Volume 9: Fully Unsaturated Small-Ring Heterocycles and Mono- cyclic Five-Membered Hetarenes with One Heteroatom

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>V</td>
</tr>
<tr>
<td>Volume Editor's Preface</td>
<td>VII</td>
</tr>
<tr>
<td>Table of Contents</td>
<td>XI</td>
</tr>
<tr>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>9.1 Product Class 1: Oxirenes</td>
<td>19</td>
</tr>
<tr>
<td>9.2 Product Class 2: Thiirenes and Their Derivatives</td>
<td>43</td>
</tr>
<tr>
<td>9.3 Product Class 3: Selenirenes</td>
<td>61</td>
</tr>
<tr>
<td>9.4 Product Class 4: Telluirirenes</td>
<td>65</td>
</tr>
<tr>
<td>9.5 Product Class 5: 1H-Azirines</td>
<td>67</td>
</tr>
<tr>
<td>9.6 Product Class 6: Phosphirenes</td>
<td>85</td>
</tr>
<tr>
<td>9.7 Product Class 7: Three-Membered Rings with Phosphorus and One or More Heteroatoms</td>
<td>125</td>
</tr>
<tr>
<td>9.8 Product Class 8: Four-Membered Rings with One or More Heteroatoms</td>
<td>135</td>
</tr>
<tr>
<td>9.9 Product Class 9: Furans</td>
<td>183</td>
</tr>
<tr>
<td>9.10 Product Class 10: Thiophenes, Thiophene 1,1-Dioxides, and Thiophene 1-Oxides</td>
<td>287</td>
</tr>
<tr>
<td>9.11 Product Class 11: Selenophenes</td>
<td>423</td>
</tr>
<tr>
<td>9.12 Product Class 12: Tellurophenes</td>
<td>433</td>
</tr>
<tr>
<td>9.13 Product Class 13: 1H-Pyrroles</td>
<td>441</td>
</tr>
<tr>
<td>9.14 Product Class 14: Phospholes</td>
<td>553</td>
</tr>
<tr>
<td>Keyword Index</td>
<td>601</td>
</tr>
<tr>
<td>Author Index</td>
<td>613</td>
</tr>
<tr>
<td>Abbreviations</td>
<td>659</td>
</tr>
</tbody>
</table>
Table of Contents

Introduction
G. Maas

9.1 Product Class 1: Oxirenes
K.-P. Zeller

9.1.1 Product Class 1: Oxirenes

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>By Formation of Two O—C Bonds</td>
<td>21</td>
</tr>
<tr>
<td>Fragments C—C and O</td>
<td>21</td>
</tr>
<tr>
<td>Method 1: Oxidation of Alkynes</td>
<td>21</td>
</tr>
<tr>
<td>Variation 1: With Peroxy Acids</td>
<td>21</td>
</tr>
<tr>
<td>Variation 2: With Dioxiranes</td>
<td>23</td>
</tr>
<tr>
<td>Variation 3: With Atomic and Molecular Oxygen</td>
<td>25</td>
</tr>
<tr>
<td>Variation 4: Enzymatic Oxidation</td>
<td>26</td>
</tr>
<tr>
<td>By Formation of One O—C Bond</td>
<td>27</td>
</tr>
<tr>
<td>Fragment O—C—C</td>
<td>27</td>
</tr>
<tr>
<td>Method 1: Isomerization of α-Oxo Carbenes</td>
<td>27</td>
</tr>
<tr>
<td>Method 2: Isomerization of Ketene</td>
<td>34</td>
</tr>
<tr>
<td>Synthesis by Ring Transformation</td>
<td>35</td>
</tr>
<tr>
<td>Method 1: From Larger Heterocycles by Extrusion Reactions</td>
<td>35</td>
</tr>
<tr>
<td>Aromatization</td>
<td>36</td>
</tr>
<tr>
<td>Method 1: Isomerization of Oxiranylidenes</td>
<td>36</td>
</tr>
<tr>
<td>Method 2: β-Elimination Reactions of Oxiranes</td>
<td>37</td>
</tr>
<tr>
<td>Method 3: Cycloreversion Reactions of Fused Oxiranes</td>
<td>38</td>
</tr>
</tbody>
</table>

9.1.2 Product Class 2: Thiirenes and Their Derivatives
N. Tokitoh and W. Ando

9.2.1 Product Subclass 1: Thiirenes

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synthesis by Ring Transformation</td>
<td>46</td>
</tr>
<tr>
<td>Method 1: From 1,2,3-Thiadiazoles</td>
<td>46</td>
</tr>
<tr>
<td>Variation 1: Photochemical Decomposition in Matrixes</td>
<td>46</td>
</tr>
<tr>
<td>Variation 2: Photochemical Decomposition in Solution</td>
<td>47</td>
</tr>
</tbody>
</table>
9.2.2 **Product Subclass 2: Thiirene 1,1-Dioxides** .. 48

9.2.2.1 Synthesis by Ring-Closure Reactions .. 49

9.2.2.1.1 Method 1: From \(\alpha,\alpha\)-Dihalo-Substituted Sulfoxides 49

9.2.2.2 Aromatization ... 50

9.2.2.2.1 Method 1: Dehydrohalogenation of 2-Halothiiranes 50

9.2.3 **Product Subclass 3: Thiirene 1-Oxides** 52

9.2.3.1 Synthesis by Ring-Closure Reactions .. 53

9.2.3.1.1 Method 1: From \(\alpha,\alpha\)-Dihalo-Substituted Sulfoxides 53

9.2.3.2 Aromatization ... 54

9.2.3.2.1 Method 1: Fused Thiirene 1-Oxides from Diels–Alder Reactions of 2,3-Bis(alkylidene)thiirane 1-Oxides 54

9.2.4 **Product Subclass 4: Thiirenium Ions** ... 55

9.2.4.1 Synthesis by Ring-Closure Reactions .. 56

9.2.4.1.1 Method 1: Addition of a Sulfonium Ion to Alkynes 56

9.2.4.1.2 Method 2: From 1-Halo-2-sulfanylethenes 57

9.3 **Product Class 3: Selenirenes**
N. Tokitoh and W. Ando

9.3 **Product Class 3: Selenirenes** ... 61

9.3.1 Synthesis by Ring Transformation .. 61

9.3.1.1 Method 1: From 1,2,3-Selenadiazoles 61

9.3.1.1.1 Variation 1: Photocatalytic Decomposition in a Matrix 61

9.3.1.1.2 Variation 2: Photocatalytic Decomposition in Solution 62

9.4 **Product Class 4: Tellurirenes**
N. Tokitoh and W. Ando

9.4 **Product Class 4: Tellurirenes** ... 65

9.5 **Product Class 5: 1H-Azirines**
K.-P. Zeller

9.5 **Product Class 5: 1H-Azirines** ... 67

9.5.1 Synthesis by Ring-Closure Reactions ... 68

9.5.1.1 By Formation of Two N–C Bonds ... 68

9.5.1.1.1 Fragments C=N and C=N .. 68

9.5.1.1.1.1 Method 1: Reactions of Alkynes with Nitrenes or Nitrene Equivalents ... 68

9.5.1.1.1.1 Variation 1: Generation of Nitrene (NH) from Hydrazoic Acid .. 68

9.5.1.1.1.2 Variation 2: Generation of Nitrenes from Organic Azides 68

9.5.1.1.1.3 Variation 3: Oxidation of N-Aminophthalimidines in the Presence of Alkynes ... 69
By Formation of One N—C Bond

Fragment N—C

Method 1: Cyclization of α-Imino Carbenes

Variation 1: Generation of α-Imino Carbenes from 1H-1,2,3-Triazoles

Variation 2: Generation of α-Imino Carbenes from α-Diazo Imines

Variation 3: Generation of Cyclic α-Imino Carbenes from 1H-1,2,3-Benzotriazoles (Formation of 1H-Benzob[1]azirines)

Variation 4: Generation of Cyclic α-Imino Carbenes from Isatin and Its Derivatives (Formation of 1H-Benzob[1]azirines)

Method 2: Cyclization of Vinylnitrenes

By Formation of One C—C Bond

Fragment C—N—C

Synthesis by Ring Transformation

Method 1: Extrusion Reactions of Larger Heterocycles

Aromatization

Method 1: Isomerization of Cyclic Isomers

Method 2: β-Elimination from Aziridines

Method 3: Cycloreversion Reactions of Fused Aziridines

Product Class 6: Phosphirenes

H. Heydt

Product Class 6: Phosphirenes

Product Subclass 1: λ5-1H-Phosphirenes

Synthesis by Substituent Modification

Method 1: Reaction of λ5-1H-Phosphirenes with Benzo-1,2-quinones

Method 2: Reaction of λ5-1H-Phosphirenes with Azodicarboxylates

Method 3: Modification of an Existing λ5-1H-Phosphirene

Product Subclass 2: λ3-1H-Phosphirenium Salts

Synthesis by Ring-Closure Reactions

By Formation of Two P—C Bonds

Method 1: Cycloaddition of Iminophosphines to Alkynes

Synthesis by Substituent Modification

Method 1: Oxidative Addition to λ3-1H-Phosphirenes

Product Subclass 3: λ3-1H-Phosphirene Imides, Oxides, and Homologues

Synthesis by Ring-Closure Reactions

By Formation of Two P—C Bonds

Method 1: Cycloaddition of Electrophilic Phosphorus Compounds to Alkynes

Variation 1: Cycloaddition with Phosphenium Cations

Variation 2: Cycloaddition with Halophosphines
9.6.3.1.1.3 Variation 3: Reaction with Dichlorophosphines .. 93
9.6.3.1.1.4 Variation 4: Reaction with Phosphiranium Cations .. 93
9.6.3.2 Method 1: Alkylation of \(\lambda^3\)-1H-Phosphirenes .. 94
9.6.3.2.1 Variation 1: Alkylation with Alkyl Triflates .. 94
9.6.3.2.1.2 Variation 2: Alkylation with Trimethylsilyl Tetrafluoroborate 95
9.6.3.2.2 Method 2: Protonation of \(\lambda^5\)-1H-Phosphirene Imides 95

