Introduction
R. C. Storr and T. L. Gilchrist ... 1

13.1 Product Class 1: 1,2,5-Oxathiazoles, 1,2,3-Dithiazoles, and Related Compounds
N. G. Argyropoulos .. 9

13.2 Product Class 2: 1,2,4-Dioxazoles, 1,2,4-Oxathiazoles, and 1,2,4-Dithiazoles
N. G. Argyropoulos .. 29

13.3 Product Class 3: 1,3,2-Oxathiazoles, 1,3,2-Dithiazoles, and Related Compounds
N. G. Argyropoulos .. 73

13.4 Product Class 4: 1,4,2-Oxathiazoles and Related Compounds
N. G. Argyropoulos .. 95

13.5 Product Class 5: 1,2,3-Oxadiazoles
T. L. Gilchrist ... 109

13.6 Product Class 6: 1,2,4-Oxadiazoles
K. Hemming ... 127

13.7 Product Class 7: 1,2,5-Oxadiazoles
R. M. Paton ... 185

13.8 Product Class 8: 1,3,4-Oxadiazoles
G. W. Weaver ... 219

13.9 Product Class 9: 1,2,3-Thiadiazoles
D. J. Wilkins and P. A. Bradley .. 253

13.10 Product Class 10: 1,2,4-Thiadiazoles
D. J. Wilkins and P. A. Bradley .. 277

13.11 Product Class 11: 1,2,5-Thiadiazoles and Related Compounds
P. A. Koutentis ... 297

13.12 Product Class 12: 1,3,4-Thiadiazoles
S. J. Collier ... 349

13.13 Product Class 13: 1,2,3-Triazoles
A. C. Tomé ... 415
<table>
<thead>
<tr>
<th>Section</th>
<th>Product Class</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.14</td>
<td>14: 1,2,4-Triazoles</td>
<td>A. D. M. Curtis</td>
<td>603</td>
</tr>
<tr>
<td>13.16</td>
<td>16: Oxazaphospholes and Thiazaphospholes</td>
<td>R. K. Bansal and Neelima Gupta</td>
<td>647</td>
</tr>
<tr>
<td>13.17</td>
<td>17: Oxadiphospholes and Their Analogues</td>
<td>S. J. Collier</td>
<td>659</td>
</tr>
<tr>
<td>13.18</td>
<td>18: Diazaphospholes and Dazarsoles</td>
<td>R. K. Bansal and Neelima Gupta</td>
<td>689</td>
</tr>
<tr>
<td>13.19</td>
<td>19: Azadiphospholes and Their Analogues</td>
<td>S. J. Collier</td>
<td>717</td>
</tr>
<tr>
<td>13.20</td>
<td>20: Triphospholes and Diphaspharsoles</td>
<td>R. K. Bansal and Neelima Gupta</td>
<td>729</td>
</tr>
<tr>
<td>13.21</td>
<td>21: Thiadiazaphospholes</td>
<td>S. J. Collier</td>
<td>739</td>
</tr>
<tr>
<td>13.22</td>
<td>22: Triazaphospholes</td>
<td>R. K. Bansal and Neelima Gupta</td>
<td>743</td>
</tr>
<tr>
<td>13.23</td>
<td>23: Diazadiphospholes</td>
<td>S. J. Collier</td>
<td>757</td>
</tr>
<tr>
<td>13.24</td>
<td>24: Tetratrophospholes</td>
<td>S. J. Collier</td>
<td>763</td>
</tr>
<tr>
<td>13.25</td>
<td>25: Tetrazaphospholes</td>
<td>S. J. Collier</td>
<td>767</td>
</tr>
<tr>
<td>13.26</td>
<td>26: Pentaphospholes and Pentarsoles</td>
<td>R. K. Bansal and Neelima Gupta</td>
<td>771</td>
</tr>
<tr>
<td>13.27</td>
<td>27: Selenazoles and Tellurazoles Containing One or More Other Heteroatoms</td>
<td>R. A. Aitken</td>
<td>777</td>
</tr>
<tr>
<td>13.28</td>
<td>28: Oxatriazoles</td>
<td>M. Begtrup</td>
<td>823</td>
</tr>
<tr>
<td>13.29</td>
<td>29: Thiatriazoles</td>
<td>M. Begtrup</td>
<td>833</td>
</tr>
<tr>
<td>Product Class</td>
<td>Title</td>
<td>Author</td>
<td>Page</td>
</tr>
<tr>
<td>---------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>------</td>
</tr>
<tr>
<td>13.30</td>
<td>Product Class 30: Tetrazoles</td>
<td>A. F. Brigas</td>
<td>861</td>
</tr>
<tr>
<td>13.31</td>
<td>Product Class 31: Pentazoles</td>
<td>R. C. Storr</td>
<td>917</td>
</tr>
</tbody>
</table>

Keyword Index ... 923

Author Index ... 955

Abbreviations .. 1005
Table of Contents

Introduction
R. C. Storr and T. L. Gilchrist

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.1</td>
<td>Product Class 1: 1,2,5-Oxathiazoles, 1,2,3-Dithiazoles, and Related Compounds</td>
<td>9</td>
</tr>
<tr>
<td>13.1.1</td>
<td>Product Subclass 1: Annulated 1,2,5-Oxathiazoles</td>
<td>9</td>
</tr>
<tr>
<td>13.1.1.1</td>
<td>Synthesis by Ring-Closure Reactions</td>
<td>10</td>
</tr>
<tr>
<td>13.1.1.1.1</td>
<td>By Formation of Two O—S Bonds and One S—C Bond, or One O—S, One S—S, and One S—C Bond</td>
<td>10</td>
</tr>
<tr>
<td>13.1.1.1.1.1</td>
<td>Method 1: 1,6-Dioxa-6α4-thia-2,5-diazapentalenes and 1-Oxa-6,6α4-dithia-2,5-diazapentalenes from 1,3-Dioximes</td>
<td>10</td>
</tr>
<tr>
<td>13.1.2</td>
<td>Product Subclass 2: Monocyclic 1,2,3-Dithiazoles</td>
<td>12</td>
</tr>
<tr>
<td>13.1.2.1</td>
<td>Synthesis by Ring-Closure Reactions</td>
<td>14</td>
</tr>
<tr>
<td>13.1.2.1.1</td>
<td>By Formation of One S—N and One S—C Bond</td>
<td>14</td>
</tr>
<tr>
<td>13.1.2.1.1.1</td>
<td>Method 1: Appel’s Salt from Acetonitrile and Sulfur Monochloride</td>
<td>14</td>
</tr>
<tr>
<td>13.1.2.2</td>
<td>Synthesis by Substituent Modification</td>
<td>15</td>
</tr>
<tr>
<td>13.1.2.2.1</td>
<td>Method 1: From Appel’s Salt and Substituted Phenols or Hydrazines</td>
<td>15</td>
</tr>
<tr>
<td>13.1.3</td>
<td>Product Subclass 3: Annulated 1,2,3-Dithiazoles</td>
<td>16</td>
</tr>
<tr>
<td>13.1.3.1</td>
<td>Synthesis by Ring-Closure Reactions</td>
<td>18</td>
</tr>
<tr>
<td>13.1.3.1.1</td>
<td>By Formation of One S—S and One S—N Bond</td>
<td>19</td>
</tr>
<tr>
<td>13.1.3.1.1.1</td>
<td>Method 1: 1,2,3-Benzodithiazolium Salts from 2-Aminobenzeneethiols and Thionyl Chloride</td>
<td>19</td>
</tr>
<tr>
<td>13.1.3.1.2</td>
<td>By Formation of One S—N and One S—C Bond</td>
<td>20</td>
</tr>
<tr>
<td>13.1.3.1.2.1</td>
<td>Method 1: 1,2,3-Benzodithiazolium Salts (Herz Salts) from Arylamines and Sulfur Monochloride</td>
<td>20</td>
</tr>
<tr>
<td>13.1.3.1.2.2</td>
<td>Method 2: Heteroannulated Herz Salts from Heteroaromatic Amines and Sulfur Monochloride: Synthesis by Annulation to a Heterocyclic Ring</td>
<td>21</td>
</tr>
<tr>
<td>13.1.3.2</td>
<td>Aromatization</td>
<td>23</td>
</tr>
<tr>
<td>13.1.3.2.1</td>
<td>Method 1: 1,2,3-Benzodithiazolium Salts by Oxidation of Benzodithiazolyl Radicals</td>
<td>23</td>
</tr>
</tbody>
</table>
13.1.2.2 Method 2: 1,2,3-Benzodithiazolium Salts by Dehydration of 3H-1,2,3-Benzodithiazole 2-Oxides .. 23
13.1.2.3 Synthesis by Substituent Modification .. 24
13.1.2.3.1 Method 1: From Other 1,2,3-Benzodithiazolium Salts and Amines 24

