Volume 8: Compounds of Group 1 (Li—Cs)

Volume 8a

8.1 Lithium Compounds
Keyword Index
Author Index
Abbreviations

Volume 8b

8.2 Sodium Compounds
8.3 Potassium Compounds
8.4 Rubidium and Cesium Compounds
Keyword Index
Author Index
Abbreviations
Volume 8a:
Compounds of Group 1 (Li...Cs)

Preface ... V
Table of Contents .. XV

Introduction
M. Majewski and V. Snieckus .. 1

8.1 Product Class 1: Lithium Compounds
M. Majewski and V. Snieckus .. 5

8.1.1 Product Subclass 1: Lithium Metal
R. K. Dieter .. 43

8.1.2 Product Subclass 2: Lithium Hydride
U. Wietelmann ... 133

8.1.3 Product Subclass 3: Lithium Halides, Lithium Cyanide,
and Related Salts
U. Wietelmann ... 139

8.1.4 Product Subclass 4: Lithium–Oxygen Compounds
U. Wietelmann ... 165

8.1.5 Product Subclass 5: Lithium–Sulfur, –Selenium,
and –Tellurium Compounds
U. Wietelmann ... 171

8.1.6 Product Subclass 6: Lithium Amides
J. Eames .. 173

8.1.7 Product Subclass 7: Alkylithium and Cycloalkyllithium Compounds
L. Brandsma and J. W. Zwikker ... 243

8.1.8 Product Subclass 8: Alkenyllithium Compounds
L. Brandsma and J. W. Zwikker ... 253

8.1.9 Product Subclass 9: Allenyllithium Compounds
L. Brandsma and J. W. Zwikker ... 271

8.1.10 Product Subclass 10: Lithium Acetylides
L. Brandsma and J. W. Zwikker ... 285
<table>
<thead>
<tr>
<th>Product Subclass</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11: Lithium Alkynolates, Alkynethiolates, and Alkyneselenolates</td>
<td>L. Brandsma and J. W. Zwikker</td>
<td>305</td>
</tr>
<tr>
<td>12: Allyllithium Compounds</td>
<td>L. Brandsma and J. W. Zwikker</td>
<td>313</td>
</tr>
<tr>
<td>13: Benzyllithium Compounds and (Lithiomethyl)hetarenes</td>
<td>J. N. Reed</td>
<td>329</td>
</tr>
<tr>
<td>14: Aryllithium and Hetaryllithium Compounds</td>
<td>G. W. Gribble</td>
<td>357</td>
</tr>
<tr>
<td>15: ß-Lithiocarboxylic Acids and Related Lithium Compounds (Including Enolates)</td>
<td>J. R. Green</td>
<td>427</td>
</tr>
<tr>
<td>16: ß-Lithiocarboxylic Acids and Related Lithium Compounds</td>
<td>D. Caine</td>
<td>487</td>
</tr>
<tr>
<td>17: ß-Lithio Aldehydes, ß-Lithio Ketones, and Related Compounds</td>
<td>D. Caine</td>
<td>499</td>
</tr>
<tr>
<td>18: ß-Lithio Aldehydes, ß-Lithio Ketones, and Related Compounds</td>
<td>D. Caine</td>
<td>619</td>
</tr>
<tr>
<td>19: sp³-Hybridized ß-Lithio Ethers and O-Carbamates</td>
<td>S. MacNeil</td>
<td>637</td>
</tr>
<tr>
<td>20: ß-Lithio Sulfoxides</td>
<td>T. Durst and M. Khodaei</td>
<td>661</td>
</tr>
<tr>
<td>22: Lithium Nitronates</td>
<td>N. Ono</td>
<td>759</td>
</tr>
<tr>
<td>23: γ-Lithio Ethers and Related Compounds</td>
<td>D. Caine</td>
<td>775</td>
</tr>
<tr>
<td>24: Carbamoyllithium and Trihalomethyllithium Compounds</td>
<td>C. Metallinos</td>
<td>795</td>
</tr>
</tbody>
</table>
8.1.25 Product Subclass 25: Tris(organosulfanyl)- and Tris(organoselanyl)methyllithium Compounds
C. Nájera and M. Yus .. 805

8.1.26 Product Subclass 26: Bis(organosulfanyl)- and Bis(organoselanyl)methyllithium Compounds
C. Nájera and M. Yus .. 813

8.1.27 Product Subclass 27: α-Lithio Vinyl Ethers
R. W. Friesen and C. F. Sturino ... 841

Keyword Index .. i
Author Index .. xxxiii
Abbreviations .. lxxxv
Table of Contents

Introduction
M. Majewski and V. Snieckus

<table>
<thead>
<tr>
<th>Introduction</th>
<th>1</th>
</tr>
</thead>
</table>

8.1 Product Class 1: Lithium Compounds
M. Majewski and V. Snieckus

<table>
<thead>
<tr>
<th>8.1 Product Class 1: Lithium Compounds</th>
<th>5</th>
</tr>
</thead>
</table>

8.1.1 Product Subclass 1: Lithium Metal
R. K. Dieter

<table>
<thead>
<tr>
<th>8.1.1 Product Subclass 1: Lithium Metal</th>
<th>43</th>
</tr>
</thead>
</table>

Applications of Product Subclass 1 in Organic Synthesis

8.1.1.1 Method 1: Synthesis of C−Li or Si−Li Groups and Their Reactions with Carbon Electrophiles

<table>
<thead>
<tr>
<th>8.1.1.1 Method 1: Synthesis of C−Li or Si−Li Groups and Their Reactions with Carbon Electrophiles</th>
<th>44</th>
</tr>
</thead>
</table>

8.1.1.2 Variation 1: Reductive Halogen–Metal Exchange

<table>
<thead>
<tr>
<th>8.1.1.2 Variation 1: Reductive Halogen–Metal Exchange</th>
<th>44</th>
</tr>
</thead>
</table>

8.1.1.3 Variation 2: Reductive Metalation of Carbon–Chalcogen and C−N Bonds

<table>
<thead>
<tr>
<th>8.1.1.3 Variation 2: Reductive Metalation of Carbon–Chalcogen and C−N Bonds</th>
<th>55</th>
</tr>
</thead>
</table>

|---|---|

8.1.1.5 Method 2: Synthesis of the C−Li Bond Followed by Protonation, Coupling, or Elimination

<table>
<thead>
<tr>
<th>8.1.1.5 Method 2: Synthesis of the C−Li Bond Followed by Protonation, Coupling, or Elimination</th>
<th>67</th>
</tr>
</thead>
</table>

8.1.1.6 Variation 1: From Carbon–Heteroatom and Selected C−C Bonds

<table>
<thead>
<tr>
<th>8.1.1.6 Variation 1: From Carbon–Heteroatom and Selected C−C Bonds</th>
<th>67</th>
</tr>
</thead>
</table>

8.1.1.7 Variation 2: Birch Reductions

<table>
<thead>
<tr>
<th>8.1.1.7 Variation 2: Birch Reductions</th>
<th>83</th>
</tr>
</thead>
</table>

8.1.1.8 Variation 3: Heteroaromatic Birch Reductions

<table>
<thead>
<tr>
<th>8.1.1.8 Variation 3: Heteroaromatic Birch Reductions</th>
<th>96</th>
</tr>
</thead>
</table>

8.1.1.9 Variation 4: Styrenes, 1,3-Dienes, and Alkynes

<table>
<thead>
<tr>
<th>8.1.1.9 Variation 4: Styrenes, 1,3-Dienes, and Alkynes</th>
<th>101</th>
</tr>
</thead>
</table>

8.1.1.10 Method 3: Synthesis of X−Li Bonds (X = O, N, S, P)

<table>
<thead>
<tr>
<th>8.1.1.10 Method 3: Synthesis of X−Li Bonds (X = O, N, S, P)</th>
<th>107</th>
</tr>
</thead>
</table>

8.1.1.11 Variation 1: Reductive Metalation of Alcohols, Amines, Thiols, Phosphines, and X−X Bonds

<table>
<thead>
<tr>
<th>8.1.1.11 Variation 1: Reductive Metalation of Alcohols, Amines, Thiols, Phosphines, and X−X Bonds</th>
<th>107</th>
</tr>
</thead>
</table>

8.1.1.12 Variation 2: Reduction of C=O and C≡N Bonds

<table>
<thead>
<tr>
<th>8.1.1.12 Variation 2: Reduction of C=O and C≡N Bonds</th>
<th>109</th>
</tr>
</thead>
</table>