9.6.4 Product Subclass 4: \(\eta^1\)-1H-Phosphirene–Metal Complexes 95

9.6.4.1 Synthesis by Ring-Closure Reactions ... 102
9.6.4.1.1 Method 1: Cycloaddition of Phosphinidene Complexes to Alkynes 102
9.6.4.1.1.1 Variation 1: With Phosphinidene Complexes Generated from 7-Phospha[2.2.1]hepta-2,5-diene Complexes ... 102
9.6.4.1.1.2 Variation 2: With Phosphinidene Complexes Generated from \(\lambda^3\)-1H-Phosphirane Complexes ... 99
9.6.4.1.1.3 Variation 3: With Phosphinidene Complexes Generated from \(\lambda^3\)-2H-1,2-Azaphosphirene Complexes ... 100
9.6.4.1.1.4 Variation 4: With Phosphinidene Complexes Generated from Secondary \(\lambda^3\)-Phosphine Complexes ... 101
9.6.4.1.1.5 Variation 5: With Phosphinidene Complexes Generated from Disodium Tetracarbonylferrate (Collman’s Reagent) and an Aminodichlorophosphine 102

9.6.4.2 Synthesis by Substituent Modification ... 102
9.6.4.2.1 Method 1: Exchange Reactions with the Substituent at Phosphorus 102
9.6.4.2.2 Method 2: Modification of the Metal Fragment .. 103
9.6.4.2.3 Method 3: Formation of \(\eta^1\)-1H-Phosphirene–Metal Complexes by Complexation of \(\lambda^3\)-1H-Phosphirenes ... 104

9.6.5 Product Subclass 5: \(\lambda^3\)-1H-Phosphirenes ... 105

9.6.5.1 Synthesis by Ring-Closure Reactions ... 106
9.6.5.1.1 Method 1: Cycloaddition of Phosphinidenes to Alkynes 106
9.6.5.1.1.2 Method 2: \(\lambda^3\)-1H-Phosphirenes from Metallacyclopropenes 107
9.6.5.1.1.3 Method 3: \(\lambda^3\)-1H-Phosphirenes from a Vinylcarbene–Cobalt Complex 107
9.6.5.1.2 Method 1: By Formation of One P–C and One C–C Bond 108
9.6.5.1.2.1 Method 1: Cycloaddition of Carbenes to Phosphaalkynes 108
9.6.5.1.2.1.1 Variation 1: Cycloaddition with Haloalkanes 109
9.6.5.1.2.1.2 Variation 2: Cycloaddition with Chloro(vinyl)carbenes 110
9.6.5.1.2.1.3 Variation 3: Cycloaddition with a Stable Phosphino(silyl)carbene 111
9.6.5.2 Synthesis by “Aromatization” ... 111
9.6.5.2.1 Elimination Reactions with \(\lambda^3\)-Phosphiranes .. 112
9.6.5.2.1.1 Method 1: Cycloaddition of Haloalkenes Followed by HX Elimination 112
9.6.5.2.1.2 Method 2: Cyclization of Bis(methylene)phosphoranes Followed by 1,2-Elimination .. 112

9.6.5.3 Synthesis by Substituent Modification .. 113
9.6.5.3.1 Method 1: Decomplexation of η1-1H-Phosphirene–Metal Complexes ... 113
9.6.5.3.1.1 Variation 1: Decomplexation with Iodine and 1-Methyl-1H-imidazole .. 113
9.6.5.3.1.2 Variation 2: Decomplexation with 1,2-Bis(diphenylphosphino)ethane ... 114
9.6.5.3.2 Method 2: Reduction of 1-Halo-λ3-1H-phosphireni um Salts with Tertiary Phosphines .. 114
9.6.5.3.3 Method 3: Substitution of Hydrogen at the λ3-1H-Phosphirene Double Bond .. 115
9.6.5.3.4 Method 4: Substitution of Chlorine in 1-Chloro-λ3-1H-phosphirenes .. 116
9.6.5.3.4.1 Variation 1: Substitution by Hydrogen with Complex Hydrides ... 116
9.6.5.3.4.2 Variation 2: Substitution by Lithium and Grignard Nucleophiles .. 116
9.6.5.3.4.3 Variation 3: Substitution by Boron Functionalities with Lithium, Sodium, or Silver Borates 117
9.6.5.3.4.4 Variation 4: Substitution with Silylated and Stannylated Nucleophiles .. 118

9.6.6 Product Subclass 6: λ3-1H-Phosphirenylium Salts .. 119

9.7 Product Class 7: Three-Membered Rings with Phosphorus and One or More Heteroatoms
H. Heydt

9.7.1 Product Subclass 1: 2λ3-2H-1,2-Azaphirenes .. 125
9.7.1.1 Synthesis by Ring-Closure Reactions .. 126
9.7.1.1.1 By Formation of One P–N and One P–C Bond .. 126
9.7.1.1.1.1 Method 1: From Amino(aryl)carbene Complexes and a P1 Reagent ... 126
9.7.1.1.1.1.1 Variation 1: Reactions of Amino(aryl)carbene Complexes with Chlorophosphaalkynes 126
9.7.1.1.1.1.2 Variation 2: Reactions of Amino(aryl)carbene Complexes with Dichlorophosphines 127

9.7.2 Product Subclass 2: 1λ3,2λ3-1H-Diphosphirenes .. 128
9.7.2.1 Synthesis by Ring-Closure Reactions .. 128
9.7.2.1.1 By Formation of One P–P and One P–C Bond .. 129
9.7.2.1.1.1 Method 1: Cycloaddition of Phosphinidenes or Phosphinidine Equivalents to Phosphaalkynes 129
9.7.2.1.1.1.1 Variation 1: Cycloaddition with Iminophosphines .. 129
9.7.2.1.1.1.2 Variation 2: Cycloaddition with Phosphinidine Complexes .. 129
9.7.2.1.1.1.3 Variation 3: Cycloaddition with Halo(silyl)phosphines .. 130
9.7.2.1.1.2 Method 2: Cyclooligomerization of Phosphaalkynes under the Influence of Lewis Acids 130
9.7.2.1.2 By Formation of One P–P Bond .. 131
9.7.2.1.2.1 Method 1: Cyclization of Aminophosphino-Substituted Phosphaalkynes .. 131
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.7.2.2</td>
<td>Synthesis by Substituent Modification</td>
<td>131</td>
</tr>
<tr>
<td>9.7.3</td>
<td>Product Subclass 3: 1H-Triphosphirenes</td>
<td>132</td>
</tr>
<tr>
<td>9.8</td>
<td>Product Class 8: Four-Membered Rings with One or More Heteroatoms</td>
<td>135</td>
</tr>
<tr>
<td>9.8.1</td>
<td>Product Subclass 1: Azetes</td>
<td>135</td>
</tr>
<tr>
<td>9.8.1.1</td>
<td>Synthesis by Ring Transformation</td>
<td>137</td>
</tr>
<tr>
<td>9.8.1.1.1</td>
<td>Method 1: Ring Enlargement of Azidocyclopropenes</td>
<td>137</td>
</tr>
<tr>
<td>9.8.2</td>
<td>Product Subclass 2: (\lambda^3)-Phosphetes</td>
<td>138</td>
</tr>
<tr>
<td>9.8.2.1</td>
<td>Synthesis by Ring-Closure Reactions</td>
<td>138</td>
</tr>
<tr>
<td>9.8.2.1.1</td>
<td>By Formation of One P—C Bond</td>
<td>138</td>
</tr>
<tr>
<td>9.8.2.1.1.1</td>
<td>Method 1: From (Arylmethylene)phosphoranes</td>
<td>138</td>
</tr>
<tr>
<td>9.8.3</td>
<td>Product Subclass 3: (\lambda^3)-Phosphetes</td>
<td>139</td>
</tr>
<tr>
<td>9.8.3.1</td>
<td>Synthesis by Ring-Closure Reactions</td>
<td>139</td>
</tr>
<tr>
<td>9.8.3.1.1</td>
<td>By Formation of One P—C and One C—C Bond</td>
<td>139</td>
</tr>
<tr>
<td>9.8.3.1.1.1</td>
<td>Method 1: From Phosphaalkynes and Alkynes in the Coordination Sphere of Transition Metals</td>
<td>139</td>
</tr>
<tr>
<td>9.8.4</td>
<td>Product Subclass 4: 1,2-Dithietes</td>
<td>140</td>
</tr>
<tr>
<td>9.8.4.1</td>
<td>Synthesis by Ring-Closure Reactions</td>
<td>141</td>
</tr>
<tr>
<td>9.8.4.1.1</td>
<td>By Formation of Two S—C Bonds</td>
<td>141</td>
</tr>
<tr>
<td>9.8.4.1.1.1</td>
<td>Method 1: From Alkynes and Sulfur</td>
<td>141</td>
</tr>
<tr>
<td>9.8.4.1.1.1.1</td>
<td>Variation 1: From Alkynes and Molten Sulfur</td>
<td>142</td>
</tr>
<tr>
<td>9.8.4.1.1.2</td>
<td>Variation 2: From Alkynes and Sulfur in Solution</td>
<td>142</td>
</tr>
<tr>
<td>9.8.4.1.2</td>
<td>By Formation of One S—S Bond</td>
<td>143</td>
</tr>
<tr>
<td>9.8.4.1.2.1</td>
<td>Method 1: From an (\alpha)-Thioxo Ketone and Lawesson’s Reagent</td>
<td>143</td>
</tr>
<tr>
<td>9.8.4.2</td>
<td>Synthesis by Ring Transformation</td>
<td>143</td>
</tr>
<tr>
<td>9.8.4.2.1</td>
<td>Synthesis by Ring Contraction</td>
<td>143</td>
</tr>
<tr>
<td>9.8.4.2.1.1</td>
<td>Method 1: From 1,3-Dithiol-2-ones</td>
<td>143</td>
</tr>
<tr>
<td>9.8.4.2.1.2</td>
<td>Method 2: Dimethyl 1,2-Dithiete-3,4-dicarboxylate by Oxidative Ring Contraction of a 2-Titana-1,3-dithiole</td>
<td>144</td>
</tr>
<tr>
<td>9.8.5</td>
<td>Product Subclass 5: 1,2-Diselenetes</td>
<td>144</td>
</tr>
<tr>
<td>9.8.5.1</td>
<td>Synthesis by Ring Transformation</td>
<td>145</td>
</tr>
<tr>
<td>9.8.5.1.1</td>
<td>Synthesis by Ring Contraction</td>
<td>145</td>
</tr>
<tr>
<td>9.8.5.1.1.1</td>
<td>Method 1: From a 1,3,2-Diselenazolylium Salt</td>
<td>145</td>
</tr>
<tr>
<td>9.8.6</td>
<td>Product Subclass 6: 1,2,3-(\lambda^3)-Azaphosphetes</td>
<td>145</td>
</tr>
<tr>
<td>9.8.6.1</td>
<td>Synthesis by Ring Transformation</td>
<td>146</td>
</tr>
</tbody>
</table>
9.8.6.1.1 Synthesis by Ring Contraction