13.2 Product Class 2: 1,2,4-Dioxazoles, 1,2,4-Oxathiazoles, and 1,2,4-Dithiazoles
N. G. Argyropoulos

13.2.1 Product Class 2: 1,2,4-Dioxazoles, 1,2,4-Oxathiazoles, and 1,2,4-Dithiazoles 29
13.2.1.1 Product Subclass 1: Monocyclic 1,2,4-Dithiazoles 29
13.2.1.2 Synthesis by Ring-Closure Reactions .. 34
13.2.1.2.1 By Formation of One S—S Bond, Two S—C Bonds, and One N—C Bond 34
13.2.1.2.1.1 Method 1: 1,2,4-Dithiazolium Salts from Nitriles and Phosphorus Pentasulfide 34
13.2.1.2.2 By Formation of One S—S and Two S—C Bonds ... 35
13.2.1.2.2.1 Method 1: 3,5-Diaryl-1,2,4-dithiazolium Salts from 1,3-Dichloro-2-azoniaallene Salts and Hydrogen Sulfide 35
13.2.1.2.3 By Formation of One S—S and One S—N Bond 36
13.2.1.2.3.1 Method 1: 3,5-Diaryl-1,2,4-dithiazolium Salts by Oxidation of Aryl Thioamides ... 36
13.2.1.2.3.1.1 Variation 1: Symmetrical 3,5-Diaryl-1,2,4-dithiazolium Salts 36
13.2.1.2.3.1.2 Variation 2: 3,5-Diaryl-1,2,4-Dithiazolium Salts by Oxidation of N-Thioaryl Formamides and Formamidines 37
13.2.1.2.3.1.3 Variation 3: Unsymmetrically Substituted 3,5-Diaryl-1,2,4-dithiazolium Salts from Aryl Thioamide S-Oxides and Thiobenzoic Acid Derivatives .. 38
13.2.1.2.3.1.4 Variation 4: Unsymmetrically Substituted 3,5-Diaryl-1,2,4-dithiazolium Salts from the Oxidative Cyclization of Thiobenzamides 39
13.2.1.2.4 By Formation of One S—S and One S—C Bond 40
13.2.1.2.4.1 Method 1: 1,2,4-Dithiazolium Salts from N-Acylthiourea Derivatives 40
13.2.1.2.4.1.1 Variation 1: 3-Amino-S-aryl-1,2,4-dithiazolium Salts by Oxidation of N-Acylthiourea Derivatives 40
13.2.1.2.4.1.2 Variation 2: 3-Amino-S-aryl-1,2,4-dithiazolium Salts from Transition-Metal-Coordinated N-Acylthioureas and Thionyl Chloride 41
13.2.1.2.5 By Formation of One S—S Bond .. 42
13.2.1.2.5.1 Method 1: 1,2,4-Dithiazolium Salts by Oxidation of Dithiobiurets (Dithioimidodicarbonic Diamides) .. 42
13.2.1.2.5.1.1 Variation 1: Oxidation of Preformed Dithiobiurets 42
13.2.1.2.5.1.2 Variation 2: Synthesis by Oxidation of Dithiobiurets Formed In Situ 44
13.2.1.2.5.1.3 Variation 3: Synthesis from 1,3-Dichloro-2-azaprop-2-eniminium Salts via a Dithiobiuret Intermediate 45
13.2.1.2.5.1.4 Variation 4: Oxidative Dealkylation—Cyclization of Isodithiobiurets 46
13.2.1.5.2 Method 2: 1,2,4-Dithiazolium Salts by Oxidation of Aminocarbonothioyldithiocarbamate Esters 47
13.2.1.5.3 Method 3: 3-Amino-5-aryl-1,2,4-dithiazolium Salts by Oxidation of Transition-Metal Complexes of 1,1-Diethyl-3-thiobenzoylthiourea Derivatives .. 48
13.2.1.6 Synthesis by Ring Transformation ... 48
13.2.1.6.1 Method 1: 1,2,4-Dithiazolium Salts from Thio carbonylimino-1,2,4-dithiazolidines and Alkylating Reagents 48
13.2.1.6.2 Method 2: 1,2,4-Dithiazolium Salts from 1,2,3,4-Thiatri azol-5-amine and O-Aryl Chlorothioformates 50
13.2.1.7 Aromatization ... 51
13.2.1.7.1 Method 1: Hydride Abstraction from 5-Phenyl-3H-1,2,4-dithiazole 51
13.2.1.7.2 Method 2: Alkylation of 3H-1,2,4-Dithiazole-3-thiones and 3H-1,2,4-Dithiazol-3-imines ... 51
13.2.1.7.2.1 Variation 1: Synthesis from 3H-1,2,4-Dithiazole-3-thiones 51
13.2.1.7.2.2 Variation 2: Synthesis by Alkylation of 3H-1,2,4-Dithiazol-3-imines 52
13.2.1.8 Synthesis by Substituent Modification 53
13.2.1.8.1 Method 1: 1,2,4-Dithiazolium Salts by Nucleophilic Substitution of Substituents .. 53
13.2.2 Product Subclass 2: Annulated 1,2,4-Oxathiazoles and 1,2,4-Dithiazoles .. 54
13.2.2.1 Synthesis by Ring-Closure Reactions .. 55
13.2.2.1.1 Synthesis by Double-Cyclization Reactions 56
13.2.2.1.1.1 By Formation of Two S—S and Three S—C Bonds 56
13.2.2.1.1.1.1 Method 1: 2,5-Bis(dimethylamino)-1,6,6aº4-trithia-3,4-diazapentalenes by Thiolysis of N-(Chloro[(1Z)-chloro[(1Z)-chloro(dimethyl amino)methylene]amino]methylene]amino]methylene)-N-methylmethanaminium Chloride .. 56
13.2.2.1.1.1.2 Method 2: By Formation of Two S—S and Two S—C Bonds .. 57
13.2.2.1.1.1.2.1 Method 1: 2,5-Diaryl-1,6,6aº4-trithia-3,4-diazapentalenes from S-Methylisothiourea Derivatives and Phosphorus Pentasulfide 57
13.2.2.1.1.2.1.1 By Formation of Two O—S or Two S—S Bonds 57
13.2.2.1.1.2.1.2 Method 1: 1,6-Dioxo-6aº4-thia-3,4-diazapentalenes by Oxidation of N,Nº-Diacylthiourea Derivatives .. 57
13.2.2.1.1.2.1.3 Method 2: 1,6,6aº-Trithia-3,4-diazapentalenes from Dithiocyanatomethyl Disulfides .. 58
13.2.2.1.1.2 Synthesis by Annulation to a Heterocyclic Ring 59
13.2.2.1.1.2.1 By Formation of Two S—S Bonds and One N—C Bond 59
13.2.2.1.1.2.1.1 Method 1: Heterapentalenes from 1,2,3,4-Thiatriazol-5-amines and Aryl Isothiocyanates .. 59
13.2.2.1.1.2.1.2 Method 2: Heterapentalenes from 1,2,3,4-Thiatriazol-5-amine and O-Aryl Chlorothioformates 60
13.2.2.1.1.2.2 By Formation of One S—S and One S—C Bond 61
13.2.1.2.2.1 Method 1: Trithiazapentalenes by Oxygen–Sulfur Exchange Reactions 61
13.2.1.2.2.1.1 Variation 1: Diazapentalenes by Oxygen–Sulfur Exchange Reactions of 3-Acylimino-3H-1,2,4-oxathiazoles and 3-Acylimino-3H-1,2,4-dithiazoles with Phosphorus Pentasulfide 61
13.2.1.2.2.1.2 Variation 2: 1,6,6a4-Trithia-3-azapentalenes by Oxygen–Sulfur Exchange Reactions of 3H-1,2,4-Dithiazolylidene Derivatives 62
13.2.1.2.2.1.3 Variation 3: 1,6,6a4-Trithia-3-azapentalenes by Oxygen–Sulfur Exchange Reactions of (1,2-Dithiol-3-ylidene)benzamide Derivatives 62
13.2.1.2.3 By Formation of One S–S and One N–C Bond 63
13.2.1.2.3.1 Method 1: Heterapentalenes from N-Aryl-3-imino-3H-1,2,4-dithiazol-5-amines and Aryl Isothiocyanates 63
13.2.1.2.3.2 Method 2: 1,6,6a4-Trithia-3-azapentalenes from 3H-1,2-Dithiol-3-imines and Isothiocyanates 65
13.2.2 Synthesis by Ring Transformation 66
13.2.2.1 Method 1: 5-Aryl-2-(methylsulfanyl)-1,6,6a4-trithia-3,4-diazapentalenes from 1,3,5-Triazinium Salts and Hydrogen Sulfide 66
13.2.3 Synthesis by Substituent Modification 67
13.2.3.1 Method 1: Synthesis of Amino-Substituted 1,6,6a4-Trithia-3,4-diazapentalenes by Nucleophilic Substitution 67