8.1.1.13 Variation 3: Reduction of π−, Strained C−C, or C−X Bonds α to a Carbonyl Group

| 8.1.1.13 Variation 3: Reduction of π−, Strained C−C, or C−X Bonds α to a Carbonyl Group | 113 |
8.1.2 Product Subclass 2: Lithium Hydride
U. Wietelmann

8.1.2 Product Subclass 2: Lithium Hydride 133
Applications of Product Subclass 2 in Organic Synthesis 133
8.1.2.1 Method 1: Reactions as a Base 133
8.1.2.2 Method 2: Superactive Lithium Hydride 134
8.1.2.3 Method 3: Other Lithium Hydride Activation Methods 135

8.1.3 Product Subclass 3: Lithium Halides, Lithium Cyanide, and Related Salts
U. Wietelmann

8.1.3 Product Subclass 3: Lithium Halides, Lithium Cyanide, and Related Salts 139
Applications of Product Subclass 3 in Organic Synthesis 139
8.1.3.1 Method 1: Organic Salt Solutions as Reaction Media 139
8.1.3.2 Method 2: Effects on Main Group Organometallic Chemistry 140
8.1.3.2.1 Variation 1: Salt Effects in Enolate and Similar Chemistry 141
8.1.3.2.2 Variation 2: Protonation of Enolates 144
8.1.3.2.3 Variation 3: Lithium Salt Effects in Grignard Chemistry 145
8.1.3.3 Method 3: Effects on Transition-Metal Chemistry 146
8.1.3.3.1 Variation 1: Palladium-Catalyzed Reactions 147
8.1.3.3.2 Variation 2: Organocopper Reactions 148
8.1.3.3.3 Variation 3: Reactions of Other Transition Metals 149
8.1.3.4 Method 4: Addition Reactions 149
8.1.3.4.1 Variation 1: Cycloaddition Reactions 149
8.1.3.4.2 Variation 2: Addition to Carbonyl Compounds 151
8.1.3.4.3 Variation 3: Miscellaneous Additions 153
8.1.3.5 Method 5: Single-Bond Cleavage Reactions 153
8.1.3.6 Method 6: Condensation Reactions 156
8.1.3.7 Method 7: Elimination Reactions 158
8.1.3.8 Method 8: Hydride Reductions 158
8.1.3.9 Method 9: Lithium Salts as Sources for Halogens or Cyanide 159

8.1.4 Product Subclass 4: Lithium–Oxygen Compounds
U. Wietelmann

8.1.4 Product Subclass 4: Lithium–Oxygen Compounds 165
Applications of Product Subclass 4 in Organic Synthesis 165
8.1.4.1 Method 1: Reactions Using Lithium Hydroxide 165
8.1.4.2 Method 2: Reactions Using Lithium Carbonate 166
8.1.4.3 Method 3: Use of Lithium Hydroperoxide and Related Reagents 166
8.1.4.4 Method 4: Reactions Using Lithium Acetate 167
8.1.4.5 Method 5: Reactions Using Lithium Alkoxides 168
8.1.4.5.1 Variation 1: Elimination and Condensation Reactions 168
8.1.4.5.2 Variation 2: Oxidation Reactions with Copper(II) Bromide–Lithium tert-Butoxide 169
Product Subclass 5: Lithium–Sulfur, –Selenium, and –Tellurium Compounds
U. Wietelmann

Applications of Product Subclass 5 in Organic Synthesis

Product Subclass 6: Lithium Amides
J. Eames

Synthesis of Product Subclass 6

Method 1: Lithium Amide
Method 2: Lithium Ethylamide
Method 3: Lithium Pyrrolidine
Method 4: Lithium Diethylamide
Method 5: Lithium Dicyclohexylamide
Method 6: Lithium Diisopropylamide
Variation 1: By Deprotonation of Diisopropylamine by Butyllithium
Variation 2: By Reaction of Diisopropylamine with Lithium
Method 7: Lithium 2,2,6,6-Tetramethylpiperidide
Method 8: Lithium Isopropylcyclohexylamide
Method 9: Lithium 3-Aminopropylamide
Method 10: Lithium Hexamethyldisilazanide
Method 11: Lithium Benzyl(trimethylsilyl)amide
Method 12: Tetradentate Chiral Lithium Amides
Method 13: Lithium (R)-(1-Phenylethyl)(2,2,2-trifluoroethyl)amide
Method 14: Lithium (3S)-3-(1-Piperidylmethyl)-1,2,3,4-tetrahydrossoquinolin-2-ide
Method 15: Lithium (S)-Benzyl(1-phenylethyl)amide
Method 16: The Dilithium Salt of 1-(Methylamino)-1-phenylpropan-2-ol
Method 17: Lithium Methyl[(1R,2S)-1-phenyl-2-pyrrolidin-1-ylpropyl]amide
Method 18: Lithium (1S,2R)-N,N’-Bis[2-methoxyethyl)cyclohexane-1,2-diamide
Method 19: Lithium Bis[(S)-1-phenylethyl]amide
Method 20: Lithium (S)-2-(Pyrrolidin-1-ylmethyl)pyrrolidide
Method 21: Lithium (2S,3aS,7aS)-2-(Pyrrolidin-1-ylmethyl)octahydro-1H-indol-1-ide
Method 22: Lithium (1R,2R)-N,N’-Bis[2-methoxyethyl)cyclohexane-1,2-diamide
Method 23: The Lithium Salt of (1S,3R,4R)-3-(Pyrrolidin-1-ylmethyl)-2-azabicyclo[2.2.1]heptane
Method 24: Lithium (S)-Benzy[2-(4-methylpiperazin-1-yl)-1-phenylethyl]amide
8.1.6.25 Method 25: Lithium (S)-(Diphenylmethyl)(1-benzylpyrrolidin-3-yl)amide
Applications of Product Subclass 6 in Organic Synthesis 204

8.1.6.26 Method 26: Deprotonation of Carbonyl Compounds To Give
Lithium Enolates .. 204

8.1.6.27 Method 27: Enantioselective Deprotonation of Ketones by
Chiral Lithium Amides .. 208

8.1.6.28 Method 28: Deprotonation of Ketones by Lithium Hexamethyldisilazanide
in the Synthesis of Diazoketones .. 214

8.1.6.29 Method 29: Deprotonation of Terminal Alkynes by Lithium Amide 215

8.1.6.30 Method 30: Deprotonation of an Epoxide by Lithium Diethylamide 216

8.1.6.31 Method 31: Desymmetrization of meso-Epoxides by Deprotonation by
Lithium Amides ... 217

8.1.6.32 Method 32: Kinetic Resolution of Racemic Epoxides by Deprotonation by
Lithium Amides ... 221

8.1.6.33 Method 33: Isomerization of an Epoxide to an Allylic Alcohol by
Deprotonation by Lithium Diethylamide .. 221

8.1.6.34 Method 34: Deprotonation of a Nitrile by Lithium Diisopropylamide 222

8.1.6.35 Method 35: Carbene Formation by Deprotonation Reactions of
Lithium Amides ... 223

8.1.6.36 Method 36: Desymmetrization of an Amide by Deprotonation Using
Lithium Amides ... 224

8.1.6.37 Method 37: Desymmetrization of a meso-Phospholane Oxide by
Deprotonation by a Lithium Amide .. 225

8.1.6.38 Method 38: Nucleophilic Addition Involving Lithium Amides 227

8.1.6.38.1 Variation 1: Nucleophilic Addition Involving Lithium Diisopropylamide 227

8.1.6.38.2 Variation 2: Diastereoselective Conjugate Addition with
Lithium Benzyl(1-phenylethyl)amide ... 228

8.1.6.39 Method 39: Hydride Transfer Involving Lithium Amides 230

8.1.6.39.1 Variation 1: Hydride Transfer by Lithium Diisopropylamide 230

8.1.6.39.2 Variation 2: Hydride Transfer by Lithium (S)-BenzyI[2-(4-methyl-
piperazin-1-yl)-1-phenylethyl]amide ... 231

8.1.6.40 Method 40: Additional Applications of Chiral Lithium Amides 231

8.1.6.40.1 Variation 1: Enantioselective Addition of Butyllithium Mediated by
a Chiral Lithium Amide .. 231

8.1.6.40.2 Variation 2: Enantioselective Protonation of a Prostereogenic Enolate 232

8.1.7 Product Subclass 7: Alkyllithium and Cycloalkyllithium Compounds
L. Brandsma and J. W. Zwikker

8.1.7 Product Subclass 7: Alkyllithium and Cycloalkyllithium Compounds 243
Synthesis of Product Subclass 7 .. 244

8.1.7.1 Method 1: Reaction of Halogenides with Lithium 244

8.1.7.2 Method 2: Halogen–Lithium Exchange ... 246

8.1.7.3 Method 3: Deprotonation ... 246

8.1.7.4 Methods 4: Additional Methods .. 247
Applications of Product Subclass 7 in Organic Synthesis 247

8.1.7.5 Method 5: Replacement of Lithium by Other Metals 247
8.1.7.6 Method 6: Addition of Alkyllithium to Unsaturated Carbon Compounds
(Carbolithiation) ... 248
8.1.7.6.1 Variation 1: Cyclization of Unsaturated Lithium Compounds
(Cyclocarbolithiation) ... 249