9.8.6.1.1.1 Method 1: From 1,2,3,4\(\text{C}\)5-Triazaphosphinines

9.8.6.1.2 Synthesis by Ring Enlargement

9.8.6.1.2.1 Method 1: From 2-[Bis(dialkylamino)phosphino]-2\(\text{H}\)-azirines

9.8.7 Product Subclass 7: 1\(\text{L}\)\(\text{L}\),3\(\text{L}\)\(\text{L}\)-Diphosphetes

9.8.7.1 Synthesis by Ring-Closure Reactions

9.8.7.1.1 By Formation of Two P—C Bonds

9.8.7.1.1.1 Method 1: From Alkylidenephosphoranes

9.8.7.1.1.1.1 Variation 1: From [Chloro(phosphino)methylene]phosphoranes

9.8.7.1.1.2 Method 2: From Diazophosphino(phosphoryl)methanes

9.8.7.1.1.3 Method 3: From Diazophosphino(trimethylsilyl)methanes

9.8.7.1.1.4 Method 4: From [Bis(trimethylsilyl)methyl]dichlorophosphine

9.8.7.2 Synthesis by Substituent Modification

9.8.7.2.1 Method 1: From 1,1,3,3-Tetrakis(dimethylamino)-1\(\text{L}\)\(\text{L}\),3\(\text{L}\)\(\text{L}\)-diphosphete by Substitution at Ring Carbon Atoms

9.8.8 Product Subclass 8: 1\(\text{L}\)\(\text{L}\),2\(\text{L}\)\(\text{L}\)-Diphosphetes

9.8.8.1 Synthesis by Ring Transformation

9.8.8.1.1 Synthesis by Ring Enlargement

9.8.8.1.1.1 Method 1: From a 2-Phosphino-2\(\text{H}\)-phosphirene

9.8.9 Product Subclass 9: 1\(\text{L}\)\(\text{L}\),2\(\text{L}\)\(\text{L}\)-Diphosphetes

9.8.9.1 Synthesis by Ring-Closure Reactions

9.8.9.1.1 By Formation of Two P—C Bonds

9.8.9.1.1.1 Method 1: From Phosphaalkynes in the Coordination Sphere of Titanium

9.8.9.2 Aromatization

9.8.9.2.1 Method 1: From a 1,2-Dichloro-1,2-dihydro-1,2-diphosphete–Diiron Complex

9.8.10 Product Subclass 10: 1\(\text{L}\)\(\text{L}\),3\(\text{L}\)\(\text{L}\)-Diphosphetes

9.8.10.1 Synthesis by Ring-Closure Reactions

9.8.10.1.1 By Formation of Two P—C Bonds

9.8.10.1.1.1 Method 1: From Phosphaalkynes in the Coordination Sphere of Transition Metals

9.8.10.1.1.1.1 Variation 1: From Phosphaalkynes and Transition-Metal–Alkene Complexes

9.8.10.1.1.1.2 Variation 2: From Phosphaalkynes and Transition-Metal Carbonyls

9.8.10.1.1.1.3 Variation 3: From Phosphaalkynes and Transition-Metal–Arene Complexes

9.8.10.1.1.1.4 Variation 4: From Phosphaalkynes and Metal Vapor

9.8.10.1.1.5 Additional Variations

9.8.11 Product Subclass 11: 1,3,2\(\text{L}\)\(\text{L}\)-Diazaphosphetes

9.8.11.1 Synthesis by Ring-Closure Reactions
9.8.11.1 By Formation of Two N–P Bonds .. 167
9.8.11.1.1 Method 1: From 3-Bromo-3-phenyl-3H-diazirine and a Stannylphosphine 167
9.8.12 Product Subclass 12: 1\(\lambda^3,2\lambda^3,3\lambda^3\)-Triphosphetes 168
9.8.12.1 Synthesis by Ring-Closure Reactions .. 168
9.8.12.1.1 Method 1: From Lithium Bis(diphenylphosphino)(trimethylsilyl)methanide and Phosphorus Trichloride .. 168
9.8.13 Product Subclass 13: 3\(\lambda^3,2\lambda^3,3\lambda^3\)-Triphosphetes 169
9.8.13.1 Synthesis by Ring Transformation .. 169
9.8.13.1.1 Method 1: From a (\(\eta^4\)-Cyclooctatetraene)(1,4-dihydro-1,2,4-triphosphinine-1,4-diyl)hafnium Complex .. 169
9.8.14 Product Subclass 14: 1\(\lambda^3,2\lambda^3,4\lambda^3\)-Diazadiphosphetes 170
9.8.14.1 Synthesis by Ring-Closure Reactions .. 171
9.8.14.1.1 Method 1: From Azidobis(diisopropylamino)phosphine 171
9.8.14.1.2 Method 2: From N-[bis(diisopropylamino)phosphino]-C[bis(diisopropylamino)thiophosphoryl]nitrilimine .. 171
9.8.15 Product Subclass 15: 1\(\lambda^3,3\lambda^3,2\lambda^3,4\lambda^3\)-Tetraphosphetes 172
9.8.15.1 Synthesis by Ring-Closure Reactions .. 172
9.8.15.1.1 Method 1: From Cyclic Bis(amino)chlorophosphines 172
9.8.16 Product Subclass 16: 1\(\lambda^3,2\lambda^3,3\lambda^3,4\lambda^3\)-Tetraphosphetes 173
9.8.16.1 Synthesis by Ring-Closure Reactions .. 174
9.8.16.1.1 Method 1: From White Phosphorus in the Coordination Sphere of Transition Metals .. 174

9.9 Product Class 9: Furans

9.9.1 Synthesis by Ring-Closure Reactions .. 187
9.9.1.1 By Formation of One O–C and One C–C Bond 187
9.9.1.1.1 Fragments O–C–C and C–C .. 187
9.9.1.1.1.1 From \(\alpha\)-Heterofunctionalized Ketones 187
9.9.1.1.1.1.1 Method 1: Transition-Metal-Catalyzed Reaction of \(\alpha\)-Diazoalkanones with Alkynes .. 187
9.9.1.1.1 Method 2: From α-Halo Ketones and 3-Oxoalkanoates (Feist–Benary Reaction)

- From 1,1-Dialkoxy-2-bromoalkanes and Dicarbonyl Compounds or 1-(Trimethylsiloxy)alk-1-enes

9.9.1.1.2 Method 3: From α-Hydroxy Ketones and Dialkyl But-2-yne-1,4-dioate

9.9.1.1.3 Method 4: From α-Hydroxy Ketones and Dicarbonyl Compounds and Derivatives

9.9.1.1.4 Method 5: From α-Haloalkanones and α-Trimethylstannyl Ketones

9.9.1.1.5 Method 6: From α-Haloalkanones and α-Trimehtylstannanyl Ketones

9.9.1.1.2 Method 1: From 1,3-Dicarbonyl Compounds and 3-Bromoalkynes

9.9.1.1.3 Method 2: Palladium-Catalyzed Reaction of Alkyl 3-Oxoalkanoates with 2-(Alk-1-ynyl)oxiranes

9.9.1.1.4 Method 3: Manganese-Mediated Reaction of Alkyl 3-Oxoalkanoates with Enol Ethers

9.9.1.1.5 Method 4: Knoevenagel Condensation of 1,3-Dicarbonyl Compounds and Aldehydes Followed by Bromination and Cyclization

9.9.1.1.6 Method 5: From 1,3-Dicarbonyl Compounds and 1-Nitroalk-1-enes

9.9.1.1.7 Method 6: Palladium-Catalyzed Reaction of 1,3-Dicarbonyl Compounds with Prop-2-ynyl Carbonate

9.9.1.1.3 From Functionalized Alkenes and Alkynes with C,C,O Building Blocks

9.9.1.1.3.1 Method 1: From 1-Haloalk-1-enes and Methylene Ketones

9.9.1.1.3.2 Method 2: From Silylallenes and Acid Chlorides

9.9.1.1.3.3 Method 3: From 1-Aminoalk-1-ynes and Sulfonylalk-1-ynes

9.9.1.2 Fragments C,C,O

9.9.1.2.1 Method 1: From 3-Bromopropenal Acetals and Alkanals

9.9.1.2.2 Method 2: From Silylallenes and Acid Chlorides

9.9.1.3 Fragments O,C

9.9.1.3.1 Method 1: From 1,3-Dicarbonyl Compounds and Sulfonium Ylides

9.9.1.3.2 Method 2: From 1-Aryl-3-chloroalkan-1-ones and Potassium Cyanide

9.9.1.3.3 Method 3: From Selectively Protected 1,3-Dicarbonyl Compounds

9.9.1.3.4 Method 4: 2,3-Disubstituted Furans from 1-(Benzyloxy)-3-tosylalkenes and Aldehydes

9.9.1.4 By Formation of Two C,C Bonds

9.9.1.4.1 Method 1: From Dialkyl Oxalate and Bis(alkoxycarbonylmethyl) Ethers

9.9.1.5 By Formation of One O,C Bond

9.9.1.5.1 Method 1: From Dialkyl Oxalate and Bis(alkoxycarbonylmethyl) Ethers

9.9.1.6 By Cyclization of 1,4-Diheterofunctional C₄ Compounds

9.9.1.6.1 Method 1: Cyclization of 4-Oxobutanamides or 4-Oxobutanenitriles to Furan-2-amines

9.9.1.6.2 Method 2: Cyclization of 4-Hydroxybut-2-enenitriles

9.9.1.6.3 Method 3: Reductive Cyclization of Alkene-1,4-diones and Cyclization of 4-Hydroxyalk-2-en-1-ones
9.9.1.3.1.1.4 Method 4: Cyclization of 4-Diazoalk-2-en-1-ones