13.3 Product Class 3: 1,3,2-Oxathiazoles, 1,3,2-Dithiazoles, and Related Compounds
N. G. Argyropoulos

13.3 Product Class 3: 1,3,2-Oxathiazoles, 1,3,2-Dithiazoles, and Related Compounds 73
13.3.1 Product Subclass 1: Monocyclic 1,3,2-Oxathiazoles 73
13.3.1.1 Synthesis by Ring-Closure Reactions 75
13.3.1.1.1 By Formation of One S–N and One O–C Bond 75
13.3.1.1.1.1 Fragments C–C–S and N–O 75
13.3.1.1.1.1 Method 1: Mesoionic 1,3,2-Oxathiazolium-5-olates from Aryl(sulfanyl)-acetic Acids by S-Nitrosation and Dehydration 75
13.3.2 Product Subclass 2: Monocyclic 1,3,2-Dithiazoles 76
13.3.2.1 Synthesis by Ring-Closure Reactions 79
13.3.2.1.1 By Formation of Two S–N Bonds 79
13.3.2.1.1.1 Fragments S–C–S and N 79
13.3.2.1.1.1 Method 1: Syntheses of 1,3,2-Dithiazolium Chlorides from Ethane-1,2-disulfenyl Dichlorides 79
13.3.2.1.1.1.1 Variation 1: From 1-Chloroethane-1,2-disulfenyl Dichloride and Bis(trimethylsilyl)sulfur Diimide 79
13.3.2.1.1.1.2 Variation 2: From 1-Chloroethane-1,2-disulfenyl Chlorides and Trimethylsilyl Azide 80
13.3.2.1.2 By Formation of Two S—C Bonds ... 80
13.3.2.1.2.1 Fragments S—N—S and C—C .. 80
13.3.2.1.2.1.1 Method 1: 1,3,2-Dithiazolium Salts by Cycloaddition 80
13.3.2.1.2.1.1.1 Variation 1: 1,3-Dipolar Cycloaddition of the Dithionitronium Cation to Alkynes 80
13.3.2.1.2.1.2 Variation 2: Cycloadditions of Dichlorodithionitronium Hexafluoroarsenate to Alkynes 82
13.3.2.1.2.1.3 Method 2: Mesoionic 1,3,2-Dithiazole-4-imines from Phenylacetylene and Tetrasulfur Tetranitride 83
13.3.2.1.2.1.4 Method 3: Mesoionic 1,3,2-Dithiazole-4-thiones from Alkynes and 1,2,4,6-Tetrathia-3,5,7-triazepinium Chloride 83
13.3.2.2 Aromatization ... 84
13.3.2.2.1 Method 1: 1,3,2-Dithiazolium Salts by Oxidation of 1,3,2-Dithiazolyl Free Radicals .. 84
13.3.2.3 Synthesis by Substituent Modification 85
13.3.2.3.1 Method 1: Mesoionic 1,3,2-Dithiazole-4-thiones from 1,3,2-Dithiazolium Salts and Vice Versa 85
13.3.2.3.2 Method 2: 5-Amino-1,3,2-dithiazole-4-thiones from 1,3,2-Dithiazolium Salts .. 86
13.3.2.3.3 Method 3: Mesoionic 1,3,2-Dithiazol-4-ones by Oxidation of 1,3,2-Dithiazole-4-thiones 87
13.3.3 Product Subclass 3: Annulated 1,3,2-Dithiazoles 88
13.3.3.1 Synthesis by Ring-Closure Reactions 89
13.3.3.1.1 By Annulation to an Arene or a Hetarene 89
13.3.3.1.1.1 By Formation of Two S—N Bonds 89
13.3.3.1.1.1.1 Method 1: 1,3,2-Dithiazolium Salts from Sulfenyl Chlorides and Trimethylsilyl Azide 89
13.3.3.1.1.1.2 Method 2: 1,3,2-Benzodithiazolium Chloride from Benzene-1,2-disulfenyl Dichloride and Bis(trimethylsilyl)sulfur Diimide 91
13.3.3.2 Aromatization ... 92
13.3.3.2.1 Method 1: [1,3,2]Dithiazolo[4,5-b]quinoxalinium Salts by Oxidation of the [1,3,2]Dithiazolo[4,5-b]quinoxalin-2-yl Radical 92
13.3.4 Product Class 4: 1,4,2-Oxathiazoles and Related Compounds N. G. Argyropoulos
13.3.4 Product Class 4: 1,4,2-Oxathiazoles and Related Compounds 95
13.3.4.1 Product Subclass 1: 1,3,4-Oxathiazolium Salts 95
13.3.4.1.1 Synthesis by Ring-Closure Reactions 96
13.3.4.1.1.1 By Formation of One O—C Bond 96
13.3.4.1.1.1.1 Fragment C—N—S—C—O .. 96
13.4.1 Method 1: Synthesis by Intramolecular Cyclization of \(N \)-(Acylsulfanyl)amides 96

13.4.2 Product Subclass 2: 1,4,2-Oxathiazolium Salts 97
13.4.2.1 Aromatization ... 97
13.4.2.1.1 Method 1: Synthesis by Solvolysis of 5H-1,4,2-Oxathiazoles 97

13.4.3 Product Subclass 3: 1,4,2-Dithiazolium Salts 98
13.4.3.1 Synthesis by Ring-Closure Reactions 100
13.4.3.1.1 By Formation of One \(S-N \) Bond .. 100
13.4.3.1.1.1 Method 1: Intramolecular Cyclization of Iminomethyl Dithiocarbamates 100
13.4.3.1.1.1.1 Variation 1: From Aryl{(methylsulfonyl)oxy}imino)methyl Dithiocarbamates ... 100
13.4.3.1.1.1.2 Variation 2: From Bromo(diethylamino)methaniminium Bromide and Sodium Pyrrolidinecarbothioate .. 101
13.4.3.1.2 By Formation of One \(S-C \) Bond .. 102
13.4.3.1.2.1 Fragment \(C-N-S-C-S \) ... 102
13.4.3.1.2.1.1 Method 1: Intramolecular Cyclization of \(N \)-(Thioacylsulfanyl)amides ... 102
13.4.3.2 Aromatization ... 103
13.4.3.2.1 Method 1: By Alkylation of 1,4,2-Dithiazole-5-thiones 103
13.4.3.2.2 Method 2: By Solvolysis of 5H-1,4,2-Dithiazoles 104
13.4.3.3 Synthesis by Substituent Modification 106
13.4.3.3.1 Substitution of Existing Substituents 106
13.4.3.3.1.1 Method 1: Nucleophilic Substitution of 5-Methylsulfanyl Groups from 1,4,2-Dithiazolium Salts .. 106