8.1.8 Product Subclass 8: Alkenyllithium Compounds
L. Brandsma and J. W. Zwikker

8.1.8.1 Method 1: Deprotonation .. 253
8.1.8.1.1 Variation 1: Deprotonation with Alkyllithium Reagents 253
8.1.8.1.2 Variation 2: Deprotonation with Superbasic Reagents 254
8.1.8.1.3 Variation 3: Deprotonation with Lithium Dialkylamides 255
8.1.8.2 Method 2: Halogen–Metal Exchange Using Alkyllithium Reagents ... 256
8.1.8.3 Method 3: Reaction of Alkenyl Halides with Lithium 258
8.1.8.4 Method 4: Tin–Lithium Exchange .. 259
8.1.8.5 Method 5: Reaction of (Arylsulfonyl)hydrazones with
Alkylithium Reagents (Shapiro Reaction) 260
8.1.8.6 Methods 6: Additional Methods ... 261
8.1.8.7 Applications of Product Subclass 8 in Organic Synthesis 262

8.1.9 Product Subclass 9: Allenyllithium Compounds
L. Brandsma and J. W. Zwikker

8.1.9.1 Method 1: Deprotonation of Allenes with Butyllithium 272
8.1.9.1.1 Variation 1: Deprotonation of Allenes with Lithium Amides 273
8.1.9.2 Method 2: Metalation of Alkynes with Butyllithium 275
8.1.9.3 Method 3: Metalation of Alkynes with Butyllithium–Potassium
tert-Butoxide Followed by Addition of Lithium Bromide 276
8.1.9.4 Method 4: Metalation of Alkynes with Butyllithium–Potassium
1,4-Addition of Lithium Compounds to Enynes 278
8.1.9.5 Applications of Product Subclass 9 in Organic Synthesis 278
8.1.9.6 Method 6: Replacement of Lithium by Other Metals .. 278
8.1.9.7 Method 7: Formation of C—C Bonds ... 279
8.1.9.7.1 Variation 1: Reactions with Heterocumulenes .. 279
8.1.9.7.2 Variation 2: Reactions with Acylating Agents .. 279
8.1.9.7.3 Variation 3: Reactions with Aldehydes and Ketones .. 280
8.1.9.7.4 Variation 4: Reaction with Alkylating Agents .. 280
8.1.9.8 Methods 8: Additional Methods ... 281

8.1.10 Product Subclass 10: Lithium Acetylides
L. Brandsma and J. W. Zwikker

Synthesis of Product Subclass 10 .. 285

8.1.10.1 Method 1: Metalation with Lithium in Liquid Ammonia 287
8.1.10.2 Method 2: Metalation with Lithium Amide in Liquid Ammonia 287
8.1.10.2.1 Variation 1: Dehydrohalogenation with Lithium Amide 288
8.1.10.3 Method 3: Metalation with Lithium Dialkylamides .. 288
8.1.10.3.1 Variation 1: Elimination Reactions with Lithium Dialkylamides 289
8.1.10.4 Method 4: Metalation with Alkylithium Reagents ... 289
8.1.10.5 Method 5: Dehalogenation with Alkylithium Reagents 290
8.1.10.6 Method 6: Rearrangement of Terminally Lithiated Allenes 291
8.1.10.7 Methods 7: Additional Methods ... 291

Applications of Product Subclass 10 in Organic Synthesis ... 292

8.1.10.8 Method 8: Replacement of Lithium by Other Metals .. 292
8.1.10.9 Method 9: Formation of C—C Bonds ... 292
8.1.10.9.1 Variation 1: Reactions with Heterocumulenes ... 292
8.1.10.9.2 Variation 2: Acylation Reactions ... 294
8.1.10.9.3 Variation 3: Reactions with Aldehydes and Ketones 296
8.1.10.9.4 Variation 4: Reaction with Cyanogen Chloride .. 297
8.1.10.9.5 Variation 5: Reactions with Alkylating Agents .. 297
8.1.10.10 Method 10: Formation of Carbon—Heteroatom Bonds 299
8.1.10.10.1 Variation 1: Reaction with Halogenating Agents .. 299
8.1.10.10.2 Variation 2: Sulfonylation, Sulfynylation, and Related Reactions 301
8.1.10.10.3 Variation 3: Silylation and Stannylation ... 302

8.1.11 Product Subclass 11: Lithium Alkynolates, Alkynethiolates, and Alkyneselenolates
L. Brandsma and J. W. Zwikker

Synthesis of Product Subclass 11 .. 305

8.1.11.1 Method 1: Insertion of Elements ... 305
8.1.11.2 Method 2: Lithium Alkynolates by Cyclofragmentation of Heterocycles 306
8.1.11.3 Method 3: Lithium Alkynolates from 1,2,3-Thiadiazoles 307
8.1.11.4 Method 4: Lithium Alkynolates from α,α-Dibromo or α-Halo Ketones 307
8.1.11.5 Methods 5: Additional Methods 307
Applications of Product Subclass 11 in Organic Synthesis 308
8.1.11.6 Method 6: Functionalization of Lithium Alkynolates 308
8.1.11.7 Method 7: Functionalization of Lithium Alkynethiolates and Alkyneselenolates 309
8.1.11.8 Method 8: Protonation–Addition Reactions with Lithium Alkynolates 310
8.1.11.9 Method 9: Protonation–Addition Reactions with Lithium Alkynethiolates 310

8.1.12 Product Subclass 12: Allyllithium Compounds
L. Brandsma and J. W. Zwikker

8.1.12 Product Subclass 12: Allyllithium Compounds 313
Synthesis of Product Subclass 12 314
8.1.12.1 Method 1: Deprotonation 314
8.1.12.1.1 Variation 1: Deprotonation with Alkylithium Reagents 315
8.1.12.1.2 Variation 2: Deprotonation Using the Superbase Butyllithium–Potassium tert-Butoxide 317
8.1.12.1.3 Variation 3: Lithiation with Lithium Dialkylamides 320
8.1.12.2 Methods 2: Additional Methods 321
Applications of Product Subclass 12 in Organic Synthesis 321
8.1.12.3 Method 3: Replacement of Lithium by Other Metals 321
8.1.12.4 Method 4: Formation of C–C Bonds 322
8.1.12.4.1 Variation 1: Reactions with Heterocumulenes 322
8.1.12.4.2 Variation 2: Reactions with Alkylating Agents 323
8.1.12.4.3 Variation 3: Reactions with Carbonyl Compounds 324
8.1.12.5 Method 5: Formation of Carbon–Heteroatom Bonds 325

8.1.13 Product Subclass 13: Benzyllithium Compounds and (Lithiomethyl)hetarenes
J. N. Reed

8.1.13 Product Subclass 13: Benzyllithium Compounds and (Lithiomethyl)hetarenes 329
Synthesis of Product Subclass 13 329
8.1.13.1 Method 1: Deprotonation of Benzylic Carbons 329
8.1.13.1.1 Variation 1: Of Unactivated Benzylic Carbons 330
8.1.13.1.2 Variation 2: Of Benzylic Carbons Activated by an α-Substituent 331
8.1.13.1.3 Variation 3: Heteroatom-Facilitated Lateral Lithiation 336
8.1.13.2 Method 2: Heteroatom–Lithium Exchange 342
8.1.13.2.1 Variation 1: Tin–Lithium Exchange 342
8.1.13.2.2 Variation 2: Selenium–Lithium Exchange 345
8.1.13.3 Method 3: Reductive Lithiation 347
8.1.13.3.1 Variation 1: Using Lithium Metal and Naphthalene 347
8.1.13.3.2 Variation 2: Using Lithium Metal and 4,4′-Di-tert-butylbiphenyl 348
8.1.14 Method 4: Carbolithiation .. 350
8.1.14.1 Variation 1: Of Alkenes .. 350
8.1.14.2 Variation 2: Of Alkynes .. 353