9.9.1.3.1.1.5 Method 5: Cyclization of 4,4-Dialkoxyalkan-1-ones

9.9.1.3.1.1.6 Method 6: Cyclization of Alkane-1,4-diones (The Paal–Knorr Synthesis)

9.9.1.3.1.1.7 Method 7: Cyclization of β,γ-Hydroxy Ketone or Their Derivatives

9.9.1.3.1.1.8 Method 8: Cyclization of 1,4-Dihydroxyalk-2-ynes

9.9.1.3.1.1.9 Method 9: Oxidative Cyclization of 1,4-Dihydroxyalk-2-enes

9.9.1.3.1.2 By Cyclization of Monofunctionalized C₄ Compounds

9.9.1.3.1.2.1 Method 1: Palladium-Catalyzed Cyclization of Alk-1(2)-yn-4-ones

9.9.1.3.1.2.2 Method 2: Cyclization of Alka-1,2-dien-4-ones

9.9.1.3.1.2.3 Method 3: Cyclization of β,γ-Substituted β,γ-Unsaturated Ketones with Diphenyl Diselenide

9.9.1.3.1.2.4 Method 4: Cyclization of 5-Hydroxyalk-3-en-1-ynes

9.9.1.3.1.2.5 Method 5: Base-Assisted Cyclization of 1-(4-Hydroxyalk-2-ynyl)benzotriazoles

9.9.1.3.1.2.6 Method 6: Cyclization of Alkynyloxiranes

9.9.1.3.1.2.7 Method 7: Cyclization of 4-Hydroxyalk-1-ynes and Substituted 4-Hydroxyalk-1-enes

9.9.1.3.1.2.8 Method 8: Oxidative Cyclization of Alk-1-en-4-ones

9.9.1.4 By Formation of One C₄C Bond

9.9.1.4.1 Fragment C—O—C—C

9.9.1.4.2 Method 1: McMurry-type Cyclization of 1-Acylxalk-1-en-3-ones via a Radical Mechanism

9.9.2 Synthesis by Ring Transformation

9.9.2.1 Ring Enlargement

9.9.2.2.1 Method 1: Cycloaddition of Alkynes to Furans Followed by Retro-Diels–Alder Reaction

9.9.2.2.2 Method 2: Cycloaddition of Alkynes to Oxazoles Followed by Retro-Diels–Alder Reaction

9.9.2.2.3 Method 3: Cycloaddition of Alkynes to Mesoionic Heterocycles Followed by Retro-Diels–Alder Reaction

9.9.2.2.4 Method 4: Decomposition of 4-(Benzoyloxy)-1,3-dioxolanes

9.9.2.2.5 Method 5: Reduction and Rearrangement of 4,5-Dihydroisoxazoles

9.9.2.3 Ring Contraction

9.9.2.3.1 Method 1: Synthesis from 2H-Pyrones

9.9.2.3.2 Method 2: Synthesis from 2H-Pyrans and Pyrylium Salts

9.9.2.3.3 Method 3: Synthesis from 3,6-Dihydro-1,2-dioxins

9.9.2.3.4 Method 4: Synthesis from Sugar Derivatives

9.9.3 Aromatization

9.9.3.1 Method 1: Reduction and Elimination of Water from Furan-2(5H)-ones
9.9.3.2 Method 2: Oxidation of Dihydro- and Tetrahydrofurans 233

9.9.4 Synthesis by Substituent Modification 234

9.9.4.1 Substitution of Hydrogen 234

9.9.4.1.1 Method 1: Replacement by Deuterium 234
9.9.4.1.2 Method 2: Metalation 235

9.9.4.1.2.1 Variation 1: Replacement of Hydrogen by Lithium 235
9.9.4.1.2.2 Variation 2: Replacement of a Halogen by Lithium 238
9.9.4.1.3 Method 3: Introduction of Formyl Groups 239
9.9.4.1.4 Method 4: Introduction of Acyl Groups 241
9.9.4.1.5 Method 5: Introduction of Chloromethyl and Hydroxymethyl Groups 243
9.9.4.1.6 Method 6: Introduction of Aminoalkyl Groups (Mannich Reaction) 243
9.9.4.1.7 Method 7: Introduction of Allyl Groups 244
9.9.4.1.8 Method 8: Introduction of Alk-1-enyl Groups 245
9.9.4.1.9 Method 9: Introduction of Aryl Groups 246
9.9.4.1.10 Method 10: Introduction of Alkyl Groups by Reaction with Alkyl Halides (Friedel-Crafts Reaction) 248
9.9.4.1.11 Method 11: Introduction of Alkyl Groups by Reaction with α,β-Unsaturated Carbonyl Compounds 249
9.9.4.1.12 Method 12: Introduction of Halogen Substituents 249
9.9.4.1.13 Method 13: Sulfonation 252
9.9.4.1.14 Method 14: Nitration 253

9.9.4.2 Substitution of Metals 254

9.9.4.2.1 Method 1: Replacement of Lithium by Hydrogen or Deuterium 254
9.9.4.2.2 Method 2: Replacement of Lithium by a Silyl Group 254
9.9.4.2.3 Method 3: Replacement of Lithium by a Carboxy Group 255
9.9.4.2.4 Method 4: Replacement of Lithium by an Acyl Group 256
9.9.4.2.5 Method 5: Replacement of Lithium by a Hydroxymethyl Group 256
9.9.4.2.6 Method 6: Replacement of Lithium by an Aryl Group via Intermediate Boronates (Suzuki Coupling) 257
9.9.4.2.7 Method 7: Replacement of Lithium by an Aryl or Alkenyl Group via Intermediate Stannanes (Stille Coupling) 258
9.9.4.2.8 Method 8: Replacement of Lithium by an Acyl Group via Intermediate Furylcopper Compounds (Including Ullmann Coupling) 259
9.9.4.2.9 Method 9: Replacement of Lithium by Aryl, Alkenyl, or Alkynyl Groups via Intermediate Furylzinc Compounds 260
9.9.4.2.10 Method 10: Replacement of Lithium by an Alkyl Group 261
9.9.4.2.11 Method 11: Replacement of Lithium by a Halogen 261
9.9.4.2.12 Method 12: Replacement of Lithium by an Alkylsulfanyl or Arylsulfanyl Group 262