13.4.4 Product Class 5: 1,2,3-Oxadiazoles .. 109
13.4.4.1 Synthesis by Ring-Closure Reactions 111
13.4.4.1.1 By Formation of One \(O-N \) Bond .. 111
13.4.4.1.1.1 Fragment \(O-C-C-N-N \) .. 111
13.4.4.1.1.1.1 Method 1: From \(\alpha \)-Diazocarbonyl Compounds 111
13.4.4.1.2 By Formation of One \(O-C \) Bond .. 112
13.4.4.1.2.1 Fragment \(O-N-N-C-C \) .. 112
13.4.4.1.2.1.1 Method 1: Via \(N-Nitroso \) Compounds 112
13.4.4.1.2.1.1.1 Variation 1: Sydnones from \(N-Nitroso-\alpha\)-amino Acids 112
13.4.4.1.2.1.1.2 Variation 2: Sydnone Imines from \(N-Nitroso-\alpha\)-amino Nitriles 113
13.4.4.1.2.2 Synthesis by Substituent Modification 114
13.4.4.1.2.2.1 Substitution of Existing Substituents 114

13.5 Product Class 5: 1,2,3-Oxadiazoles
T. L. Gilchrist

13.5.1 Synthesis by Ring-Closure Reactions 111
13.5.1.1 By Formation of One \(O-N \) Bond .. 111
13.5.1.1.1 Fragment \(O-C-C-N-N \) .. 111
13.5.1.1.1.1 Method 1: From \(\alpha \)-Diazocarbonyl Compounds 111
13.5.1.2 By Formation of One \(O-C \) Bond .. 112
13.5.1.2.1 Fragment \(O-N-N-C-C \) .. 112
13.5.1.2.1.1 Method 1: Via \(N-Nitroso \) Compounds 112
13.5.1.2.1.1.1 Variation 1: Sydnones from \(N-Nitroso-\alpha\)-amino Acids 112
13.5.1.2.1.1.2 Variation 2: Sydnone Imines from \(N-Nitroso-\alpha\)-amino Nitriles 113
13.5.2 Synthesis by Substituent Modification 114
13.5.2.1 Substitution of Existing Substituents 114
13.5.2.1.1 Of Hydrogen ... 114
13.5.2.1.1.1 Method 1: By a Metal .. 114
13.5.2.1.1.2 Method 2: By a Carbon Functionality 115
13.5.2.1.1.3 Method 3: By a Heteroatom 116
13.5.2.1.2 Of Organometallic Groups 117
13.5.2.1.2.1 Method 1: By Another Metal 117
13.5.2.1.2.2 Method 2: By a Carbon Functionality 118
13.5.2.1.2.3 Method 3: By a Heteroatom 119
13.5.2.1.3 Of Carbon Functionalities 119
13.5.2.1.3.1 Method 1: By Hydrogen 119
13.5.2.1.4 Of Heteroatoms ... 120
13.5.2.1.4.1 Method 1: By Hydrogen 120
13.5.2.1.4.2 Method 2: By a Metal .. 120
13.5.2.1.4.3 Method 3: By a Carbon Functionality 121
13.5.2.1.4.4 Method 4: By Another Heteroatom 121
13.5.2.2 Modification of Substituents 122
13.5.2.2.1 Method 1: Of Side-Chain α-Carbon Substituents 122
13.5.2.2.2 Method 2: Of Side-Chain α-Heteroatom Substituents 123

13.6 Product Class 6: 1,2,4-Oxadiazoles
K. Hemming

13.6 Product Class 6: 1,2,4-Oxadiazoles 127
13.6.1 Synthesis by Ring-Closure Reactions 128
13.6.1.1 By Formation of One O—C and One N—C Bond 128
13.6.1.1.1 Fragments O—N—C and N—C 128
13.6.1.1.1.1 Method 1: By the 1,3-Dipolar Cycloaddition Reactions of Nitrile Oxides with Nitriles 128
13.6.1.1.1.1 Variation 1: By Using an Aliphatic Nitrile Oxide Generated from a Nitroalkane and Phenyl Isocyanate 129
13.6.1.1.1.2 Variation 2: By Using Nitrile Oxides Generated from Imidoyl Halides (Haloioximes) 130
13.6.1.1.1.2 Method 2: By 1,3-Dipolar Cycloaddition of Nitrile Oxides to Imines, Followed by Aromatization of the Intermediate 4,5-Dihydro-1,2,4-oxadiazole 130
13.6.1.1.2 Fragments C—N—C and N—O 131
13.6.1.1.2.1 Method 1: Via N-Acylamidoximes 131
13.6.1.1.2.1.1 Variation 1: Via N-Acylamidoximes Derived from the Reaction of Amide Precursors with N,N-Dialkylformamide Dialkyl Acetals 132
13.6.1.1.2.1.2 Variation 2: Via N-Acylamidoximes Derived from Nitriles ... 132
13.6.1.1.2.1.3 Variation 3: Via N-Acylamidoximes Derived from N-Acyl Isothiocyanates 133
13.6.1.1.2.1.4 Variation 4: Via N-Acylamidoximes Derived from N-Cyano Compounds .. 134
13.6.1.2.2 Method 2: By Nitrosation of N-Acyl α-Amino Acid Derivatives Bearing Active Hydrogens on a Carbon Atom 135