8.1.14 Product Subclass 14: Aryllithium and Hetaryllithium Compounds
G. W. Gribble

8.1.14 Product Subclass 14: Aryllithium and Hetaryllithium Compounds 357

Synthesis of Product Subclass 14 .. 357

8.1.14.1 Method 1: Aryllithium Compounds by Halogen–Lithium Exchange 357
8.1.14.1.1 Variation 1: From Aryl Fluorides 358
8.1.14.1.2 Variation 2: From Aryl Chlorides 358
8.1.14.1.3 Variation 3: From Aryl Bromides 359
8.1.14.1.4 Variation 4: From Aryl Iodides ... 361
8.1.14.2 Method 2: Aryllithium Compounds by Directed ortho-Lithiation 361
8.1.14.2.1 Variation 1: Amine Directed ortho-Lithiation Groups 362
8.1.14.2.2 Variation 2: Amide Directed ortho-Lithiation Groups 364
8.1.14.2.3 Variation 3: Alkoxy Directed ortho-Lithiation Groups 365
8.1.14.2.4 Variation 4: Halogen Directed ortho-Lithiation Groups 367
8.1.14.2.5 Variation 5: Sulfur-Based Directed ortho-Lithiation Groups 369
8.1.14.2.6 Variation 6: Other Carbonyl Directed ortho-Lithiation Groups 370
8.1.14.2.7 Variation 7: Phosphorus Directed ortho-Lithiation Groups 371
8.1.14.2.8 Variation 8: Other Nitrogen Directed ortho-Lithiation Groups 372
8.1.14.2.9 Variation 9: Other Directed ortho-Lithiation Groups 373
8.1.14.3 Method 3: Furyllithium Compounds 374
8.1.14.3.1 Variation 1: By Direct Deprotonation 374
8.1.14.3.2 Variation 2: By Halogen–Lithium Exchange 375
8.1.14.3.3 Variation 3: By Directed Deprotonation 375
8.1.14.4 Method 4: Thiennyllithium Compounds 376
8.1.14.4.1 Variation 1: By Direct Deprotonation 376
8.1.14.4.2 Variation 2: By Halogen–Lithium Exchange 377
8.1.14.4.3 Variation 3: By Directed ortho-Lithiation 378
8.1.14.5 Method 5: Pyrrolyllithium Compounds 379
8.1.14.5.1 Variation 1: By Direct Deprotonation 379
8.1.14.5.2 Variation 2: By Halogen–Lithium Exchange 380
8.1.14.5.3 Variation 3: By Directed ortho-Lithiation 381
8.1.14.6 Method 6: Imidazolylithium Compounds 381
8.1.14.6.1 Variation 1: By Direct Deprotonation 381
8.1.14.6.2 Variation 2: By Halogen–Lithium Exchange 382
8.1.14.7 Method 7: Oxazolylithium and Isoxazolylithium Compounds 383
8.1.14.7.1 Variation 1: Lithiation of Oxazoles 383
8.1.14.7.2 Variation 2: Lithiation of Isoxazoles 384
8.1.14.8 Method 8: Pyrazolylithium Compounds 384
8.1.14.9 Method 9: Thiazolylithium Compounds 385
8.1.14.10 Method 10: Benzofuryllithium Compounds 386
8.1.14.11 Method 11: Benzothienyllithium Compounds 386
8.1.14.12.1 Variation 1: By Direct Deprotonation 387
8.1.14.12.2 Variation 2: By Halogen–Lithium Exchange 389
8.1.14.13.1 Variation 1: By Halogen–Lithium Exchange 393
8.1.14.13.2 Variation 2: By Directed ortho-Lithiation 395
8.1.14.15 Method 15: Diazinylithium, Benzodiazinylithium, and Other Azinylithium Compounds .. 399
8.1.14.15.1 Variation 1: Pyrazinylithium Compounds 399
8.1.14.15.2 Variation 2: Pyrimidyllithium Compounds 400
8.1.14.15.3 Variation 3: Pyridazinylithium Compounds 401
8.1.14.15.4 Variation 4: Benzodiazinylithium Compounds 402
8.1.14.15.5 Variation 5: Other Azinylithium Compounds 402
8.1.14.16 Method 16: Other Azolylithium Compounds 403
8.1.14.17 Method 17: Dibenzo-Fused Hetaryllithium Compounds 404
8.1.14.17.1 Variation 1: Dibenzofuryllithium Compounds 404
8.1.14.17.2 Variation 2: Dibenzothienyllithium Compounds 405
8.1.14.17.3 Variation 3: Carbazolylithium Compounds 405
8.1.14.17.5 Variation 5: Thianthrenyllithium Compounds 407
8.1.14.17.6 Variation 6: Phenothiazinylithium Compounds 407
8.1.14.17.8 Variation 8: Pyrido[3,4-b]indolylithium Compounds 408
Applications of Product Subclass 14 in Organic Synthesis 408
8.1.14.18 Method 18: Aryne Formation .. 409
8.1.14.21 Method 21: Aryllithium Compounds in Ring Formation and Heterocycle Construction ... 412
8.1.14.22 Method 22: Natural Product Synthesis 413

8.1.15 Product Subclass 15: α-Lithiocarboxylic Acids and Related Lithium Compounds (Including Enolates)
J. R. Green

8.1.15 Product Subclass 15: α-Lithiocarboxylic Acids and Related Lithium Compounds (Including Enolates) .. 427
Synthesis of Product Subclass 15 ... 427
8.1.15.1 Method 1: Enolate Generation by Direct Deprotonation of Alkanoic Acid Derivatives ... 427
8.1.15.2 Method 2: Enolate Generation by Nucleophilic Attack on Ketene Acetals ... 430
8.1.15.3 Method 3: Enolate Generation by Conjugate Addition or Reduction ... 430
8.1.15.4 Method 4: Enolate Generation by Reduction or Metal–Halogen Exchange of α-Substituted Derivatives ... 432
Applications of Product Subclass 15 in Organic Synthesis 434
8.1.5 Method 5: Electrophile Incorporation: Protonation (C–Li → C–H) 434
8.1.6 Method 6: Electrophile Incorporation: Alkylation (C–Li → C–C) 436
8.1.6.1 Variation 1: Arylation and Vinylation 441
8.1.7 Method 7: Electrophile Incorporation: Heteroatom Incorporation (C–Li → C–X) ... 444
8.1.7.1 Variation 1: Silylation ... 444
8.1.7.2 Variation 2: Hydroxylation ... 446
8.1.7.3 Variation 3: Amination .. 448
8.1.7.4 Variation 4: Halogenation ... 450
8.1.8 Method 8: Electrophile Incorporation: Reaction with Carbonyl Compounds and Imines (C–Li → C–C–X) 452
8.1.9 Method 9: Electrophile Incorporation: Epoxides and Aziridines (C–Li → C–C–C–X) .. 458
8.1.10 Method 10: Electrophile Incorporation: Coupling Reactions; Enolate Dimerization (C–Li → C–C–C=)X) 461
8.1.11 Method 11: Electrophile Incorporation: Reaction with Carboxy Compounds (C–Li → C–C=)X) ... 463
8.1.12 Method 12: Electrophile Incorporation: Michael Addition (C–Li → C–C–C–C=)X) .. 468
8.1.13 Method 13: Enolate Rearrangements: Claisen and Related Rearrangements ... 473
8.1.14 Method 14: Enolate Rearrangements: [2,3]-Wittig Rearrangements of Dienolates ... 477
8.1.15 Method 15: Enolate Rearrangements: Reactions with Nucleophiles: Formation of Ketones ... 477

8.1.16 Product Subclass 16: β-Lithiocarboxylic Acids and Related Lithium Compounds
D. Caine

8.1.16 Product Subclass 16: β-Lithiocarboxylic Acids and Related Lithium Compounds ... 487

8.1.16.1 Method 1: Arene-Catalyzed Reductive Lithiations of β-Halogenated Carboxylates and 3-Arylpropenoates 487
8.1.16.2 Method 2: Tin–Lithium Exchange of β-Stannyl Carboxamides 490
8.1.16.3 Method 3: Hydrogen–Lithium Exchange of Carboxylates and Carboxamides Containing Carbanion-Stabilizing Groups at the β-Position 491
8.1.16.3.1 Variation 1: Hydrogen–Lithium Exchange of β-Phenylsulfonylated Ortho Esters .. 495
8.1.16.4 Method 4: Addition of Alkyl lithium Reagents to Lithiated Cinnamic Acids and Cinnamyl Amides 496
8.1.17
Product Subclass 17: α-Lithio Aldehydes, α-Lithio Ketones, and Related Compounds
D. Caine