9.9.4.3 Substitution of Carbon Functionalities 263

9.9.4.3.1 Method 1: Decarboxylation of Furoic Acids 263
9.9.4.4 Substitution of Heteroatoms 263

9.9.4.4.1 Method 1: Substitution of a Halogen by Hydrogen 263
9.9.4.4.2 Method 2: Reaction of Halo- or Nitrofurans with Carbon Nucleophiles 264
<table>
<thead>
<tr>
<th>Section</th>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.4.3</td>
<td>3</td>
<td>Metal-Catalyzed Cross Coupling of Halofurans with Alkenes, Arenes, and Alkynes</td>
</tr>
<tr>
<td>9.4.4</td>
<td>4</td>
<td>Reaction of Halo- or Nitrofurans with Hetero Nucleophiles</td>
</tr>
<tr>
<td>9.4.5</td>
<td></td>
<td>Modification of α-Substituents</td>
</tr>
<tr>
<td>9.4.5.1</td>
<td>1</td>
<td>Enolization of Furan-2(5H)-ones and Dihydrofuran-2,5-diones</td>
</tr>
<tr>
<td>9.4.5.2</td>
<td>2</td>
<td>Ene Reaction of 3-Methylene-2,3-dihydrofurans</td>
</tr>
<tr>
<td>9.4.5.3</td>
<td>3</td>
<td>Wittig Rearrangement of Alkyl 3-Furylmethyl Ether</td>
</tr>
<tr>
<td>9.4.5.4</td>
<td>4</td>
<td>Anionic Oxy-Cope Reaction of a 2-But-3-enylfuran</td>
</tr>
<tr>
<td>9.10</td>
<td></td>
<td>Product Class 10: Thiophenes, Thiophene 1,1-Dioxides, and Thiophene 1-Oxides</td>
</tr>
<tr>
<td>9.10.1</td>
<td></td>
<td>J. Schatz</td>
</tr>
<tr>
<td>9.10.1.1</td>
<td></td>
<td>Product Subclass 1: Thiophenes</td>
</tr>
<tr>
<td>9.10.1.1.1</td>
<td>1</td>
<td>Synthesis by Ring-Closure Reactions</td>
</tr>
<tr>
<td>9.10.1.1.1.1</td>
<td>1</td>
<td>By Formation of Two S–C Bonds and One C–C Bond</td>
</tr>
<tr>
<td>9.10.1.1.1.2</td>
<td>2</td>
<td>Fragment S and Two C–C Fragments</td>
</tr>
<tr>
<td>9.10.1.1.1.1.1</td>
<td>3</td>
<td>Method 1: Oxidative Coupling of Aryl Methyl and Related Ketones and a Source of Sulfur</td>
</tr>
<tr>
<td>9.10.1.1.1.1.2</td>
<td>4</td>
<td>Method 2: Reaction of Alkenes or Alkynes with a Source of Sulfur</td>
</tr>
<tr>
<td>9.10.1.1.1.1.1.1</td>
<td>5</td>
<td>Variation 1: Reaction of Alkynes with a Source of Sulfur</td>
</tr>
<tr>
<td>9.10.1.1.1.1.1.2</td>
<td>6</td>
<td>Variation 2: Reaction of Alkenes with a Source of Sulfur</td>
</tr>
<tr>
<td>9.10.1.1.1.1.1.3</td>
<td>7</td>
<td>Method 3: Thionation of N-(Phenylacetyl)thiobenzamides</td>
</tr>
<tr>
<td>9.10.1.1.1.1.2.1</td>
<td>8</td>
<td>By Formation of Two S–C Bonds</td>
</tr>
<tr>
<td>9.10.1.1.1.1.2.2</td>
<td>9</td>
<td>Fragment S–C and C–C and S</td>
</tr>
<tr>
<td>9.10.1.1.1.1.2.1.1</td>
<td>10</td>
<td>Method 1: Reaction of Buta-1,3-diyynes with Sulfuration Reagents</td>
</tr>
<tr>
<td>9.10.1.1.1.1.2.1.2</td>
<td>11</td>
<td>Variation 1: Reaction of Buta-1,3-diyynes with Sulfides</td>
</tr>
<tr>
<td>9.10.1.1.1.1.2.1.3</td>
<td>12</td>
<td>Variation 2: Reaction of Buta-1,3-diyynes with Sulfur Dichloride</td>
</tr>
<tr>
<td>9.10.1.1.1.1.2.1.4</td>
<td>13</td>
<td>Method 2: Reaction of Buta-1,3-diynes with a Source of Sulfur</td>
</tr>
<tr>
<td>9.10.1.1.1.1.2.1.5</td>
<td>14</td>
<td>Method 3: Reaction of Buta-2-enes or Butanes with Sulfur</td>
</tr>
<tr>
<td>9.10.1.1.1.1.2.1.6</td>
<td>15</td>
<td>Method 4: Cyclization of Sulfinylalkenes</td>
</tr>
<tr>
<td>9.10.1.1.1.1.2.1.7</td>
<td>16</td>
<td>Method 5: Reaction of 1,4-Diketones with Sulfur Reagents and Cyclization (The Paal Synthesis)</td>
</tr>
<tr>
<td>9.10.1.1.1.1.2.1.8</td>
<td>17</td>
<td>Method 6: Reaction of α,(\beta)-Unsaturated Nitriles with Sulfur (The Gewald Synthesis)</td>
</tr>
<tr>
<td>9.10.1.1.1.1.2.1.9</td>
<td>18</td>
<td>By Formation of One S–C and One C–C Bond</td>
</tr>
<tr>
<td>9.10.1.1.1.1.2.1.10</td>
<td>19</td>
<td>Fragments S–C and C–C and C</td>
</tr>
<tr>
<td>9.10.1.1.1.1.2.1.11</td>
<td>20</td>
<td>Method 1: S-Alkylation of β-Thioxo Carbonyl Compounds or β-Thioxonitriles Followed by Ring Closure</td>
</tr>
</tbody>
</table>