13.6.1.3 Fragments O—N—C—N and C 136

13.6.1.3.1 Method 1: From an Amidoxime and a Carbonic Acid Derivative 136

13.6.1.3.1.1 Variation 1: From an Amidoxime and a Chloroformate 137

13.6.1.3.1.2 Variation 2: From an Amidoxime and Phosgene 138

13.6.1.3.2 Method 2: From an Amidoxime and a Carboxylic Acid or a Carboxylic Acid Derivative 138

13.6.1.3.2.1 Variation 1: From an Amidoxime and a Carboxylic Acid 139

13.6.1.3.2.2 Variation 2: From an Amidoxime and a Carboxylic Acid Ester 140

13.6.1.3.2.3 Variation 3: From an Amidoxime and an Anhydride 141

13.6.1.3.2.4 Variation 4: From an Amidoxime and an Acid Chloride 142

13.6.1.3.3 Method 3: From an Amidoxime and a Nitrile Derivative 143

13.6.1.3.3.1 Variation 1: From an Amidoxime and an Alkyl or Aryl Nitrile 145

13.6.1.3.3.2 Variation 2: From an Amidoxime and a Cyanate 145

13.6.1.3.3.3 Variation 3: From an Amidoxime and a Cyanogen Halide 145

13.6.1.3.4 Method 4: From an Amidoxime and an Orthoformate 146

13.6.1.3.5 Method 5: From an Amidoxime and a Cumulene or Heterocumulene 147

13.6.1.3.6 Method 6: From an Amidoxime and an Iminium Compound 147

13.6.1.3.7 Method 7: From an Amidoxime and an Imino Ether, Lactim Ether, Imidic Chloride, or Alkoxyimidoyl Compound 149

13.6.1.2 By Formation of One O—N Bond 150

13.6.1.2.1 Fragment O—C—N—C—N 150

13.6.1.2.1.1 Method 1: From Nitrene Precursors 150

13.6.1.2.1.1.1 Variation 1: By Using Nitrenes Derived from N-Acylamidrazones 151

13.6.1.2.1.2 Variation 2: By Using Nitrenes Derived Ultimately from Trimethylsilyl Azide 151

13.6.1.3 By Formation of One O—C Bond 152

13.6.1.3.1 Fragment O—N—C—N—C 152

13.6.1.3.1.1 Method 1: From N-Acylamidoximes 152

13.6.1.3.1.2 Method 2: From N-(Dicyanovinyl)amidoximes 153

13.6.1.3.1.3 Method 3: Cyclization of the Oxime Oxygen onto an Iminium Carbon 153

13.6.1.4 By Formation of One N—C Bond 154

13.6.1.4.1 Fragment N—C—O—N—C 154

13.6.1.4.1.1 Method 1: From Imidates 154

13.6.1.4.2 Fragment N—C—N—O—C 154

13.6.1.4.2.1 Method 1: From O-Acylamidoximes Derived from Amidoximes 154

13.6.1.4.2.2 Method 2: Cyclization of O-Acylamidoximes Formed as Intermediates from Purine Precursors 155

13.6.1.4.2.3 Method 3: Staudinger/Aza-Wittig Reaction of O-Acylazidooximes 156

13.6.2 Synthesis by Ring Transformation 157

13.6.2.1 Method 1: From Tetrazoles 157

13.6.2.2 Method 2: From 1,2,4-Oxadiazoles 158

13.6.2.3 Method 3: From 1,2,5-Oxadiazoles 159
13.6.2.4 Method 4: From Imidazoles .. 159
13.6.3 Aromatization .. 161
13.6.3.1 Method 1: By Dehydrogenation 161
13.6.3.2 Method 2: By the Elimination of HX or YX 162
13.6.4 Synthesis by Substituent Modification 163
13.6.4.1 Substitution of Existing Substituents 163
13.6.4.1.1 Of Hydrogen ... 163
13.6.4.1.1.1 Method 1: By Metals 163
13.6.4.1.2 Of Metals .. 163
13.6.4.1.2.1 Method 1: By Heteroatoms 163
13.6.4.1.3 Of Carbon Functionalities 164
13.6.4.1.3.1 Method 1: By Heteroatoms 164
13.6.4.1.4 Of Heteroatoms .. 165
13.6.4.1.4.1 Method 1: By Carbon 165
13.6.4.1.4.2 Method 2: By Another Heteroatom 165
13.6.4.2 Addition Reactions ... 167
13.6.4.3 Modification of Existing Substituents 167
13.6.4.3.1 Method 1: Modification of Substituents with an α-CH 168
13.6.4.3.1.1 Variation 1: Deprotonation and Reaction of 5-Alkyl Groups 168
13.6.4.3.2 Method 2: Modification of a C3 or C5 Ester Functionality 169
13.6.4.3.2.1 Variation 1: Synthesis of 3-Carbonitrile Derivatives 170
13.6.4.3.2.2 Variation 2: Curtius Reaction 170
13.6.4.3.3 Method 3: Reactions of Halomethyl-Substituted Oxadiazoles 171
13.6.4.3.4 Method 4: Synthesis of 3- and 5-Carbaldehydes, Imines, 172
and Related Derivatives .. 172
13.6.4.3.5 Method 5: Wittig Reactions at the α-Carbon 174
13.6.4.3.6 Method 6: Modification of Nitrogen Substituents 175
13.6.5 Solid-Phase Syntheses ... 176
13.6.5.1 Method 1: Synthesis from Solid-Supported Esters 177
13.6.5.2 Method 2: Synthesis Using Resin-Bound Amidoximes Derived from 178
Resin-Bound Nitriles .. 178

13.7 Product Class 7: 1,2,5-Oxadiazoles
R. M. Paton

13.7 Product Class 7: 1,2,5-Oxadiazoles 185
13.7.1 Product Subclass 1: Monocyclic 1,2,5-Oxadiazoles (Furazans) 185
13.7.1.1 Synthesis by Ring-Closure Reactions 186
13.7.1.1.1 By Formation of One O—N Bond 186
13.7.1.1.1.1 Fragment O—N—C—C—N 186
13.7.1.1.1.1.1 Method 1: From 1,2-Dione Dioximes 186
13.7.1.2 Synthesis by Ring Transformation ... 188
13.7.1.2.1 Method 1: From 1,2,4-Oxadiazoles 188
13.7.1.2.2 Method 2: From Isoxazoles .. 189
13.7.1.3 Synthesis by Substituent Modification .. 189
13.7.1.3.1 Substitution of Existing Substituents ... 190
13.7.1.3.1.1 Method 1: Substitution of Halogens by Nucleophiles 190
13.7.1.3.1.2 Method 2: Deoxygenation of 1,2,5-Oxadiazole 2-Oxides 190
13.7.1.3.1.3 Method 3: Substitution of Nitrogen by Nucleophiles 191
13.7.1.3.2 Modification of Substituents ... 192
13.7.1.3.2.1 Of Oxygen ... 192
13.7.1.3.2.2 Of Sulfur ... 193
13.7.1.3.2.3 Of Nitrogen .. 193
13.7.1.3.2.4 Of Carbon ... 194
13.7.2 Product Subclass 2: 2,1,3-Benzoxadiazoles (Benzofurazans) and Other Annulated 1,2,5-Oxadiazoles .. 194
13.7.2.1 Synthesis by Ring-Closure Reactions ... 195
13.7.2.1.1 By Annulation to an Arene .. 195
13.7.2.1.1.1 By Formation of One O—N Bond 195
13.7.2.1.1.1.1 Fragment O—N—C—C—N ... 195
13.7.2.1.1.1.1.1 Method 1: From Benzo-1,2-quinone Dioximes 195
13.7.2.1.1.1.1.2 Method 2: From 2-Azidonitro- and 2-Azidonitrosoarenes, and 2-Azidoanilines ... 195
13.7.2.1.2 By Annulation to the Heterocyclic Ring 196
13.7.2.2 Synthesis by Ring Transformation ... 197
13.7.2.3 Synthesis by Substituent Modification ... 197
13.7.2.3.1 Substitution of Existing Substituents 197
13.7.2.3.1.1 Method 1: Substitution of Hydrogen 197
13.7.2.3.1.2 Method 2: Substitution of Halogens by Nucleophiles 197
13.7.2.3.2 Modification of Substituents .. 198
13.7.2.3.2.1 Method 1: Deoxygenation of 2,1,3-Benzoxadiazole 1-Oxides 198
13.7.3 Product Subclass 3: Monocyclic 1,2,5-Oxadiazole 2-Oxides (Furoxans) 199
13.7.3.1 Synthesis by Ring-Closure Reactions ... 200
13.7.3.1.1 By Formation of One O—N and One C—C Bond 200
13.7.3.1.1.1 Fragments O—N—C and N—C .. 200
13.7.3.1.1.1.1 Method 1: By Dimerization of Nitrile Oxides 200
13.7.3.1.1.1.1.1 Variation 1: From Nitrile Oxides Generated from Oximes and Hydroximoyl Halides .. 202
13.7.3.1.1.1.1.2 Variation 2: From Nitrile Oxides Generated from Nitrolic Acids and Their Precursors .. 202
13.7.3.1.1.1.1.3 Variation 3: From Nitrile Oxides Generated from Nitroalkyl Compounds . . 203
13.7.3.1.2 By Formation of One O—N Bond ... 203
13.7.3.1.2.1 Fragment O—N—C—C—N ... 203
13.7.3.1.2.1.1 Method 1: From 1,2-Dione Dioximes 203
13.7.3.1.2.1.2 Method 2: From α-Nitro Ketoximes 204
13.7.3.2 Synthesis by Substituent Modification .. 205
13.7.3.2.1 Substitution of Existing Substituents 205
13.7.3.2.1.1 Method 1: Substitution of Halogens by Nucleophiles 205
13.7.3.2.1.2 Method 2: Substitution of Sulfur by Nucleophiles 206
13.7.3.2.1.3 Method 3: Substitution of Nitrogen by Nucleophiles 206
13.7.3.2.2 Modification of Substituents .. 207
13.7.4 Product Subclass 4: 2,1,3-Benzoxadiazole 1-Oxides (Benzofuroxans) and Other Annulated Furoxans ... 207
13.7.4.1 Synthesis by Ring-Closure Reactions 208
13.7.4.1.1 By Annulation to an Arene .. 208
13.7.4.1.1.1 By Formation of One O—N Bond 208
13.7.4.1.1.1.1 Fragment O—N—C—C—N ... 208
13.7.4.1.1.1.1.1 Method 1: From 1,2-Quinone Dioximes 208
13.7.4.1.1.1.2 Method 2: From 2-Nitroanilines 209
13.7.4.1.1.1.3 Method 3: From 2-Nitroaryl Azides 209
13.7.4.1.2 By Annulation to the Heterocyclic Ring 210
13.7.4.2 Synthesis by Ring Transformation .. 211
13.7.4.3 Synthesis by Substituent Modification 211
13.7.4.3.1 Substitution of Existing Substituents 211
13.7.4.3.1.1 Method 1: Substitution of Hydrogen 211
13.7.4.3.1.2 Method 2: Substitution of Halogens by Nucleophiles 212