Synthesis of Product Subclass 17 ... 499
8.1.17.1 Preformed Lithium Enolates of Carbonyl Compounds 502
8.1.17.1.1 Method 1: Deprotonation of Carbonyl Compounds with
Lithium Dialkylamides and Other Strong Bases 502
8.1.17.1.1.1 Variation 1: Regioselective Synthesis of Kinetic (Less Substituted) Enolates
of α-Substituted Unsymmetrical Saturated Ketones 504
8.1.17.1.1.2 Variation 2: Regioselective Synthesis of Thermodynamic Enolates of
α-Substituted Unsymmetrical Saturated Ketones 509
8.1.17.1.1.3 Variation 3: Kinetic and Thermodynamic Lithium Enolates of
Unsymmetrical α- and α′-Dimethylene Ketones 510
8.1.17.1.1.4 Variation 4: Stereoselective Synthesis of E- or Z-Isomers of
Acyclic Ketone Lithium Enolates ... 512
8.1.17.1.1.5 Variation 5: Enantioselective Synthesis of Lithium Enolates by
Deprotonation of Prochiral Ketones with Chiral,
Nonracemic Lithium Amide Bases ... 516
8.1.17.1.2 Method 2: Regio- and Stereoselective Formation of Lithium Enolates
by Indirect Methods ... 522
8.1.17.1.2.1 Variation 1: Lithium/Liquid Ammonia Reduction of
α,β-Unsaturated Ketones ... 522
8.1.17.1.2.2 Variation 2: Lithium/Liquid Ammonia Reduction of Ketones with
Leaving Groups at the α-Position .. 524
8.1.17.1.2.3 Variation 3: Conjugate Addition of Lithium Dialkylcuprate Reagents to
α,β-Unsaturated Ketones ... 525
8.1.17.1.2.4 Variation 4: Generation of Lithium Enolates from Enol Derivatives of
Carbonyl Compounds ... 526
8.1.17.1.2.5 Variation 5: Generation of Lithium Enolates by Miscellaneous Methods 527
8.1.17.1.3 Method 3: Alkylations of Preformed Lithium Enolates 527
8.1.17.1.3.1 Variation 1: Intermolecular Alkylations 528
8.1.17.1.3.2 Variation 2: Stereochemistry of Intermolecular Alkylation of
Lithium Enolates ... 532
8.1.17.1.3.3 Variation 3: Intramolecular Alkylations 537
8.1.17.1.4 Method 4: Directed Aldol Reactions of Preformed Lithium Enolates 538
8.1.17.1.4.1 Variation 1: Aldol Reactions of Lithium Z-Enolates 540
8.1.17.1.4.2 Variation 2: Diastereofacial Selectivity of Aldol Reactions of Chiral,
Nonracemic Lithium Z-Enolates .. 541
8.1.17.1.4.3 Variation 3: Aldol Reactions of Lithium E-Enolates 542
8.1.17.1.4.4 Variation 4: Aldol Reactions of Lithium Enolates with Chiral Aldehydes .. 543
8.1.17.1.4.5 Variation 5: Asymmetric Aldol Reactions Using Chiral Lithium Amide Bases 546
8.1.17.1.4.6 Variation 6: Reactions of Preformed Lithium Enolates with
Preformed Iminium Salts .. 548
<table>
<thead>
<tr>
<th>Section</th>
<th>Method</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1.17.1.5</td>
<td>Method 5:</td>
<td>Michael Reactions of Preformed Lithium Enolates</td>
<td>548</td>
</tr>
<tr>
<td>8.1.17.1.5.1</td>
<td>Variation 1:</td>
<td>Michael Reactions of Preformed Lithium E- and Z-Enolates with α,β-Unsaturated Ketones and Esters</td>
<td>549</td>
</tr>
<tr>
<td>8.1.17.1.5.2</td>
<td>Variation 2:</td>
<td>Intermolecular Reactions of Preformed Lithium Enolates with Various Michael Acceptors</td>
<td>551</td>
</tr>
<tr>
<td>8.1.17.1.5.3</td>
<td>Variation 3:</td>
<td>Sequential Michael Reactions of Preformed Lithium Cross-Conjugated Dienolates</td>
<td>553</td>
</tr>
<tr>
<td>8.1.17.1.6</td>
<td>Method 6:</td>
<td>C-Acylation Reactions of Preformed Lithium Enolates</td>
<td>555</td>
</tr>
<tr>
<td>8.1.17.1.7</td>
<td>Method 7:</td>
<td>Reactions of Lithium Enolates at Carbon with Heteroatom Electrophiles</td>
<td>559</td>
</tr>
<tr>
<td>8.1.17.1.7.1</td>
<td>Variation 1:</td>
<td>C-Hydroxylation Reactions</td>
<td>559</td>
</tr>
<tr>
<td>8.1.17.1.7.2</td>
<td>Variation 2:</td>
<td>Sulfenylation, Selenenylation, and Halogenation Reactions</td>
<td>562</td>
</tr>
<tr>
<td>8.1.17.1.8</td>
<td>Method 8:</td>
<td>Diastereo- and Enantioselective Kinetic Protonation of Lithium Enolates</td>
<td>567</td>
</tr>
<tr>
<td>8.1.17.1.8.1</td>
<td>Variation 1:</td>
<td>Diastereoselective Protonation of Chiral Enolates</td>
<td>567</td>
</tr>
<tr>
<td>8.1.17.1.8.2</td>
<td>Variation 2:</td>
<td>Enantioselective Protonation of Achiral Lithium Enolates</td>
<td>569</td>
</tr>
<tr>
<td>8.1.17.1.8.3</td>
<td>Variation 3:</td>
<td>Catalytic Enantioselective Protonation of Achiral Lithium Enolates</td>
<td>571</td>
</tr>
<tr>
<td>8.1.17.1.9</td>
<td>Method 9:</td>
<td>Transmetalation of Lithium Enolates</td>
<td>572</td>
</tr>
<tr>
<td>8.1.17.1.9.1</td>
<td>Variation 1:</td>
<td>Lithium–Main Group Metal Exchange</td>
<td>573</td>
</tr>
<tr>
<td>8.1.17.1.9.2</td>
<td>Variation 2:</td>
<td>Lithium–Transition Metal Exchange</td>
<td>574</td>
</tr>
<tr>
<td>8.1.17.2</td>
<td>Dilithium and Mixed Lithium/Sodium Dienolates of β-Dicarbonyl Compounds</td>
<td>574</td>
<td></td>
</tr>
<tr>
<td>8.1.17.2.1</td>
<td>Method 1:</td>
<td>Preparation of Dilithium and Lithium/Sodium Dienolates of β-Dicarbonyl Compounds</td>
<td>575</td>
</tr>
<tr>
<td>8.1.17.2.2</td>
<td>Method 2:</td>
<td>γ-Alkylation of Dilithium or Lithium/Sodium Dienolates of β-Dicarbonyl Compounds</td>
<td>577</td>
</tr>
<tr>
<td>8.1.17.2.3</td>
<td>Method 3:</td>
<td>Aldol, Acylation, and Michael Reactions of Dilithium and Lithium/Sodium Dienolates of β-Dicarbonyl Compounds</td>
<td>580</td>
</tr>
<tr>
<td>8.1.17.3</td>
<td>Lithium Azaenolates</td>
<td>582</td>
<td></td>
</tr>
<tr>
<td>8.1.17.3.1</td>
<td>Method 1:</td>
<td>Deprotonations of Aldimines and Ketimines with Lithium Bases</td>
<td>583</td>
</tr>
<tr>
<td>8.1.17.3.2</td>
<td>Method 2:</td>
<td>Deprotonation of Hydrazones with Lithium Bases</td>
<td>586</td>
</tr>
<tr>
<td>8.1.17.3.3</td>
<td>Method 3:</td>
<td>Deprotonation of Oximes and Oxime Ethers with Alkyllithium Reagents</td>
<td>588</td>
</tr>
<tr>
<td>8.1.17.3.4</td>
<td>Method 4:</td>
<td>Special Methods for Synthesis of Lithium Azaenolates</td>
<td>589</td>
</tr>
<tr>
<td>8.1.17.3.5</td>
<td>Method 5:</td>
<td>C-Alkylation of Lithium Azaenolates</td>
<td>590</td>
</tr>
<tr>
<td>8.1.17.3.5.1</td>
<td>Variation 1:</td>
<td>Alkylation of Azaenolates of Imines</td>
<td>590</td>
</tr>
<tr>
<td>8.1.17.3.5.2</td>
<td>Variation 2:</td>
<td>Stereoselective Alkylation of Azaenolates of Imines</td>
<td>591</td>
</tr>
<tr>
<td>8.1.17.3.5.3</td>
<td>Variation 3:</td>
<td>Alkylation of Azaenolates of Hydrazones</td>
<td>594</td>
</tr>
<tr>
<td>8.1.17.3.6</td>
<td>Method 6:</td>
<td>Aldol Reactions of Lithium Azaenolates</td>
<td>597</td>
</tr>
<tr>
<td>8.1.17.3.6.1</td>
<td>Variation 1:</td>
<td>Aldol Reactions of Lithium Azaenolates of Imines</td>
<td>597</td>
</tr>
<tr>
<td>8.1.17.3.6.2</td>
<td>Variation 2:</td>
<td>Aldol Reactions of Lithium Azaenolates of Hydrazones</td>
<td>598</td>
</tr>
<tr>
<td>8.1.17.3.7</td>
<td>Method 7:</td>
<td>Acylation of Lithium Azaenolates</td>
<td>600</td>
</tr>
<tr>
<td>8.1.17.3.8</td>
<td>Method 8:</td>
<td>Michael Additions of Lithium Azaenolates</td>
<td>601</td>
</tr>
<tr>
<td>8.1.17.3.9</td>
<td>Method 9:</td>
<td>Reactions of Lithium Azaenolates with Selected Heteroatom Electrophiles</td>
<td>604</td>
</tr>
</tbody>
</table>
8.1.18 Product Subclass 18: β-Lithio Aldehydes, β-Lithio Ketones, and Related Compounds
D. Caine

