioxolan-2-ones

2.12.2 Product Subclass 2: Lanthanide(II) Complexes with α-Organo Ligands
Synthesis of Product Subclass 2

2.12.2.1 Method 1: By Reduction of Appropriate Organic Compounds with Lanthanide Metals

2.12.2.1.1 Variation 1: By Reduction of Organic Iodides

2.12.2.1.2 Variation 2: By Reduction of Aromatic Ketones, Thioketones, and Imines

2.12.2.2 Method 2: By Transmetalation

2.12.2.2.1 Variation 1: From Lanthanide(II) Iodides

2.12.2.2.2 Variation 2: From Lanthanide Metals
Applications of Product Subclass 2 in Organic Synthesis

2.12.2.3 Method 3: Cross-Coupling Reactions with Organic Electrophiles

2.12.3 Product Subclass 3: Mono- and Bis(cyclopentadienyl)lanthanide(II) Complexes
Synthesis of Product Subclass 3

2.12.3.1 Method 1: By Transmetalation
Applications of Product Subclass 3 in Organic Synthesis

2.12.3.2 Method 2: Formation of Nucleophilic Allyl- and Benzylsamarium(III) Species

2.12.4 Product Subclass 4: Mono- and Bis(pentamethylcyclopentadienyl)lanthanide(II) Complexes
Synthesis of Product Subclass 4