Science of Synthesis Original Edition Volume 9
© Georg Thieme Verlag KG
9.10.1.1.3.1.1 Variation 1: S-Alkylation of Enolizable β-Thioxo Carbonyl Compounds or β-Thiononitriles .. 301
9.10.1.1.3.1.2 Variation 2: Reaction of β-Oxo Dithioesters and β-Oxothioamides with a 4-Bromobut-2-enoate 303
9.10.1.1.3.1.3 Variation 3: Reaction of Active Methylene Compounds with Carbon Disulfide Followed by S-Alkylation and Ring Closure 304
9.10.1.1.3.1.2 Method 2: Carbene Addition to α-Oxoketene Dithioacetals and α-Oxoketene Monothioacetals 305
9.10.1.1.3.2 Fragments S—C —C and C—C ... 306
9.10.1.1.3.2.1 Method 1: From α-Sulfanyl Ketones 306
9.10.1.1.3.2.1.1 Variation 1: Reaction of α-Sulfanyl Ketones with 2-(Diethoxyphosphoryl)-Substituted Alk-2-enoates 306
9.10.1.1.3.2.1.2 Variation 2: From α-Sulfanyl Ketones and Cyanoacetates .. 307
9.10.1.1.3.2.2 Method 2: Reaction of α-Alkylsulfanyl Ketones with Grignard Reagents ... 308
9.10.1.1.3.2.3 Method 3: From Vinyl Sulfides and Alkynes 309
9.10.1.1.3.2.4 Method 4: From 1,2,3-Thiadiazoles and Alkynes .. 310
9.10.1.1.3.3 Fragments S—C —C and C—C ... 311
9.10.1.1.3.3.1 Method 1: Reaction of Dithioesters with Alk-1-yynes .. 311
9.10.1.1.3.3.2 Method 2: Reaction of Isothiocyanates with Alkyl or Alkynyl Compounds 312
9.10.1.1.3.3.2.1 Variation 1: Reaction of Isothiocyanates with (Cyanomethyl)ketene Dithioacetals 312
9.10.1.1.3.3.2.2 Variation 2: Reaction of Isothiocyanates with Alk-1-ynyllithium Compounds 313
9.10.1.1.3.3.3 Method 3: Reaction of Thioglycolates with β-Electrophilic Carbonyl Compounds or Equivalents 314
9.10.1.1.3.3.1 Variation 1: Reaction of Thioglycolates with β,β-Dihalo or α,α-Dihalo Carbonyl Compounds 314
9.10.1.1.3.3.2 Variation 2: Reaction of Thioglycolates with β-Chlorovinyl Carbonyl Compounds and Equivalents (The Fiesselmann Synthesis) 315
9.10.1.1.3.3.3 Variation 3: Reaction of Thioglycolates with β-Chloro-Substituted Cinnaminitriles 316
9.10.1.1.3.3.4 Variation 4: Reaction of Thioglycolates with α-Oxoalkynes ... 317
9.10.1.1.3.3.5 Variation 5: Reaction of Thioglycolates with α-Sulfanyl Ketones with Acetylenic Esters 318
9.10.1.1.3.3.6 Variation 6: Reaction of Thioglycolic Acid or Esters with β-Oxo Esters ... 320
9.10.1.1.3.3.4 Method 4: Reaction of Benzyl Thiols with Butadiynes 321
9.10.1.1.3.3.5 Method 5: Reaction of Thiocarboxylic Acids with a Cyclopropyl(triphenyl)phosphonium Salt 322
9.10.1.1.3.3.6 Method 6: Reaction of Dithiocarbonates or Equivalents and Cyclopropenylium Salts 323
9.10.1.1.4 By Formation of Two C—C Bonds .. 324
9.10.1.1.4.1 Fragments C—S—C —C and C ... 324
9.10.1.1.4.1.1 Method 1: S-Alkylation of Thioamides and Reaction with a Chloromethaniminium Salt 324
9.10.1.1.4.2 Fragments C—S—C and C—C ... 325
9.10.1.1.4.2.1 Method 1: Reaction of 3-Thia-1,5-dicarbonyl Compounds or Equivalents with 1,2-Dicarbonyl Compounds (The Hinsberg Synthesis) 325
<table>
<thead>
<tr>
<th>Section</th>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.10.1.4.2.2</td>
<td>Method 2:</td>
<td>1,3-Dipolar Cycloaddition of Thiocarbonyl Ylides with Alkynes</td>
</tr>
<tr>
<td>9.10.1.4.2.2.1</td>
<td>Variation 1:</td>
<td>Reaction of 1,3-Dithiolylium-4-olates with Alkynes</td>
</tr>
<tr>
<td>9.10.1.4.2.2.2</td>
<td>Variation 2:</td>
<td>Reaction of Bis[(trimethylsilyl)methyl] Sulfoxides with Alkynes</td>
</tr>
<tr>
<td>9.10.1.4.2.3</td>
<td>Method 3:</td>
<td>From 1,3-Thiazoles and Alkynes</td>
</tr>
<tr>
<td>9.10.1.5.1.1</td>
<td>Method 1:</td>
<td>From S-C-C-C-C by Ring Closure</td>
</tr>
<tr>
<td>9.10.1.5.1.1.1</td>
<td>Variation 1:</td>
<td>Cyclization of Aroylketene S,N-Acetals</td>
</tr>
<tr>
<td>9.10.1.5.1.1.2</td>
<td>Variation 2:</td>
<td>Oxidative Cyclization of 2-Sulfanyl Pent-2,4-dienoic Acids</td>
</tr>
<tr>
<td>9.10.1.5.1.2</td>
<td>Method 2:</td>
<td>Cyclization of 3-Sulfanylprop-1-ynyl Ketones</td>
</tr>
<tr>
<td>9.10.1.5.1.3</td>
<td>Method 3:</td>
<td>From γ,δ-Unsaturated Thioamides</td>
</tr>
<tr>
<td>9.10.1.6.1</td>
<td>Method 1:</td>
<td>Cyclization of Aroylketene S,N-Acetals</td>
</tr>
<tr>
<td>9.10.1.6.2</td>
<td>Method 1:</td>
<td>From β,β'-Dioxo Sulfides by Reductive Coupling</td>
</tr>
<tr>
<td>9.10.1.6.3</td>
<td>Method 1:</td>
<td>From Zirconocenes and Disulfur Dichloride</td>
</tr>
<tr>
<td>9.10.1.6.6</td>
<td>Method 2:</td>
<td>From 1,2-Thiazolium Salts</td>
</tr>
<tr>
<td>9.10.1.6.7</td>
<td>Method 3:</td>
<td>From 3-Amino-1,2-dithiolium Salts</td>
</tr>
<tr>
<td>9.10.1.6.8</td>
<td>Method 4:</td>
<td>From 1,3-Oxathiolium Salts</td>
</tr>
<tr>
<td>9.10.1.6.9</td>
<td>Method 5:</td>
<td>From Furans</td>
</tr>
<tr>
<td>9.10.1.7.1</td>
<td>Method 1:</td>
<td>From 1,2- or 1,4-Dithiins</td>
</tr>
<tr>
<td>9.10.1.7.2</td>
<td>Method 1:</td>
<td>From 1,2-Dithiins by Thermal or Photochemical Ring Contraction, or by Use of Thiophilic Phosphorus Reagents</td>
</tr>
<tr>
<td>9.10.1.7.3</td>
<td>Method 2:</td>
<td>From 1,4-Dithiins via their S-Oxides</td>
</tr>
<tr>
<td>9.10.1.7.4</td>
<td>Method 2:</td>
<td>From 4H-Thiopyrans and Thiopyrylium Salts</td>
</tr>
<tr>
<td>9.10.1.7.5</td>
<td>Method 1:</td>
<td>From Thiiranes</td>
</tr>
<tr>
<td>9.10.1.7.6</td>
<td>Method 1:</td>
<td>From 2-(1-Hydroxyalk-2-ynyl)thiiranes by Electrophile-Induced Ring Expansion</td>
</tr>
<tr>
<td>9.10.1.7.7</td>
<td>Method 1:</td>
<td>From 2-(2-Oxoalkyl)thiiranes</td>
</tr>
<tr>
<td>9.10.1.7.8</td>
<td>Method 1:</td>
<td>From 2-(2-Oxoalkyl)oxiranes</td>
</tr>
<tr>
<td>9.10.1.8.1</td>
<td>Method 1:</td>
<td>From Dihydro- and Tetrahydrothiophenes</td>
</tr>
<tr>
<td>9.10.1.8.2</td>
<td>Method 1:</td>
<td>Hydrogen–Deuterium Exchange</td>
</tr>
<tr>
<td>Section</td>
<td>Method/Procedure</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>9.10.1.2</td>
<td>Method 2: Metalation</td>
<td>349</td>
</tr>
<tr>
<td>9.10.1.2.1</td>
<td>Variation 1: Generation of Organometallic Compounds by Hydrogen-Lithium Exchange</td>
<td>349</td>
</tr>
<tr>
<td>9.10.1.3</td>
<td>Method 3: Introduction of Formyl Groups</td>
<td>351</td>
</tr>
<tr>
<td>9.10.1.4</td>
<td>Method 4: Introduction of Acyl Groups</td>
<td>352</td>
</tr>
<tr>
<td>9.10.1.5</td>
<td>Method 5: Introduction of Chloromethyl and Hydroxymethyl Groups</td>
<td>354</td>
</tr>
<tr>
<td>9.10.1.6</td>
<td>Method 6: Introduction of Alkylamino Groups (The Mannich Reaction)</td>
<td>355</td>
</tr>
<tr>
<td>9.10.1.7</td>
<td>Method 7: Introduction of Allyl, Alk-1-enyl, or Alk-1-ynyl Groups</td>
<td>356</td>
</tr>
<tr>
<td>9.10.1.8</td>
<td>Method 8: Introduction of Aryl Groups</td>
<td>357</td>
</tr>
<tr>
<td>9.10.1.9</td>
<td>Method 9: Introduction of Alkyl Groups</td>
<td>360</td>
</tr>
<tr>
<td>9.10.1.10</td>
<td>Method 10: Halogenation</td>
<td>362</td>
</tr>
<tr>
<td>9.10.1.11</td>
<td>Method 11: Sulfonation</td>
<td>365</td>
</tr>
<tr>
<td>9.10.1.12</td>
<td>Method 12: Nitration</td>
<td>367</td>
</tr>
<tr>
<td>9.10.1.1.2</td>
<td>Method 1: Substitution Reactions Involving Organostannanes (The Stille Reaction)</td>
<td>370</td>
</tr>
<tr>
<td>9.10.1.2.2</td>
<td>Method 2: Substitution Reactions Involving Organocopper or Organozinc Derivatives</td>
<td>371</td>
</tr>
<tr>
<td>9.10.1.2.3</td>
<td>Method 3: Substitution Reactions Involving Organoboron Derivatives (The Suzuki Reaction)</td>
<td>373</td>
</tr>
<tr>
<td>9.10.1.2.4</td>
<td>Method 4: Substitution Reactions Involving Organolithium Derivatives</td>
<td>375</td>
</tr>
<tr>
<td>9.10.1.2.4.1</td>
<td>Variation 1: Replacement of Lithium by Hydrogen or Deuterium</td>
<td>374</td>
</tr>
<tr>
<td>9.10.1.2.4.2</td>
<td>Variation 2: Replacement of Lithium by a Silyl Group</td>
<td>375</td>
</tr>
<tr>
<td>9.10.1.2.4.3</td>
<td>Variation 3: Replacement of Lithium by a Carboxy Group</td>
<td>376</td>
</tr>
<tr>
<td>9.10.1.2.4.4</td>
<td>Variation 4: Replacement of Lithium by a Formyl or Acyl Group</td>
<td>376</td>
</tr>
<tr>
<td>9.10.1.2.4.5</td>
<td>Variation 5: Replacement of Lithium by a Hydroxymethyl or an Aminomethyl Group</td>
<td>378</td>
</tr>
<tr>
<td>9.10.1.2.4.6</td>
<td>Variation 6: Replacement of Lithium by an Alkyl, Alkenyl, Alkynyl, or Aryl Group</td>
<td>380</td>
</tr>
<tr>
<td>9.10.1.2.4.7</td>
<td>Variation 7: Replacement of Lithium by a Halogen</td>
<td>381</td>
</tr>
<tr>
<td>9.10.1.2.4.8</td>
<td>Variation 8: Replacement of Lithium by a Sulfanyl or Sulfonyl Group</td>
<td>382</td>
</tr>
<tr>
<td>9.10.1.3</td>
<td>Substitution of Carbon Functionalities</td>
<td>383</td>
</tr>
<tr>
<td>9.10.1.3.1</td>
<td>Method 1: Decarboxylation</td>
<td>383</td>
</tr>
<tr>
<td>9.10.1.4</td>
<td>Substitution of Heteroatoms</td>
<td>384</td>
</tr>
<tr>
<td>9.10.1.4.1</td>
<td>Method 1: Substitution of Halogen by Hydrogen</td>
<td>384</td>
</tr>
<tr>
<td>9.10.1.4.2</td>
<td>Method 2: Substitution of Halogen by Lithium</td>
<td>385</td>
</tr>
<tr>
<td>9.10.1.4.3</td>
<td>Method 3: Substitution of Halogen by Alkoxyl or Sulfanyl Groups</td>
<td>386</td>
</tr>
<tr>
<td>9.10.1.4.4</td>
<td>Method 4: Metal-Assisted Cross Coupling of Halothiophenes with Alkenes, Arenes, and Alkynes</td>
<td>387</td>
</tr>
<tr>
<td>9.10.1.4.4.1</td>
<td>Variation 1: Manganese-Assisted Coupling Reactions</td>
<td>387</td>
</tr>
<tr>
<td>9.10.1.4.4.2</td>
<td>Variation 2: Zinc-Assisted Coupling Reactions</td>
<td>388</td>
</tr>
<tr>
<td>9.10.1.4.4.3</td>
<td>Variation 3: Palladium-Assisted Coupling Reactions</td>
<td>388</td>
</tr>
<tr>
<td>9.10.1.5</td>
<td>Modification of α-Substituents</td>
<td>389</td>
</tr>
<tr>
<td>9.10.1.5.1</td>
<td>Method 1: Enolization of Dihydrothiophene-2,5-diones</td>
<td>390</td>
</tr>
<tr>
<td>9.10.1.5.2</td>
<td>Method 2: Aromatization of Dihydrothiophen-3(2H)-ones</td>
<td>391</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
<td>------</td>
</tr>
<tr>
<td>9.10.4.5.3</td>
<td>Method 3: Side-Chain Bromination of Alkylthiophenes</td>
<td>392</td>
</tr>
<tr>
<td>9.10.2</td>
<td>Product Subclass 2: Thiophene 1,1-Dioxides</td>
<td>393</td>
</tr>
<tr>
<td>9.10.2.1</td>
<td>Synthesis by Ring Transformation</td>
<td>394</td>
</tr>
<tr>
<td>9.10.2.1.1</td>
<td>Method 1: Oxidation of Thiophenes</td>
<td>394</td>
</tr>
<tr>
<td>9.10.2.2</td>
<td>Aromatization</td>
<td>395</td>
</tr>
<tr>
<td>9.10.2.2.1</td>
<td>Method 1: From Dihydro- or Tetrahydrothiophene 1,1-Dioxides by Elimination</td>
<td>395</td>
</tr>
<tr>
<td>9.10.2.2.1.1</td>
<td>Variation 1: From Dihydro- or Tetrahydrothiophene 1,1-Dioxides by Hydrogen Halide Elimination</td>
<td>395</td>
</tr>
<tr>
<td>9.10.2.2.1.2</td>
<td>Variation 2: From Dihydro- or Tetrahydrothiophene 1,1-Dioxides by Nitrous Acid Elimination</td>
<td>396</td>
</tr>
<tr>
<td>9.10.3</td>
<td>Product Subclass 3: Thiophene 1-Oxides</td>
<td>396</td>
</tr>
<tr>
<td>9.10.3.1</td>
<td>Synthesis by Ring Transformation</td>
<td>397</td>
</tr>
<tr>
<td>9.10.3.1.1</td>
<td>Formal Exchange of Ring Members</td>
<td>397</td>
</tr>
<tr>
<td>9.10.3.1.1.1</td>
<td>Method 1: From Zirconocenes</td>
<td>397</td>
</tr>
<tr>
<td>9.10.3.1.2</td>
<td>Oxidation of Thiophenes</td>
<td>398</td>
</tr>
<tr>
<td>9.10.3.1.2.1</td>
<td>Method 1: Oxidation of Thiophenes</td>
<td>398</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.11</td>
<td>Product Class 11: Selenophenes</td>
<td>423</td>
</tr>
<tr>
<td>9.11</td>
<td>J. Schatz</td>
<td></td>
</tr>
<tr>
<td>9.11.1</td>
<td>Synthesis by Ring-Closure Reactions</td>
<td>425</td>
</tr>
<tr>
<td>9.11.1.1</td>
<td>By Formation of Two Se—C Bonds</td>
<td>425</td>
</tr>
<tr>
<td>9.11.1.1.1</td>
<td>Method 1: Reaction of C₄ Building Blocks with Sources of Selenium</td>
<td>425</td>
</tr>
<tr>
<td>9.11.1.1.1.1</td>
<td>Variation 1: Reaction of 1,4-Dilithio- or 1,4-Diodobutadienes with a Selenium Source</td>
<td>425</td>
</tr>
<tr>
<td>9.11.1.1.1.2</td>
<td>Variation 2: Reaction of Butadiynes with Selenides</td>
<td>425</td>
</tr>
<tr>
<td>9.11.1.1.1.3</td>
<td>Variation 3: Reaction of 1-Alkynyl-2-bromobenzenes with Elemental Selenium</td>
<td>425</td>
</tr>
<tr>
<td>9.11.1.1.1.4</td>
<td>Variation 4: Reaction of Chloroalkynols or Alkynyloxiranes with Selenides</td>
<td>426</td>
</tr>
<tr>
<td>9.11.1.2</td>
<td>By Formation of Two C—C Bonds</td>
<td>427</td>
</tr>
<tr>
<td>9.11.1.2.1</td>
<td>Fragments C—Se—C and C—C</td>
<td>428</td>
</tr>
<tr>
<td>9.11.1.2.1.1</td>
<td>Method 1: From 1,2-Diketones and a Selenodiacetate (Hinsberg Synthesis)</td>
<td>428</td>
</tr>
<tr>
<td>9.11.1.3</td>
<td>By Formation of One C—C Bond</td>
<td>428</td>
</tr>
<tr>
<td>9.11.1.3.1</td>
<td>Fragment C—C—Se—C—C</td>
<td>428</td>
</tr>
<tr>
<td>9.11.1.3.1.1</td>
<td>Method 1: Reductive Cyclization of Diphenacyl Selenides</td>
<td>428</td>
</tr>
</tbody>
</table>
9.11.2 Synthesis by Formal Exchange of Ring Members .. 429
9.11.2.1 Method 1: Exchange of Zirconium by Selenium 429
9.11.3 Synthesis by Substituent Modification .. 430