8.1.18 Product Subclass 18: β-Lithio Aldehydes, β-Lithio Ketones, and Related Compounds ... 619
Synthesis of Product Subclass 18 619
8.1.18.1 Method 1: Halogen–Lithium Exchange 619
8.1.18.2 Method 2: Reductive Lithiation of Halides and Phenyl Sulfides with Lithium Arene Radical Anions 622
8.1.18.3 Method 3: Lithium Homoenolate Equivalents by Tellurium–Lithium Exchange .. 625
8.1.18.4 Method 4: α′- or α-Enolate-Protected Lithium Homoenolates: Dianionic Reagents .. 626
8.1.18.4.1 Variation 1: Preparation of β-Lithio Lithium α′-Enolates 626
8.1.18.4.2 Variation 2: Preparation of β-Lithio Lithium α-Enolates 628
8.1.18.5 Method 5: Carbolithiation of Protected α,β-Unsaturated Aldehydes 630
8.1.18.6 Method 6: Hydrogen–Lithium Exchange of Acetals and Ketals Containing Carbanion-Stabilizing Groups at the β-Position 631

8.1.19 Product Subclass 19: sp3-Hybridized α-Lithio Ethers and O-Carbamates
S. MacNeil

8.1.19 Product Subclass 19: sp3-Hybridized α-Lithio Ethers and O-Carbamates 637
Synthesis of Product Subclass 19 .. 637
8.1.19.1 Method 1: Substitution of Hydrogen 637
8.1.19.1.1 Variation 1: Stereospecific Deprotonation at Chiral, Nonracemic Centers 637
8.1.19.1.2 Variation 2: Diastereoselective Deprotonation by Substrate Control 638
8.1.19.1.3 Variation 3: Enantioselective Deprotonation/Kinetic Resolution Induced by Chiral Ligands .. 639
8.1.19.1.4 Variation 4: Chiral Base Induced Deprotonation 642
8.1.19.2 Method 2: Substitution of Tin .. 642
8.1.19.3 Method 3: Reductive Lithiation ... 643
8.1.19.3.1 Variation 1: Reductive Lithiation of Cl—C Bonds 643
8.1.19.3.2 Variation 2: Reductive Lithiation of S—C Bonds 644
8.1.19.3.3 Variation 3: Reductive Lithiation of C—C Bonds 645
8.1.19.4 Method 4: Carbolithiation .. 646
Applications of Product Subclass 19 in Organic Synthesis 647
8.1.19.5 Method 5: Electrophilic Quench of α-Lithio Oxygen Compounds 647
8.1.19.5.1 Variation 1: α-Lithio Oxygen Compounds as Homoenolate Equivalents 647
8.1.19.6 Method 6: Rearrangements of α-Lithio Oxygen Compounds 649
8.1.19.6.1 Variation 1: [1,2]-Wittig Rearrangements 649
8.1.19.6.2 Variation 2: [2,3]-Wittig Rearrangements 650
8.1.19.6.3 Variation 3: Rearrangements of α-Lithio Epoxides 653
8.1.20

Product Subclass 20: α-Lithio Sulfoxides
T. Durst and M. Khodaei

8.1.20

Product Subclass 20: α-Lithio Sulfoxides
Synthesis of Product Subclass 20 .. 661

8.1.20.1

Method 1: Lithiation of Sulfoxides
Applications of Product Subclass 20 in Organic Synthesis 661

8.1.20.2

Method 2: Alkylation of α-Lithio Sulfoxides
666

8.1.20.3

Method 3: Reaction with Aldehydes and Ketones
667

8.1.20.4

Method 4: Reaction with Imines
671

8.1.20.5

Method 5: Acylation of α-Lithio Sulfoxides
672

8.1.20.6

Method 6: Michael Addition
673

8.1.21

Product Subclass 21: α-Lithioamines
R. E. Gawley, S. O’Connor, and R. Klein

8.1.21

Product Subclass 21: α-Lithioamines
Synthesis and Applications of Product Subclass 21 677

8.1.21.1

Synthesis and Applications of Unstabilized α-Lithioamines 682

8.1.21.1.1

Method 1: Deprotonation and Electrophilic Substitution 683

8.1.21.1.2

Method 2: Transmetalation and Electrophilic Substitution
684

8.1.21.1.2.1

Variation 1: Synthesis of a Horner–Wittig Reagent
684

8.1.21.1.2.2

Variation 2: Addition of 2-Lithio-3-methyl-1-tritylaziridine to
Benzaldehyde ... 685

8.1.21.1.2.3

Variation 3: Electrophilic Substitutions of 2-Lithio-1-methylpyrrolidine
and 2-Lithio-1-methylpiperidine (Racemic)
685

8.1.21.1.2.4

Variation 4: Electrophilic Substitution of 2-Lithiopyrrolidine and
2-Lithiopiperidine (Scalemic)
687

8.1.21.1.2.5

Variation 5: Transmetalation and Electrophilic Substitution of
a 1-Allyl-2-lithiopyrrolidine
688

8.1.21.1.2.6

Variation 6: Transmetalation and Enantioselective Electrophilic
Substitution by Dynamic Thermodynamic Resolution
689

8.1.21.1.3

Method 3: Transmetalation and Sigmatropic Rearrangement
690

8.1.21.1.4

Method 4: Transmetalation and Anionic Cyclization
692

8.1.21.1.4.1

Variation 1: Synthesis of Pyrrolidines and Bicyclic Amines
692

8.1.21.1.4.2

Variation 2: Synthesis of (+)-Pseudoheliotridane via
a Scalemic Organolithium 693

8.1.21.1.4.3

Variation 3: Tandem Cyclization/Ring Opening
694

8.1.21.1.4.4

Variation 4: Cyclizations onto Naphthyl Dihydrooxazoles
694

8.1.21.1.4.5

Variation 5: Intramolecular Michael Addition onto an Indole Ester
695

8.1.21.1.5

Method 5: Reductive Lithiation
696

8.1.21.1.5.1

Variation 1: Reduction and Electrophilic Substitution of
α-Sulfinyl Aziridines
696