2.12.4.1 Method 1: By Transmetalation
Applications of Product Subclass 4 in Organic Synthesis

2.12.4.2 Method 2: Reductive Coupling Reactions

2.12.4.2.1 Variation 1: Homocoupling Reactions

2.12.4.2.2 Variation 2: Cross-Coupling Reactions

2.12.4.3 Method 3: Acylation of Alcohols and Amines
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.12.4.4</td>
<td>Method 4: Polymerization</td>
<td>866</td>
</tr>
<tr>
<td>2.12.4.4.1</td>
<td>Variation 1: Synthesis of (Meth)acrylate Triblock Copolymers</td>
<td>866</td>
</tr>
<tr>
<td>2.12.4.4.2</td>
<td>Variation 2: Block Copolymerization of Ethene and Styrene</td>
<td>867</td>
</tr>
<tr>
<td>2.12.5</td>
<td>Product Subclass 5: Lanthanide(II) Complexes with Other Modified Cyclopentadienyl Ligands</td>
<td>868</td>
</tr>
<tr>
<td>2.12.5.1</td>
<td>Method 1: By Transmetalation</td>
<td>868</td>
</tr>
<tr>
<td>2.12.5.2</td>
<td>Method 2: Alkene Polymerization</td>
<td>870</td>
</tr>
<tr>
<td>2.12.6</td>
<td>Product Subclass 6: Miscellaneous Lanthanide(II) Complexes</td>
<td>871</td>
</tr>
<tr>
<td>2.12.6.1</td>
<td>Method 1: By Oxidation of Lanthanide Metals</td>
<td>871</td>
</tr>
<tr>
<td>2.12.6.2</td>
<td>Method 2: By Transmetalation</td>
<td>872</td>
</tr>
<tr>
<td>2.12.6.3</td>
<td>Method 3: Reversible Pinacol-Coupling Reactions</td>
<td>874</td>
</tr>
<tr>
<td>2.12.6.4</td>
<td>Method 4: Ring-Opening Polymerization and Copolymerization of Lactones</td>
<td>875</td>
</tr>
<tr>
<td>2.12.7</td>
<td>Product Subclass 7: Scandium(III)–, Yttrium(III)–, and Lanthanide(III)–α-Organo Complexes without Anionic π-Ligands</td>
<td>876</td>
</tr>
<tr>
<td>2.12.7.1</td>
<td>Method 1: By Transmetalation</td>
<td>876</td>
</tr>
<tr>
<td>2.12.7.2</td>
<td>Method 2: By Deprotonation of Terminal Alkynes</td>
<td>880</td>
</tr>
<tr>
<td>2.12.7.3</td>
<td>Method 3: Nucleophilic Addition</td>
<td>881</td>
</tr>
<tr>
<td>2.12.7.4</td>
<td>Method 4: Catalytic Dimerization of Alk-1-ynes and Polymerization of Ethene</td>
<td>882</td>
</tr>
<tr>
<td>2.12.8</td>
<td>Product Subclass 8: Mono- and Bis(cyclopentadienyl) Complexes of Scandium(III), Yttrium(III), and Lanthanides(III) Bearing α-Organo or Other Anionic Ligands</td>
<td>883</td>
</tr>
<tr>
<td>2.12.8.1</td>
<td>Method 1: By Transmetalation</td>
<td>883</td>
</tr>
<tr>
<td>2.12.8.1.1</td>
<td>Variation 1: From Rare Earth Trihalides</td>
<td>883</td>
</tr>
<tr>
<td>2.12.8.1.2</td>
<td>Variation 2: From Cyclopentadienyl Rare Earth Chlorides</td>
<td>885</td>
</tr>
<tr>
<td>2.12.8.2</td>
<td>Method 2: By Hydrogenolysis or Protonation of Rare Earth Metal–Carbon Bonds</td>
<td>887</td>
</tr>
<tr>
<td>2.12.8.3</td>