13.8 Product Class 8: 1,3,4-Oxadiazoles
G. W. Weaver

13.8 Product Class 8: 1,3,4-Oxadiazoles ... 219
13.8.1 Synthesis by Ring-Closure Reactions 220
13.8.1.1 By Formation of Two O—C Bonds .. 220
13.8.1.1.1 Fragments C—N—N—C and O ... 220
13.8.1.1.1.1 Method 1: Oxidation of Diazines with Lead(IV) Acetate 220
13.8.1.2 By Formation of One O—C and One N—C Bond 221
13.8.1.2.1 Fragments N—N—C and O—C ... 221
13.8.1.2.1.1 Method 1: Reaction of Diazo Compounds with Ketones 221
13.8.1.2.2 Fragments O—C—N—N and C ... 222
13.8.1.2.2.1 Method 1: Reaction of Acylhydrazines with Derivatives of Carbonic Acid 222
13.8.1.2.1.1 Variation 1: Use of Carbonyldiimidazole To Effect Cyclization 222
13.8.1.2.1.2 Variation 2: Synthesis of Mesoionic Isosydnones Using Phosgene 223
13.8.1.2.1.3 Variation 3: Cyclization Using Carbon Disulfide 223
13.8.1.2.1.4 Variation 4: Reaction of Acylhydrazines with Cyanogen Bromide 224
13.8.1.2.2 Method 2: Reaction of Acylhydrazines with Carboxylic Acid Derivatives . 225
13.8.1.2.2.1 Variation 1: Reaction with Ortho Esters 225
13.8.1.2.2.2 Variation 2: Reaction with a Carboxylic Acid and 2-Chloro-1,3-dimethyl-
4,5-dihydropyrimidin-2-one Chloride .. 226
13.8.1.2.2.3 Variation 3: Reaction with Imidate Hydrochlorides 227
13.8.1.2.2.3 Method 3: Reaction of Diacyl Diimides with Carbenes 228
13.8.1.3 By Formation of One O—C Bond ... 228
13.8.1.3.1 Fragment O—C—N—N—C .. 228
13.8.1.3.1.1 Method 1: From Diacylhydrazine Compounds 228
13.8.1.3.1.1.1 Variation 1: Dehydration Using Phosphoric Acid Derivatives 229
13.8.1.3.1.1.2 Variation 2: Dehydration Using Polyphosphoric Acid 229
13.8.1.3.1.1.3 Variation 3: Dehydration Using Thiouyl Chloride 230
13.8.1.3.1.1.4 Variation 4: Dehydration Using Carbodiimides 231
13.8.1.3.1.1.5 Variation 5: Thermal Dehydration 232
13.8.1.3.1.1.6 Variation 6: Dehydration Using Triphenylphosphine and
Carbon Tetrachloride ... 232
13.8.1.3.1.1.7 Variation 7: Dehydration Using Hexamethyldisilazane 233
13.8.1.3.1.1.8 Variation 8: Dehydration Using Trifluoromethanesulfonic Anhydride 234
13.8.1.3.1.1.9 Variation 9: Dehydration Using Tosyl Chloride 234
13.8.1.3.1.1.10 Variation 10: Dehydration Using 2-Chloro-1,3-dimethyl-
4,5-dihydropyrimidin-2-one Chloride .. 235
13.8.1.3.1.1.11 Variation 11: Dehydration Using Burgess-Type Reagents 235
13.8.1.3.1.1.12 Method 2: Synthesis of 1,3,4-Oxadiazolamines from Acyl Semicarbazides 236
13.8.1.3.1.1.12.1 Variation 1: Cyclization Using Carbodiimides 236
13.8.1.3.1.2 Variation 2: Desulfurization with Mercury(II) Acetate under
Microwave Irradiation ... 237
13.8.1.3.1.3 Method 3: Oxidation of Aldehyde Acyl Hydrazones 238
13.8.1.3.1.3.1 Variation 1: Oxidation with Lead(IV) Oxide 238
13.8.1.3.1.3.2 Variation 2: Oxidation with Lead(IV) Acetate 239
13.8.1.3.1.3.3 Variation 3: Oxidation with Bromine 240
13.8.1.3.1.4 Method 5: Ring Closure by Internal Alkylation 241
13.8.2 Synthesis by Ring Transformation ... 242
13.8.2.1 Method 1: Reactions of Azirines with Acylhydrazines 242
13.8.2.2 Method 2: By Photochemical Rearrangement of
Substituted 1,2,4-Oxadiazoles .. 242
13.8.2.3 Method 3: Reactions of Tetrazoles with Carboxylic Acid Derivatives ... 243
13.8.2.3.1 Variation 1: Reaction with Acetic Anhydride 243
13.8.2.3.2 Variation 2: Reaction with Carboxylic Acid Chlorides 244
13.8.2.4 Method 4: Reactions of 1,2,4-Triazines with Bromine 245
13.8.3 Synthesis by Substituent Modification 245
13.8.3.1 Substitution of Existing Substituents 245
13.8.3.1 Of Hydrogen ... 245
13.8.3.1.1 Acylation Reactions ... 245
13.8.3.1.2 Of Heteroatoms .. 246
13.8.3.2 Method 1: Displacement of Chlorine by Nucleophiles 246
13.8.3.2.1 Protonation .. 247
13.8.3.2.2 N-Alkylation .. 247
13.8.3.2.3 N-Acylation .. 247
13.8.3.3 Method 1: Lithiation of a Methyl Substituent, Silylation, and Peterson Alkenation with a Ketone 249

13.9 Product Class 9: 1,2,3-Thiadiazoles
D. J. Wilkins and P. A. Bradley

13.9 Product Class 9: 1,2,3-Thiadiazoles 253
13.9.1 Product Subclass 1: Monocyclic 1,2,3-Thiadiazoles 253
13.9.1.1 Synthesis by Ring-Closure Reactions 255
13.9.1.1.1 Method 1: Wolff’s Synthesis ... 255
13.9.1.1.2 Method 2: Hurd–Mori Synthesis 256
13.9.1.1.2.1 Variation 1: Use of Thionyl Chloride in the Hurd–Mori Procedure 256
13.9.1.1.2.2 Variation 2: Use of Sulfur Dichloride or Sulfur Monochloride in the Hurd–Mori Procedure 257
13.9.1.1.2 Variation 2: Use of Sulfur Dichloride or Sulfur Monochloride in the Hurd–Mori Procedure 257
13.9.1.2 By Formation of One S—N and One C—C Bond 258
13.9.1.2.1 Method 1: Pechmann and Nold Synthesis 258
13.9.1.2.1.1 Variation 1: Reaction of Isothiocyanates with Diazo Compounds 258
13.9.1.2.1.2 Variation 2: Modified Pechmann Synthesis 259
13.9.1.2.1.3 Variation 3: Use of Lithium (Trimethylsilyl)diazomethane 260
13.9.1.2 Synthesis by Ring Transformation 261
13.9.1.2.1 Method 1: Synthesis From 1,2,3-Triazolethiols 261
13.9.1.2.2 Method 2: Synthesis From 1,2,3-Oxadiazoles 262
13.9.1.2.3 Method 3: From Isothiazolones 262
13.9.1.3 Synthesis by Substituent Modification 263
13.9.1.3.1 Method 1: Transformations Involving Metalation and Subsequent Electrophilic Quench 263
13.9.1.3.2 Method 2: Removal of Carbonyl Substituents 264
13.9.1.3.3 Method 3: Transformations Involving Diazonium Intermediates 265
13.9.2.1 Method 1: From 2-Aminobenzenethiols 268
13.9.2.1.2 Method 2: Reaction of Diazo Oxides with Phosphorus Pentasulfide 268
13.9.2.2 Synthesis by Ring Transformation 269
13.9.2.2.1 Method 1: Synthesis from Dithiazoles 269
13.9.2.2.2 Method 2: Synthesis from 1,2-Benzothiadiazol-7-amines 270
13.9.2.2.3 Method 3: Synthesis From 1,3-Benzothiazol-7-amines 271
13.9.2.2.4 Method 4: Synthesis From 1,2,3-Benzothiadiazol-7-amines 272