8.1.21.1.5.2

Variation 2: Sulfide Reduction and Anionic Cyclization
697

8.1.21.2

Synthesis and Applications of Dipole-Stabilized α-Lithioamines
697
8.1.21.2.1 Method 1: Deprotonation and Electrophilic Substitution 699
8.1.21.2.1.1 Variation 1: Deprotonation of a Piperidine tert-Butylformamidine, Transmetalation to Copper, and Electrophilic Substitution 699
8.1.21.2.1.2 Variation 2: Deprotonation of N-tert-Butoxy carbonylpyrrolidine and Electrophilic Substitution with Tributyltin Chloride 700
8.1.21.2.1.3 Variation 3: Deprotonation of N-tert-Butoxy carbonyl-N-methylisobutylamine and Addition to Benzaldehyde 701
8.1.21.2.1.4 Variation 4: Preferential Deprotonation of N-tert-Butoxy carbonyl-N-ethylcyclopropanamine at the Cyclopropyl Methine over the Ethyl Group 701
8.1.21.2.1.5 Variation 5: Ring Contraction of 1-tert-Butoxy carbonyl-4-chloro-2-lithiopiperidine to a Cyclopropyl Intermediate, Followed by Deprotonation and Electrophilic Substitution 702
8.1.21.2.1.6 Variation 6: Deprotonation and Palladium-Catalyzed Arylation 703
8.1.21.2.1.7 Variation 7: Asymmetric Deprotonation Using a Chiral Base, and Addition to Benzophenone 704
8.1.21.2.1.8 Variation 8: Asymmetric Deprotonation Using a Chiral Base: Transmetalation with Copper, and Vinylation 705
8.1.21.2.1.9 Variation 9: Regio- and Stereoselective Deprotonation and Electrophilic Substitution of Imidazolidines 706
8.1.21.2.2 Method 2: Transmetalation and Electrophilic Substitution 706
8.1.21.2.2.1 Variation 1: Transmetalation from Tin to Lithium and then Copper, with 1,4-Addition 706
8.1.21.2.2.2 Variation 2: Transmetalation from Tin to Lithium: Lithiation at Sites Not Available by Deprotonation 707
8.1.21.2.2.3 Variation 3: Transmetalation of Organostannanes and Asymmetric Transformation of the First Kind: Synthesis of 11C-Enriched l-Amino Acids 708
8.1.21.2.2.4 Variation 4: Transmetalation of á-Stannyl carbamates and Addition to Aldehydes; Synthon of a Primary á-Lithioamine 710
8.1.21.2.3 Method 3: Transmetalation of Stannyl Ureas with 1,2-Acyl Migration 711
8.1.21.2.4 Method 4: Reductive Lithiation of Aminonitriles to Tertiary á-Lithioamines and Electrophilic Substitution 711
8.1.21.3 Synthesis and Applications of Mesomerically Stabilized á-Lithioamines 712
8.1.21.3.1 Method 1: Deprotonation of a Chiral Allylic Amine Followed by Stereoselective Alkylation and Hydrolysis (Aldehyde Homoenolate Synthon) 713
8.1.21.3.2 Method 2: Transmetalation of a Chiral Allylic Amine Followed by Stereoselective Alkylation and Hydrolysis (Ketone Homoenolate Synthon) 714
8.1.21.3.3 Method 3: Transmetalation of N-(Tributylstannyl)methanimines Followed by Cycloaddition 715
8.1.21.4 Synthesis and Applications of Dipole- and Mesomerically Stabilized á-Lithioamines 716
8.1.21.4.1 Method 1: Deprotonation of Achiral Substrates with an Achiral Base 717
8.1.21.4.1.1 Variation 1: Preferential Deprotonation of Benzylc Protons with Spontaneous Intramolecular Cyclization 717
8.1.21.4.1.2 Variation 2: Dilithiation of \(N\text{-}\)tert-Butoxycarbonylbenzylamine and 1,2-Addition to Acrolein ... 717

8.1.21.4.1.3 Variation 3: Dilithiation of tert-Butyl Allylcarbamate, Transmetalation to Zinc, and Addition to Aldehydes and Ketones .. 718

8.1.21.4.1.4 Variation 4: Deprotonation of Tetrahydroisoquinoline Pivalamides, Transmetalation to Magnesium, and Addition to Aldehyde 719

8.1.21.4.1.5 Variation 5: Deprotonation of \(N\text{-}\)Benzyln-\(N\text{-}(\text{tert-butoxycarbonyl})\)-4-methoxyaniline, Addition to Imines and Spontaneous Cyclization to Imidazolidinones .. 720

8.1.21.4.1.6 Variation 6: Regioselective Deprotonation and Aza-[2,3]-Wittig Rearrangement ... 721

8.1.21.4.2 Method 2: Deprotonation of Chiral Substrates ... 721

8.1.21.4.2.1 Variation 1: Deprotonation and Alkylation of \(N\text{-}\)Benzyloxazolidinones ... 722

8.1.21.4.2.2 Variation 2: Deprotonation of Chiral Tetrahydroisoquinolinyl Formamidine: Asymmetric Synthesis of Isoquinoline Alkaloids 723

8.1.21.4.2.3 Variation 3: Deprotonation of Hexahydropyrido[3,4-\(b\)]indole Formamidines: Asymmetric Synthesis of Indole Alkaloids 724

8.1.21.4.2.4 Variation 4: Deprotonation of Dihydrooxazole-Substituted Tetrahydroisoquinolines: Asymmetric Synthesis of Isoquinolines and Morphinan ... 725

8.1.21.4.2.5 Variation 5: Deprotonation of Chiral Tetrahydroisoquinolines, Transmetalation to Magnesium, and Addition to Aldehydes: Asymmetric Synthesis of Phthalideisoquinoline Alkaloids 726

8.1.21.4.2.6 Variation 6: \(\alpha,\alpha\text{-Dialkylation of Dihydroisoindole} ... 727

8.1.21.4.2.7 Variation 7: \(C_2\text{-Symmetric Dialkylation of Chiral Formamidinyl Binaphthoaepines} ... 728

8.1.21.4.3 Method 3: Deprotonation of Achiral Substrates with Chiral Base ... 729

8.1.21.4.3.1 Variation 1: Asymmetric Regioselective Deprotonation of Allylic and Benzylic Positions over Alkyl Positions in tert-Butyl Carbamates ... 730

8.1.21.4.3.2 Variation 2: Asymmetric Deprotonation of \(N\text{-}\)Benzyln-\(N\text{-}\)tert-butoxycarbonyl-4-methoxyaniline ... 731

8.1.21.4.3.3 Variation 3: Asymmetric Deprotonation of \(N\text{-}\)Benzyln-\(N\text{-}\)tert-butoxycarbonyl-4-methoxyaniline and 1,4-Addition to Enones ... 732

8.1.21.4.3.4 Variation 4: Deprotonation of \(N\text{-}\)tert-Butoxycarbonyl-4-methoxy-\(N\text{-}[2(E)-3-phenylprop-2-eny]aniline and Electrophilic Substitution: Synthesis of Either \(R\) - or \(S\)-Homoenolate Synths ... 733

8.1.21.4.3.5 Variation 5: Electrophilic Substitution of Aldehyde Homoenolate Synths ... 734

8.1.21.4.3.6 Variation 6: Asymmetric Deprotonation, Transmetalation to Aluminum or Titanium, and Addition to Aldehydes ... 735

8.1.21.4.3.7 Variation 7: Asymmetric Deprotonation and Reverse Aza-Brook Rearrangement ... 736

8.1.21.4.3.8 Variation 8: Asymmetric Deprotonation and Dearomatizing Cyclization of \(\alpha\text{-Lithio Amides} ... 737

8.1.21.4.3.9 Variation 9: Asymmetric Deprotonation and Alkylation of a Tricarbonylchromium–Benzyl Imine Complex ... 738
8.1.21.5 Synthesis and Applications of Dipole- and Heteroatom-Stabilized α-Lithioamines

8.1.21.5.1 Method 1: Oxygen- and tert-Butoxycarbonyl-Stabilized α-Lithioamines

8.1.21.5.2 Method 2: Sulfur- and Dipole-Stabilized α-Lithioamines

8.1.21.5.2.1 Variation 1: Asymmetric Corey–Seebach Synthesis of α-Hydroxyaldehydes Using a Diphenylvalinol-Derived Oxazolidinone

8.1.21.5.2.2 Variation 2: Asymmetric Corey–Seebach Synthesis of α-Hydroxyaldehydes Using a Camphor-Derived Oxazolidinone

8.1.21.5.3 Method 3: Nitrogen- and tert-Butoxycarbonyl-Stabilized α-Lithioamines

8.1.21.6 Synthesis and Applications of Non-Enolate Nitrogen Ylides

8.1.21.6.1 Method 1: Lewis Acid Activation of an Amine

8.1.21.6.1.1 Variation 1: Activation of an α-Aminoorganostannane with Boron Trifluoride

8.1.21.6.1.2 Variation 2: Activation of a Cyclic Amine with Boron Trifluoride, Deprotonation, Double Transmetalation, and Alkylation

8.1.21.6.1.3 Variation 3: Activation of an Aziridine with Borane, Deprotonation and Alkylation

8.1.21.6.1.4 Variation 4: Activation of a Benzylc Amine or Tetrahydroisoquinoline with Borane, Deprotonation and Alkylation

8.1.21.6.1.5 Variation 5: Activation of Dihydroisoindole with Borane: Group-Selective Deprotonation with a Chiral Base, and Electrophilic Substitution