<td>Method 3: Addition of Ln—X (X = H, Alkyl, Silyl, or Germyl) to Unsaturated C—C, C—N, or C—O Bonds</td>
<td>889</td>
</tr>
</tbody>
</table>
2.12.9 Product Subclass 9: Tris(substituted or unsubstituted cyclopentadienyl) Complexes .. 891
 Synthesis of Product Subclass 9 .. 891
 Method 1: By Transmetalation ... 891
 Applications of Product Subclass 9 in Organic Synthesis 893
 Method 2: Coupling Reactions between Pentamethylcyclopentadienide Anion and Electrophilic Substrates 893
2.12.10 Product Subclass 10: Mono- and Bis(pentamethylcyclopentadienyl) Complexes of Scandium(III), Yttrium(III), and the Lanthanides(III) Bearing α-Organo or Other Anionic Ligands .. 895
 Synthesis of Product Subclass 10 .. 895
 Method 1: By Transmetalation ... 895
 Variation 1: From Rare Earth Trihalides or Tris(aryloxides) 895
 Variation 2: From Pentamethylcyclopentadienyl Rare Earth Halides or Aryloxides .. 897
 Method 2: By Hydrogenolysis or Protonation of Rare Earth Metal—Organo or Metal—Amide Bonds 898
 Method 3: By Oxidation of Bis(pentamethylcyclopentadienyl)Lanthanide(II) Complexes .. 900
 Applications of Product Subclass 10 in Organic Synthesis 901
 Method 4: Catalytic Dimerization of Alk-1- or Alk-2-yynes 901
 Method 5: Catalytic Hydrogenation, Hydrosilylation, and Hydroboration of Alkenes or Alkynes .. 903
 Method 6: Catalytic Cyclization Reactions 904
 Method 7: Polymerization Reactions 906
2.12.11 Product Subclass 11: Other Modified Cyclopentadienyl Complexes in Oxidation State Three .. 907
 Synthesis of Product Subclass 11 .. 907
 Method 1: By Transmetalation ... 907
 Method 2: By Deprotonation ... 915
 Applications of Product Subclass 11 in Organic Synthesis 916
 Method 3: Catalytic Cyclization—Silylation of Hindered Dienes and Trienes ... 917
 Method 4: Asymmetric Catalysis ... 917
 Method 5: Dimerization and Polymerization of Alk-1-enes 918
2.12.12 Product Subclass 12: Cyclooctatetraenyl Complexes in Oxidation States Two and Three .. 919
 Synthesis of Product Subclass 12 .. 919
 Method 1: By Transmetalation .. 919
 Method 2: By Oxidation of Low-Valent Lanthanides 921
2.12.13
Product Subclass 13: Miscellaneous Complexes in Oxidation State Three
Synthesis of Product Subclass 13 .. 922
2.12.13.1
Method 1: By Transmetalation ... 923
2.12.13.2
Method 2: By Oxidation of Low-Valent Lanthanides 925
2.12.13.3
Method 3: Polymerization of Buta-1,3-diene, Methyl Methacrylate, and Lactones .. 927
2.12.13.4
Method 4: Catalytic Asymmetric C—C, C—O, and C—P Bond Formation 928
2.12.14
Product Subclass 14: Complexes in Oxidation State Four 929
Synthesis of Product Subclass 14 .. 929
2.12.14.1
Method 1: By Transmetalation ... 929
2.12.14.2
Method 2: By Oxidation of Cerium(III) Compounds 931