13.10 Product Class 10: 1,2,4-Thiadiazoles
D. J. Wilkins and P. A. Bradley

13.10.1 Synthesis by Ring-Closure Reactions 279
13.10.1.1 By Formation of One S—N, One S—C, and One N—C Bond 279
13.10.1.1.1 Fragments C—N, C—N, and S 279
13.10.1.1.1 Method 1: Reaction of Nitriles with Sulfur 279
13.10.1.1.2 Method 2: Reaction of Nitriles with Sulfur Dichloride 279
13.10.1.2 By Formation of One S—N and One N—C Bond 280
13.10.1.2.1 Fragments N—C—S and N—C 280
13.10.1.2.1 Method 1: Oxidation of Thioamides 280
13.10.1.2.2 Fragments N—C—N and C—S 281
13.10.1.2.2.1 Method 1: Oxidation of N-Arylthioureas and N-Alkylthioureas 281
13.10.1.2.2.2 Method 2: Reaction of Amidoximes and Related Derivatives 282
13.10.1.2.2.3 Variation 1: Amidoximes and Isothiocyanates 282
13.10.1.2.2.3 Variation 2: Reaction of Amidoximes with Carbon Disulfide 283
13.10.1.2.2.3 Variation 3: Reaction of N-Sulfinylamidines with Isothiocyanates 283
13.10.1.2.2.3 Method 3: Synthesis from Amidines 284
13.10.1.2.2.3.1 Variation 1: Reaction of Amidines with Carbon Disulfide 284
13.10.1.2.2.3.2 Variation 2: Reaction of Amidines with Trichloromethylsulfenyl Chloride 285
13.10.1.2.3 Fragments C—N—C—S and N ... 285
13.10.1.2.3.1 Method 1: From Thioimidates with Chloramine 285
13.10.1.2.3.1.1 Variation 1: Reaction of Cyanthioiminocarbonates with Chloramine 285
13.10.1.2.3.1.2 Variation 2: Reaction of Ethoxycarbonylimidothiocarbonates with Chloramine 286
13.10.1.3 By Formation of One S—C and One N—C Bond 286
13.10.1.3.1 Fragments C—N—S and C—N ... 286
13.10.1.3.1.1	Method 1: 1,3-Dipolar Cycloaddition Reactions of Nitrile Sulfides with Nitriles	286
13.10.1.4	By Formation of One S—N Bond	287
13.10.1.4.1	Fragments N—C—N—C—S	287
13.10.1.4.1.1	Method 1: Oxidation of Thioacylamidine Derivatives	287
13.10.1.4.1.1.1	Variation 1: Oxidation of Thioacylamidine Derivatives	288
13.10.1.4.1.2	Variation 2: Oxidation of Thioacylguanidines	288
13.10.1.4.1.3	Variation 3: Oxidation of Amidinothioureas	289
13.10.2	Synthesis by Ring Transformation	290
13.10.2.1	Method 1: Rearrangement of Oxadiazoles and Isoxazoles	290
13.10.2.1.1	Variation 1: 1,2,4-Oxadiazole Rearrangements	290
13.10.2.1.2	Variation 2: 1,2,5-Oxadiazole Rearrangements	291
13.10.2.1.3	Variation 3: Isoxazole Rearrangements	291
13.10.2.2	Method 2: Dithiazolidine Rearrangements	292
13.10.3	Synthesis by Substituent Modification	292
13.10.3.1	Method 1: Transformations Involving Diazonium Intermediates	292
13.10.3.2	Method 2: Nucleophilic Substitution of Halogen Substituents	293

13.11 Product Class 11: 1,2,5-Thiadiazoles and Related Compounds
P. A. Koutentis

13.11	Product Class 11: 1,2,5-Thiadiazoles and Related Compounds	297
13.11.1	Product Subclass 1: Monocyclic 1,2,5-Thiadiazoles	298
13.11.1.1	Synthesis by Ring-Closure Reactions	298
13.11.1.1.1	By Formation of Two S—N Bonds and One C—C Bond	298
13.11.1.1.1.1	Fragments N—C, N—C, and S	298
13.11.1.1.1.1.1	Method 1: Reaction of Potassium Cyanide and Sulfur Dioxide	298
13.11.1.1.2	By Formation of Two S—N Bonds	300
13.11.1.1.2.1	Fragments N—C—C—N and S	300
13.11.1.1.2.1.1	Method 1: From Aliphatic 1,2-Diamines	300
13.11.1.1.2.1.2	Method 2: From 2-Aminoacetamides	301
13.11.1.1.2.1.3	Method 3: From 2-Aminoacetamidine	303
13.11.1.1.2.1.4	Method 4: From Cyanoacetamides	304
13.11.1.1.2.1.5	Method 5: From Cyanoformamide and Its Esters	305
13.11.1.1.2.1.6	Method 6: From 1,2-Diimines and Related Compounds	307
13.11.1.1.3	By Formation of One S—N and One N—C Bond	308
13.11.1.1.3.1	Fragments S—N and C—C—N	308
13.11.1.1.3.1.1	Method 1: From Aliphatic Monoamines	308
13.11.1.1.3.1.2	Method 2: From Enamines	308
13.11.1.1.3.1.3	Method 3: From Alkyl Aryl Ketoximes	309
13.11.1.1.4	By Formation of Two N—C Bonds	310
13.11.1.4.1 Fragments C—C and N—S—N ... 310
13.11.1.4.1.1 Method 1: From Activated Methylene Compounds 310
13.11.1.4.1.2 Method 2: From Alkenes ... 312
13.11.1.4.1.3 Method 3: From Alkynes ... 312
13.11.1.5 By Formation of One S—N Bond ... 314
13.11.1.5.1 Fragment S—N—C—C—N .. 314
13.11.1.5.1.1 Method 1: From (1-Cyanocyclopentyl)imidosulfurous Dichloride 314
13.11.1.2 Synthesis by Ring Transformation .. 314
13.11.1.2.1 Method 1: From N-Alkylpyrroles 314
13.11.1.2.2 Method 2: From Isoxazoles ... 315
13.11.1.2.3 Method 3: From 2-Alkyl-1,2,5-thiadiazolium Salts 316
13.11.1.2.4 Method 4: From 1,2,3-Triazoles 317
13.11.1.3 Aromatization ... 318
13.11.1.3.1 Method 1: Deoxygenation of 1,2,5-Thiadiazole 1-Oxides 318
13.11.1.4 Synthesis by Substituent Modification 318
13.11.1.4.1 Substitution of Existing Substituents 318
13.11.1.4.1.1 Of Hydrogen ... 318
13.11.1.4.1.1.1 Hydrogen–Deuterium Exchange ... 318
13.11.1.4.1.1.2 By Carbon .. 318
13.11.1.4.1.1.2.1 Method 1: Chloromethylation .. 318
13.11.1.4.1.1.2.2 Method 2: By Reaction with Organomagnesium Halides 319
13.11.1.4.1.1.3 By Heteroatoms .. 320
13.11.1.4.1.1.3.1 Method 1: Halogenation ... 320
13.11.1.4.1.2 Of Carbon Functionalities ... 320
13.11.1.4.1.2.1 Method 1: By Hydrogen .. 320
13.11.1.4.1.2.2 Method 2: By Halogen ... 320
13.11.1.4.1.3 Of Halogen ... 321
13.11.1.4.1.3.1 Method 1: By Hydrogen .. 321
13.11.1.4.1.3.2 Method 2: By Carbon .. 321
13.11.1.4.1.3.3 Method 3: By Fluorine ... 322
13.11.1.4.1.3.4 Method 4: By Oxygen ... 322
13.11.1.4.1.3.5 Method 5: By Sulfur .. 323
13.11.1.4.1.3.6 Method 6: By Nitrogen ... 324
13.11.1.4.1.4 Of Oxygen ... 325
13.11.1.4.1.4.1 Method 1: By Carbon (Palladium-Catalyzed Cross Coupling) 325
13.11.1.4.1.4.2 Method 2: By Halogens ... 325
13.11.1.4.1.4.3 Method 3: By Nitrogen ... 326
13.11.1.4.1.5 Of Sulfur ... 327
13.11.1.4.1.5.1 Method 1: Displacement of Alkylsulfonyl Groups by Oxygen and Sulfur Nucleophiles ... 327
13.11.1.4.2 Rearrangement of Substituents .. 328
13.11.1.4.2.1 Method 1: Curtius Rearrangement of Azidocarbonyl Compounds 328
13.11.1.4.2.2 Method 2: Rearrangement of Thionocarbamates 328
13.11.1.4.3 Modification of Substituents .. 329
13.11.1.4.3.1 Of Carbon ... 329
13.11.1.4.3.1.1 Method 1: Oxidative Degradation of 2,1,3-Benzothiadiazoles 329
13.11.1.4.3.1.2 Method 2: Beckmann Fragmentation of 2,1,3-Benzothiadiazole-4,5-dione Acetoximes ... 330
13.11.1.4.3.2 Of Heteroatoms .. 330
13.11.2 Product Subclass 2: Annulated 1,2,5-Thiadiazoles
(2,1,3-Benzothiadiazoles and Related Systems) ... 331
13.11.2.1 Synthesis by Ring-Closure Reactions .. 331
13.11.2.1.1 By Annulation to an Arene ... 331
13.11.2.1.1.1 Method 1: From Arene-1,2-diamines 331
13.11.2.1.1.2 Method 2: From Quinone 1,2-Dioximes 333
13.11.2.1.2 By Formation of One S—N and One N—C Bond 333
13.11.2.1.2.1 Method 1: From Anilines ... 333
13.11.2.1.3 By Formation of Two N—C Bonds .. 334
13.11.2.1.3.1 Method 1: From Active Hydrocarbons and Tetrasulfur Tetrinitride 334
13.11.2.1.3.2 Method 2: From Phenols and Related Compounds and
Tetrasulfur Tetrinitride ... 335
13.11.2.1.3.3 Method 3: From Quinones or Hydroquinones 336
13.11.2.1.3.4 Method 4: From Indoles and Pyrroles with Trithiazyl Trichloride 337
13.11.2.1.3.5 Method 5: From Perfluoroarenes with Sulfur Diimides 338
13.11.2.1.4 By Formation of One S—N Bond .. 339
13.11.2.1.4.1 Method 1: From 1,2-Bis(sulfinylamino)benzene 339
13.11.2.1.5 By Formation of One N—C Bond .. 340
13.11.2.1.5.1 Method 1: From Arylsulfur Diimides 340
13.11.2.1.6 By Annulation to 1,2,5-Thiadiazole ... 341
13.11.2.1.6.1 Method 1: From 1,2,5-Thiadiazole-3,4-dicarbonitrile 341
13.11.2.1.6.2 Method 2: From 1,2,5-Thiadiazoamines 341
13.11.2.1.7 Method 3: From 1,2,5-Thiadiazole-3,4-diamine 342
13.11.2.1.8 Method 4: From 1,2,5-Thiadiazole-3,4-dicarbonyl Compounds 343