9.12 Product Class 12: Tellurophenes
J. Schatz

9.12 Product Class 12: Tellurophenes ... 433
9.12.1 Synthesis by Ring-Closure Reactions ... 435
9.12.1.1 By Formation of Two Te—C Bonds ... 435
9.12.1.1.1 Method 1: Reaction of C4 Building Blocks with Sources of Tellurium 435
9.12.1.1.1.1 Variation 1: Reaction of 1,4-Dilithio- or 1,4-Diodobutadienes with a Tellurium Source .. 435
9.12.1.1.1.2 Variation 2: Reaction of Butadiynes with Tellurides 435
9.12.1.1.1.3 Variation 3: Reaction of 1-Alkynyl-2-bromobenzenes or But-1-en-3ynes with Elemental Tellurium 436
9.12.1.1.1.4 Variation 4: Reaction of Chloroalkynols with Tellurides 437
9.12.1.2 By Formation of One C—C Bond ... 438
9.12.1.2.1 Fragment C—Te—C—C—C ... 438
9.12.1.2.1.1 Method 1: Cyclization of 3-(Alkyltellanyl)propenals 438
9.12.1.2.1.2 Synthesis by Substituent Modification ... 438

9.13 Product Class 13: 1H-Pyrroles
D. St. C. Black

9.13 Product Class 13: 1H-Pyrroles ... 441
9.13.1 Synthesis by Ring-Closure Reactions ... 444
9.13.1.1 By Formation of Two N—C Bonds and One C—C Bond 444
9.13.1.1.1 Fragment N and Two C—C Fragments ... 444
9.13.1.1.1.1 Method 1: Condensation Reaction of β-Dicarbonyl Compounds, α-Halo Carbonyl Compounds and Amines (The Hantzsch Synthesis) 444
9.13.1.1.1.2 Method 2: Condensation Reaction of Benzyl Ketones, Benzoins, and Ammonia ... 446
9.13.1.1.1.3 Method 3: Condensation Reaction of Aliphatic Aldehydes or Ketones and Hydrazines (The Piloty Synthesis) 447
9.13.1.2 By Formation of One N—C Bond and Two C—C Bonds 449
9.13.1.2.1 Fragments N—C, C—C, and C .. 449
9.13.1.2.1.1 Method 1: Reaction of Trimethylsilyl Cyanide with Alkynes, Catalyzed by Palladium(II) or Nickel(II) Chloride 449
9.13.1.2.1.2 Method 2: Reaction of Zirconium and Titanium Complexes with Alkynes and Carbonyl Compounds 450
9.13.1.2.1 Variation 1: Reaction of Zirconocene Derivatives of Alkylamines with Alkenes and Carbon Monoxide .. 450

9.13.1.2.2 Variation 2: Reaction of Zirconocene Derivatives of C-Silyl Imine Compounds with Alkenes and Acyl Chlorides .. 451

9.13.1.2.3 Variation 3: Reaction of Titanium Alkyne Complexes with Imines and Carbon Monoxide .. 452

9.13.1.2.4 Method 3: Reaction of Terminal Alkynes with Imines and Tungsten±Carbene Complexes .. 452

9.13.1.3 By Formation of Three C—C Bonds .. 454

9.13.1.3.1 Fragment C—N—C and Two C Fragments .. 454

9.13.1.3.1 Method 1: Reaction of Alkyl Isocyanoacetates with Aldehydes .. 454

9.13.1.3.2 By Formation of Two N—C Bonds .. 455

9.13.1.4 Fragments C—C—C and N .. 455

9.13.1.4.1 Method 1: Condensation Reactions of 1,4-Dicarbonyl Compounds or Equivalents with Amines (The Paal±Knorr Synthesis) .. 455

9.13.1.4.2 Method 2: Reaction of 4-Substituted Carbonyl Compounds or Equivalents with Amines .. 458

9.13.1.4.3 Method 3: Reaction of Alk-2-enyl Carbonyl Compounds or Equivalents with Amines .. 459

9.13.1.4.4 Method 4: Reaction of Alk-3-ynyl Carbonyl Compounds with Amines .. 461

9.13.1.4.5 Method 5: Reaction of Buta-1,3-dienes and Related Compounds with Amines .. 461

9.13.1.4.6 Method 6: Reaction of Buta-1,3-diynes with Amines .. 462

9.13.1.4.7 Method 7: Pyrrol-2-amines from the Reaction of Functionalized Nitriles with Amines .. 463

9.13.1.4.8 Method 8: 2-(Benzotriazolylmethyl)pyrroles from the Reaction of Alkynylloxiranes with Amines .. 464

9.13.1.5 By Formation of One N—C and One C—C Bond .. 465

9.13.1.5.1 Fragments N—C—C and C .. 465

9.13.1.5.1 Method 1: Reaction of α,β-Unsaturated Imines with Esters and Niobium(III) Chloride .. 465

9.13.1.5.2 Method 2: Reaction of α,β-Unsaturated Imine Iron±Tricarbonyl Complexes with Methylithium .. 466

9.13.1.5.3 Method 3: Hydroformylation and a Related Reaction of Propargylamines .. 466

9.13.1.5.4 Method 4: Reaction of β-Amino Ketones with Diazo(trimethylsilyl)methane .. 467

9.13.1.5.5 Method 5: 3-Aminopyrrole-2,4-dicarbonitriles from the Reaction of Alkylidenemalononitriles with Aminoacetonitriles .. 468

9.13.1.5.2 Fragments N—C—C and C—C .. 469

9.13.1.5.2.1 Method 1: Condensation Reaction of α-Amino Ketones with Methylene-Active Carbonyl Compounds (The Knorr Pyrrole Synthesis) .. 469