8.1.21.6.2 Method 2: Sigmatropic Rearrangements

8.1.21.6.2.1 Variation 1: Transmetalation of a 2-Tributylstannylammonium Ion and [2,3]-Rearrangement

8.1.21.6.2.2 Variation 2: Activation and [2,3]-Rearrangement of N-Allyltetrahydroisoquinoline

8.1.22 Product Subclass 22: Lithium Nitronates

8.1.22.1 Method 1: Deprotonation of Nitroalkanes

8.1.22.2 Method 2: Double Deprotonation of Nitroalkanes

8.1.22.3 Method 3: Addition of Nucleophiles to Nitroalkenes

Applications of Product Subclass 22 in Organic Synthesis

8.1.22.4 Method 4: Nitroaldol Reaction

8.1.22.4.1 Variation 1: Nitro-Mannich Reaction

8.1.22.4.2 Variation 2: Michael Addition

8.1.22.5 Method 5: Acylation of Nitroalkanes

8.1.22.6 Method 6: Alkylation of Nitroalkanes

8.1.22.6.1 Variation 1: Alkylation via Radicals

8.1.22.6.2 Variation 2: Transition-Metal-Catalyzed Alkylation of Nitroalkanes

8.1.22.6.3 Variation 3: Arylation of Nitro Compounds

8.1.22.7 Method 7: Introduction of Heteroatoms into Nitroalkanes
8.1.23 Product Subclass 23: γ-Lithio Ethers and Related Compounds

D. Caine

Synthesis of Product Subclass 23 .. 775

8.1.23.1 Method 1: Reductive Lithiation of Halide and Phenyl Sulfide Derivatives Containing Neutral (Uncharged) Alkoxy and Other Substituents at the γ-Position .. 776

8.1.23.1.1 Variation 1: Reductive Lithiation with Lithium Metal 776

8.1.23.1.2 Variation 2: Reductive Lithiations with Lithium Arene Radical Anions 777

8.1.23.2 Method 2: Reductive Lithiation of γ-Oxido and Related γ-Amido Halides and Phenyl Sulfides .. 779

8.1.23.2.1 Variation 1: Reductive Lithiation with Lithium Metal 780

8.1.23.2.2 Variation 2: Reductive Lithiation with Lithium Arene Radical Anions 781

8.1.23.3 Method 3: Halogen–Lithium Exchange 783

8.1.23.4 Method 4: Metal–Lithium Exchange 784

8.1.23.4.1 Variation 1: Selenium–Lithium Exchange 784

8.1.23.4.2 Variation 2: Tin–Lithium Exchange 785

8.1.23.5 Method 5: Hydrogen–Lithium Exchange 787

8.1.23.6 Method 6: Reductive Cleavage of Four-Membered Heterocycles by Lithium Arene Radical Anions .. 788

8.1.23.7 Method 7: Addition of Organolithium Reagents to Allylic Systems 790

8.1.24 Product Subclass 24: Carbamoyllithium and Trihalomethyllithium Compounds

C. Metallinos

Synthesis of Product Subclass 24 .. 795

8.1.24.1 Carbamoyllithium Compounds .. 795

8.1.24.1.1 Method 1: Deprotonation of Formyl Hydrogen in Formamides 796

8.1.24.1.1.1 Variation 1: Using Lithium Diisopropylamide 796

8.1.24.1.1.2 Variation 2: Using tert-Butyllithium 796

8.1.24.1.2 Method 2: Reaction of Lithium Amide Bases and Carbon Monoxide 797

8.1.24.1.2.1 Variation 1: Using Lithium Amide Bases and Carbon Monoxide 797

8.1.24.1.2.2 Variation 2: Using Lithium Bis(carbamoyl)cuprates and Carbon Monoxide 798

8.1.24.1.3 Method 3: Transmetalation of Carbamoylmercury and Carbamoyltellurium Reagents .. 799

8.1.24.1.3.1 Variation 1: Using Bis(N,N-dialkylicarbamoyl)mercury Reagents 799

8.1.24.1.3.2 Variation 2: Using N,N-Dialkylcarbamoyltellurium Reagents 800

8.1.24.2 Trihalomethyllithium Compounds .. 800

8.1.24.2.1 Method 1: Deprotonation of Chloroform 801
8.1.25 Product Subclass 25: Tris(organosulfanyl)- and Tris(organoselanyl)-methyl lithium Compounds
C. Nájera and M. Yus

8.1.25 Synthesis and Applications of Product Subclass 25 805

8.1.25.1 Method 1: Alkylation Reactions of Tris(methylsulfanyl)- and Tris(phenylsulfanyl)methyl lithium 805

8.1.25.1.1 Variation 1: Reaction with Carbonyl Compounds 807

8.1.25.1.2 Variation 2: Michael-Type Reactions 808

8.1.25.2 Method 2: Synthesis of Other Sulfur-Containing Triheterosubstituted Methyl lithium Compounds 810

8.1.25.3 Method 3: Synthesis of Tris(methylselanyl)- and Tris(phenylselanyl)methyl lithium 810

8.1.26 Product Subclass 26: Bis(organosulfanyl)- and Bis(organoselanyl)methyl lithium Compounds
C. Nájera and M. Yus

8.1.26 Synthesis and Applications of Product Subclass 26 813

8.1.26.1 Method 1: Synthesis of Bis(methylsulfanyl)methyl lithium 813

8.1.26.2 Method 2: Synthesis of 1,3-Dithian-2-yllithium and Reaction with Alkyl Halides 814

8.1.26.2.1 Variation 1: Reaction with Epoxides 815

8.1.26.2.2 Variation 2: Reaction with Carbonyl Compounds 817

8.1.26.2.3 Variation 3: Michael-Type Reactions 818

8.1.26.2.4 Variation 4: Acylation Reactions 819

8.1.26.3 Method 3: Synthesis and Alkylation Reactions of Bis(phenylsulfanyl)-methyl lithium 819

8.1.26.3.1 Variation 1: Reaction with Carbonyl Compounds and Their α,β-Unsaturated Derivatives 820

8.1.26.4 Method 4: Synthesis of Other Cyclic 2-Lithio Dithioacetals 821

8.1.26.5 Method 5: Synthesis of α-Lithio α-Organo sulfanyl Ethers 822

8.1.26.5.1 Variation 1: Methoxy(phenylsulfanyl)methyl lithium 822

8.1.26.5.2 Variation 2: 1,3-Oxathian-2-yllithium 823

8.1.26.6 Method 6: Synthesis of α-Lithio α-Arylsulfanyl Ethers 825

8.1.26.6.1 Variation 1: 2-(Arylsulfonyl)oxirane-2-ylithium 826

8.1.26.6.2 Variation 2: 2-(Arylsulfonyl)tetrahydro pyran-2-yllithiums 827

8.1.26.7 Method 7: Synthesis and Alkylation Reactions of α-Lithio α-Organo sulfanyl and α-Lithio α-Organo sulfynyl Sulfoxides 828

8.1.26.7.1 Variation 1: Reaction with Carbonyl Compounds and Their α,β-Unsaturated Derivatives 830

8.1.26.8 Method 8: Synthesis and Reactions of α-Lithio α-Organo sulfanyl Sulfones 831

8.1.27 Product Subclass 27: α-Lithio Vinyl Ethers
R. W. Friesen and C. F. Sturino

8.1.27 Product Subclass 27: α-Lithio Vinyl Ethers .. 841

8.1.27 Synthesis of Product Subclass 27 ... 841

8.1.27.1 Method 1: Deprotonation of Vinyl Ethers .. 842

8.1.27.1.1 Variation 1: Deprotonation of Acyclic and Cyclic Vinyl Ethers 842

8.1.27.1.2 Variation 2: Deprotonation of Allenyl Ethers 846

8.1.27.2 Method 2: Transmetallation of (α-Alkoxyvinyl)stannanes 847

8.1.27.3 Method 3: Lithium–Halogen Exchange ... 849

Applications of Product Subclass 27 in Organic Synthesis 850

8.1.27.4 Method 4: Synthesis of α-Alkoxyvinyl Organometallic Compounds 850

8.1.27.4.1 Variation 1: Vinylstannanes .. 850

8.1.27.4.2 Variation 2: Vinylsilanes ... 851

8.1.27.5 Method 5: Synthesis of 2-Aryldihydropyrrolohydrazines 853

8.1.27.6 Method 6: α-Difluoro Ketones ... 854

8.1.27.7 Method 7: Synthesis of γ-Oxo Esters ... 855

8.1.27.8 Method 8: Synthesis of α-Hydroxy Ketones 856

8.1.27.9 Method 9: Synthesis of Substituted 1,4-Dioxins 858

8.1.27.10 Method 10: Synthesis of β- and γ-Hydroxyalkenes 859

Keyword Index .. i

Author Index .. xxxiii

Abbreviations ... lxxxv