2.13
Product Class 13: Organometallic Complexes of the Actinides
A. Dormond and D. Barbier-Baudry

2.13
Product Class 13: Organometallic Complexes of the Actinides 943
2.13.1
Product Subclass 1: Actinide–Cyclooctatetraenyl Complexes 943
Synthesis of Product Subclass 1 .. 944
2.13.1.1
Method 1: Preparation of Actinide–Cyclooctatetraenyl Complexes by Ligand Substitution .. 944
2.13.2
Product Subclass 2: Actinide–Cycloheptatrienyl Complexes 946
Synthesis of Product Subclass 2 .. 947
2.13.2.1
Method 1: Preparation of Uranium–Cycloheptatrienyl Complexes by Ligand Substitution .. 947
2.13.3
Product Subclass 3: Actinide–Arene Complexes 947
Synthesis of Product Subclass 3 .. 947
2.13.3.1
Method 1: Preparation of Uranium(III) Arene Complexes by Reduction of Uranium(IV) Complexes .. 947
2.13.4
Product Subclass 4: Actinide–Cyclopentadienyland Substituted
Cyclopentadienyl Complexes ... 948
Synthesis of Product Subclass 4 .. 948
2.13.4.1
Method 1: Preparation of Actinide Cyclopentadienyl Halide and Amide Complexes by Ligand Substitution .. 948
2.13.4.2
Method 2: Preparation of Actinide Cyclopentadienyl Alkyl Complexes by Ligand Substitution .. 950
2.13.4.3
Method 3: Preparation of Other Actinide Cyclopentadienyl Complexes by Ligand Substitution .. 952
2.13.4.4
Method 4: Preparation of (Cyclopentadienyl)actinide(III) Complexes by Reduction .. 953
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.13.5</td>
<td>Product Subclass 5: Actinide–Pentamethylcyclopentadienyl Complexes</td>
<td>954</td>
</tr>
<tr>
<td></td>
<td>Synthesis of Product Subclass 5</td>
<td>954</td>
</tr>
<tr>
<td>2.13.5.1</td>
<td>Method 1: Preparation of (Pentamethylcyclopentadienyl)actinide(IV)</td>
<td>954</td>
</tr>
<tr>
<td></td>
<td>Halide and Alkyl Complexes by Ligand Substitution</td>
<td></td>
</tr>
<tr>
<td>2.13.5.2</td>
<td>Method 2: Preparation of (Pentamethylcyclopentadienyl)uranium(III)</td>
<td>958</td>
</tr>
<tr>
<td></td>
<td>Complexes by Reduction</td>
<td></td>
</tr>
<tr>
<td>2.13.5.3</td>
<td>Method 3: Preparation of (Tetramethylcyclopentadienyl)actinide Adduct</td>
<td>959</td>
</tr>
<tr>
<td></td>
<td>Complexes by Ligand Addition</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Applications of Product Subclass 5 in Organic Synthesis</td>
<td>959</td>
</tr>
<tr>
<td>2.13.5.4</td>
<td>Method 4: Catalytic Synthesis of Imines by Addition</td>
<td>959</td>
</tr>
<tr>
<td>2.13.6</td>
<td>**Product Subclass 6: Actinide–Tetramethylphospholyl Complexes</td>
<td>960</td>
</tr>
<tr>
<td></td>
<td>Synthesis of Product Subclass 6</td>
<td>960</td>
</tr>
<tr>
<td>2.13.6.1</td>
<td>Method 1: Preparation of (Tetramethylphospholyl)uranium Complexes</td>
<td>960</td>
</tr>
<tr>
<td></td>
<td>by Ligand Substitution</td>
<td></td>
</tr>
<tr>
<td>2.13.7</td>
<td>**Product Subclass 7: Actinide–Hexadienyl and –Pentadienyl Complexes</td>
<td>961</td>
</tr>
<tr>
<td></td>
<td>Synthesis of Product Subclass 7</td>
<td>961</td>
</tr>
<tr>
<td>2.13.7.1</td>
<td>Method 1: Preparation of (Hexadienyl)- and (Pentadienyl)actinide</td>
<td>961</td>
</tr>
<tr>
<td></td>
<td>Complexes by Ligand Substitution</td>
<td></td>
</tr>
<tr>
<td>2.13.8</td>
<td>**Product Subclass 8: Actinide–Allyl Complexes</td>
<td>962</td>
</tr>
<tr>
<td></td>
<td>Synthesis of Product Subclass 8</td>
<td>962</td>
</tr>
<tr>
<td>2.13.8.1</td>
<td>Method 1: Preparation of Actinide–Allyl Complexes by Ligand</td>
<td>962</td>
</tr>
<tr>
<td></td>
<td>Substitution</td>
<td></td>
</tr>
<tr>
<td>2.13.9</td>
<td>**Product Subclass 9: Actinide–(\sigma)-Organo Complexes without</td>
<td>963</td>
</tr>
<tr>
<td></td>
<td>Anionic (\pi)-Ligands</td>
<td>964</td>
</tr>
<tr>
<td></td>
<td>Synthesis of Product Subclass 9</td>
<td>964</td>
</tr>
<tr>
<td>2.13.9.1</td>
<td>Method 1: Preparation of Actinide Alkyl Pyrazolylborate Complexes</td>
<td>964</td>
</tr>
<tr>
<td></td>
<td>by Ligand Substitution</td>
<td></td>
</tr>
<tr>
<td>2.13.9.2</td>
<td>Method 2: Preparation of Actinide Alkyl Aryloxy Complexes by Ligand</td>
<td>964</td>
</tr>
<tr>
<td></td>
<td>Substitution</td>
<td></td>
</tr>
<tr>
<td>2.13.9.3</td>
<td>Method 3: Preparation of Actinide Alkyl Silylamido Complexes by Ligand</td>
<td>965</td>
</tr>
<tr>
<td></td>
<td>Substitution</td>
<td></td>
</tr>
<tr>
<td>2.13.9.4</td>
<td>Method 4: Preparation of Actinide Metallacycles by Elimination</td>
<td>966</td>
</tr>
<tr>
<td></td>
<td>Reactions</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Applications of Product Subclass 9 in Organic Synthesis</td>
<td>967</td>
</tr>
<tr>
<td>2.13.9.5</td>
<td>Method 5: Selective Nucleophilic Addition to Carbonyl Compounds</td>
<td>967</td>
</tr>
<tr>
<td>2.13.9.6</td>
<td>Method 6: Nucleophilic Addition to Unsaturated Compounds</td>
<td>967</td>
</tr>
<tr>
<td>2.13.10</td>
<td>**Product Subclass 10: Miscellaneous Complexes</td>
<td>969</td>
</tr>
<tr>
<td></td>
<td>Synthesis of Product Subclass 10</td>
<td>969</td>
</tr>
<tr>
<td>2.13.10.1</td>
<td>Method 1: Preparation of Uranium(IV) Borohydride by Ligand</td>
<td>969</td>
</tr>
<tr>
<td></td>
<td>Substitution</td>
<td></td>
</tr>
</tbody>
</table>
Table of Contents

Keyword Index .. 975
Author Index .. 1011
Abbreviations .. 1065