9.13.1.5.2.2 Method 2: Condensation Reaction of Enamino Esters with α-Electrophilic Carbonyl Compounds and their Synthetic Equivalents .. 472
9.13.1.5.2.3 Method 3: Reaction of Enamino Esters with α-Diazo Ketones 474
9.13.1.5.2.4 Method 4: Reaction of Oximes (and Hydrazones) with Alkynes 474
9.13.1.5.2.5 Method 5: Reaction of Azoketones with Methylene Ketones 475
9.13.1.5.2.6 Method 6: Combination of α-Amino Carbonyl Compounds and Enolates via Aldol Reactions .. 476
9.13.1.5.2.7 Method 7: Reaction of α-Metalated Imines with α-Halo Ketones or α-Diketones 478
9.13.1.5.3 Fragments N—C and C—C—C .. 481
9.13.1.5.3.1 Method 1: Reaction of α-Aminocarbonyl or α-Iminoacyl Compounds with 1,3-Diketones or Equivalents ... 481
9.13.1.5.3.2 Method 2: Reaction of Benzotriazole Enamines with Imines 486
9.13.1.5.3.3 Method 3: Reaction of Allenes with Tosylimines .. 486
9.13.1.6 By Formation of Two C—C Bonds .. 487
9.13.1.6.1 Fragments C—N—C—C and C .. 487
9.13.1.6.1.1 Method 1: Reaction of 2-Arylvinyl Isocyanides with Carbon Nucleophiles 487
9.13.1.6.2 Fragments C—N—C—C and C .. 488
9.13.1.6.2.1 Method 1: Aldol Reaction of α-Diketones with Bis(acceptor-substituted methyl)amines .. 488
9.13.1.6.2.2 Method 2: Reaction of α-Amidonitriles with Vinylphosphonium Salts 488
9.13.1.6.2.3 Method 3: Reaction of Isocyanostabilized Acetates, Acetonitriles, or Methylphosphonates with Nitroalkenes ... 489
9.13.1.6.2.4 Method 4: Reaction of Tosylmethyl Isocyanide with Electrophilic Alkenes 491
9.13.1.6.2.5 Method 5: Reaction of N-(Tosylmethyl)- or N-(Benzotriazolylmethyl)-Substituted Imidothioates with Electrophilic Alkenes 494
9.13.1.6.2.6 Method 6: Reaction of Azomethine Ylides or Related Systems with Alkynes or Alkenes ... 495
9.13.1.6.2.7 Method 7: Reaction of Chromium±(Alkylidenamino)carbene Complexes with Alkynes .. 498
9.13.1.7 By Formation of One N—C Bond .. 498
9.13.1.7.1 Fragment N—C—C—C—C .. 498
9.13.1.7.1.1 Method 1: Cyclizative Condensations .. 498
9.13.1.7.1.2 Method 2: Cyclization of Alk-4-yn-1-amine .. 500
9.13.1.7.1.3 Method 3: Cyclization of Dienyl Azides .. 501
9.13.1.8 By Formation of One C—C Bond ... 502
9.13.1.8.1 Fragment C—N—C—C—C .. 502
9.13.1.8.2 Fragment C—C—N—C—C .. 503
9.13.1.8.2.1 Method 1: Reactions Involving Typical C—C Bond Construction 503
9.13.1.9 Synthesis by Ring Transformation .. 504
9.13.1.9.1 By Ring Enlargement .. 504
9.13.1.9.1.2 Method 2: Rearrangement of 2-Vinyl-2H-azirines .. 504
9.13.2.2 By Ring Contraction ... 505
9.13.2.2.1 Method 1: Rearrangement of Pyridine and 1,3-Oxazepine Derivatives 505
9.13.3 Synthesis by Aromatization ... 505
9.13.3.1 By Reduction ... 506
9.13.3.1.1 Method 1: Reduction–Dehydration of 1H-Pyrrol-2(5H)-ones and 1H-Pyrrol-2(3H)-one ... 506
9.13.3.2 By Elimination ... 506
9.13.3.2.1 Method 1: Elimination from Substituted 3,4-Dihydro-2H-pyrroles ... 506
9.13.3.3 By Isomerization ... 508
9.13.3.3.1 Method 1: Rearrangement of 2H-Pyrroles ... 508
9.13.3.4 By Dehydrogenation ... 508
9.13.3.4.1 Method 1: Dehydrogenation of Dihydro- and Tetrahydropyrroles ... 508
9.13.4 Synthesis by Substituent Modification .. 509
9.13.4.1 Substitution of Existing Substituents ... 509
9.13.4.1.1 Substitution of Hydrogen ... 509
9.13.4.1.1.1 Method 1: Metalation ... 509
9.13.4.1.1.2 Method 2: CAcylation ... 509
9.13.4.1.1.3 Method 3: CAlkylation ... 513
9.13.4.1.1.3.1 Variation 1: CAlkylation by Typical Electrophiles 513
9.13.4.1.1.3.2 Variation 2: CAlkylation (and Arylation) by Carbenes and Free Radicals ... 514
9.13.4.1.1.3.3 Variation 3: CAlkylation by Various Electrophiles 516
9.13.4.1.1.4 Method 4: CHalogenation ... 518
9.13.4.1.1.5 Method 5: CThiolation ... 520
9.13.4.1.1.6 Method 6: CNitration and Amination .. 520
9.13.4.1.1.7 Method 7: N-Substitution ... 521
9.13.4.1.2 Substitution of Metals ... 524
9.13.4.1.2.1 Method 1: Substitution Reactions Involving Mercury and Thallium Derivatives ... 525
9.13.4.1.2.2 Method 2: Substitution Reactions Involving Organocopper and Organozinc Derivatives ... 526
9.13.4.1.2.3 Method 3: Substitution Reactions Involving Organopalladium Derivatives ... 527
9.13.4.1.2.4 Method 4: Substitution Reactions Involving Organolithium Derivatives ... 530
9.13.4.1.3 Substitution of Carbon Functionalities .. 532
9.13.4.1.3.1 Method 1: Reactions Involving Decarboxylation from a Ring Carbon ... 532
9.13.4.1.3.2 Method 2: Reactions Involving Dealkylation from the Ring Nitrogen ... 532
9.13.4.1.3.3 Method 3: Reactions Involving Detritylation from the Ring Nitrogen ... 533
9.13.4.1.4 Substitution of Heteroatoms ... 534
9.13.4.1.4.1 Method 1: Replacement of Tosyl by Trialkylstannyl Groups on a Ring Carbon ... 534
9.13.4.1.4.2 Method 2: Replacement of Sulfur and Silyl Groups on the Ring Nitrogen ... 534
9.13.4.2 Modification of Substituents ... 535
4.2.1 Modification of Acyl Substituents

4.2.1.1 Method 1: Reduction of Acyl Groups to Alkyls

4.2.1.2 Method 2: Addition and Condensation Reactions of Acyl Groups

4.2.1.3 Method 3: Rearrangement of Acyl Groups

4.2.2 Modification of Alkyl Substituents

4.2.2.1 Method 1: Substitution Reactions of Mannich Bases

4.2.2.2 Method 2: Alkylation of \(\alpha \)-Methylene Substituents

4.2.2.3 Method 3: Halogenation of \(\alpha \)-Methylene Substituents

4.2.2.4 Method 4: Oxidation of \(\alpha \)-Methylene Substituents

9.14 Product Class 14: Phospholes

F. Mathey

9.14.1 Product Subclass 1: \(\lambda^3 \)-1H-Phospholes

9.14.1.1 Synthesis by Ring-Closure Reactions

9.14.1.1.1 By Formation of Two P—C Bonds and One C—C Bond

9.14.1.1.1.1 Method 1: Reaction of Dihalophosphines with Enamines

9.14.1.1.2 By Formation of Two P—C Bonds

9.14.1.1.2.1 Fragments C—C—C and P

9.14.1.1.2.1.1 Method 1: Reaction of Dilithiophosphines with 1,4-Dihalo-Substituted 1,3-Dienes

9.14.1.1.2.1.2 Method 2: Reaction of Dihalophosphines with 1,4-Dilithio-Substituted 1,3-Dienes

9.14.1.1.2.1.3 Method 3: Reaction of Primary Phosphines with 1,3-Dienes

9.14.1.1.2.1.4 Method 4: Thermal Reaction of Dihalophosphines with 1,3-Dienes

9.14.1.1.2 Synthesis by Ring Transformation

9.14.1.1.2.1 Method 1: Reaction of Dihalophosphines with Metallacyclopentadienes

9.14.1.1.2.2 Method 2: Insertion of Alkynes into Phosphirenes

9.14.1.1.3 Aromatization

9.14.1.1.3.1 Method 1: Dehalogenation of P-Halophosphonium Salts Obtained from Dihalophosphines and Cyclobutadiene-Aluminum Trichloride Complexes

9.14.1.1.3.2 Method 2: Dehydrohalogenation of 1-Halodihydrophosphonium Halides

9.14.1.1.3.2.1 Variation 1: P-Bromination of 2,5-Dihydro-\(\lambda^3 \)-1H-phospholes Followed by Dehydrobromination

9.14.1.1.3.2.2 Variation 2: Quaternization of 1-Bromo-2,5-dihydro-1H-phospholes Followed by Dehydrobromination

9.14.1.1.3.3 Method 3: Dehydrohalogenation of \(\lambda \)-Halophospholane 1-Oxides

9.14.1.1.4 Synthesis by Substituent Modification

9.14.1.1.4.1 Addition Reactions
9.14.1.1 Method 1: Reaction of Electrophiles with Phospholide Ions 569
9.14.1.2 Method 2: α-Functionalization of 1H-Phosphol-2-ylithiums 573
9.14.1.2 Substitution of Existing Substituents 575
9.14.1.2.1 Method 1: Reaction of Nucleophiles with Phospholes 575
9.14.1.2.2 Method 2: Transformation of α-Substituents 576
9.14.1.2.3 Method 3: Reduction of λ3-Phospholes 576
9.14.1.3 Decomplexation and Thermolysis 578
9.14.1.3.1 Method 1: Decomplexation of Phosphole λ3-Complexes 578
9.14.1.3.2 Method 2: Thermolysis of λ3-Phospholes 579
9.14.2 Product Subclass 2: Phospholide Ions 581
9.14.2.1 Aromatization 582
9.14.2.1.1 Method 1: Cleavage of the Exocyclic P–R Bond of λ3-1H-Phospholes 582
9.14.2.1.2 Method 2: Deprotonation of Transient 2H-Phospholes 583
9.14.2.2 Method 2: Transformation of α-Substituents 576
9.14.2.3 Method 3: Reduction of λ3-Phospholes 576
9.14.2.3 Decomplexation and Thermolysis 578
9.14.2.3.1 Method 1: Decomplexation of Phosphole λ3-Complexes 578
9.14.2.3.2 Method 2: Thermolysis of λ3-Phospholes 579
9.14.3 Product Subclass 3: η5-Phospholyl Complexes 585
9.14.3.1 Synthesis by Ring-Closure Reactions 588
9.14.3.1.1 Method 1: Assembly of a Phospholyl Ring 588
9.14.3.2 Synthesis by Complexation 588
9.14.3.2.1 Method 1: From Phospholide Ions 588
9.14.3.2.2 Method 2: From λ3-1H-Phospholes 592
9.14.3.2.3 Method 3: From λ3-2H-Phospholes 593
9.14.3.3 Synthesis by Substituent Modification 594
9.14.3.3.1 Method 1: Electrophilic Substitution 594
9.14.3.3.2 Method 2: Modification of α-Substituents 595

Keyword Index 601
Author Index 613
Abbreviations 659