13.12 Product Class 12: 1,3,4-Thiadiazoles
S. J. Collier

13.12 Product Class 12: 1,3,4-Thiadiazoles .. 349
13.12.1 Synthesis by Ring-Closure Reactions ... 351
13.12.1.1 By Formation of Two S—C and Two N—C Bonds 352
13.12.1.1 Fragments N—N, S, and Two C Fragments 352
13.12.1.1.1 Method 1: Reaction of Aldehydes with Hydrazine and Sulfur 352
13.12.1.2 By Formation of Two S—C Bonds and One N—C Bond 353
13.12.1.2.1 Fragments N—N, C, and S .. 353
13.12.1.2.1.1 Method 1: Reactions of Methylpyridines (or Methylquinolines) with Aroylhydrazines and Sulfur ... 353
13.12.1.3 By Formation of Two S—C Bonds ... 353
13.12.1.3.1 Fragments C—N—N—C and S .. 353
13.12.1.3.1.1 Method 1: From 2,3-Diazabuta-1,3-dienes and a Sulfur Source 353
13.12.1.3.1.2 Method 2: From Diformyl- or Diacylhydrazines and a Sulfur Source .. 356
13.12.1.4 By Formation of One S—C and One N—C Bond 356
13.12.1.4.1 Fragments S—C—N—N and C ... 356
13.12.1.4.1.1 Method 1: From Thiohydrazide Derivatives 356
13.12.1.4.1.1.1 Variation 1: By Reaction with Carboxylic Acid Derivatives 357
13.12.1.4.1.1.2 Variation 2: By Reaction with Ortho Esters or Trihalomethyl Compounds 358
13.12.1.4.1.1.3 Variation 3: By Reaction with Imines and Related Compounds 359
13.12.1.4.1.1.4 Variation 4: By Reaction with Isothiocyanates (and Isocyanates) 362
13.12.1.4.1.1.5 Variation 5: By Reaction with Nitriles and Related Compounds 363
13.12.1.4.1.1.6 Variation 6: By Reaction with Thiacarbonyl Compounds 365
13.12.1.4.1.1.7 Variation 7: By Reaction with Miscellaneous Reagents 366
13.12.1.4.2 Fragments N—N—C and S—C .. 367
13.12.1.4.2.1 Method 1: From Hydrazides and Thiacarbonyl Compounds 367
13.12.1.4.2.2 Method 2: From Amidrazones and Thiacarbonyl Compounds 368
13.12.1.4.2.3 Method 3: From Diazocompounds and Thiacarbonyl Derivatives 369
13.12.1.5 By Formation of Two N—C Bonds .. 370
13.12.1.5.1 Fragments C—S—C and N—N .. 370
13.12.1.5.1.1 Method 1: From Hydrazine and Thiacarbonyl Compounds 370
13.12.1.6 By Formation of One S—C Bond ... 372
13.12.1.6.1 Fragment S—C—N—N—C .. 372
13.12.1.6.1.1 Method 1: By Cyclization of Monothiodiacylhydrazine Derivatives 372
13.12.1.6.1.2 Method 2: By Cyclization of Dithioacylhydrazine Derivatives 375
13.12.1.6.1.3 Method 3: By Cyclization of N’-Imidoylthiohydrazides 376
13.12.1.6.1.4 Method 4: By Cyclization of Thioacylhydrazones 377
13.12.1.7 Synthesis by Ring Transformation ... 380
13.12.1.8 Aromatization ... 381
13.12.1.9 Synthesis by Substituent Modification ... 383
13.12.1.9.1 Substitution of Existing Substituents 383
13.12.1.9.1.1 Method 1: By Acylation (Through Rearrangement) 384
13.12.1.9.1.2 Method 2: By Halogen ... 384
13.12.4.1.3 Method 3: By Sulfur-Containing Groups .. 384
13.12.4.1.4 Method 4: By Nitrogen-Containing Groups ... 385
13.12.4.1.2 Of Carbon .. 385
13.12.4.1.2.1 Method 1: By Hydrogen ... 385
13.12.4.1.3 Of Heteroatoms .. 386
13.12.4.1.3.1 Substitution of Halogen .. 386
13.12.4.1.3.1.1 Method 1: By Hydrogen ... 386
13.12.4.1.3.1.2 Method 2: By Carbon ... 387
13.12.4.1.3.1.3 Method 3: By Oxygen ... 387
13.12.4.1.3.1.4 Method 4: By Sulfur ... 388
13.12.4.1.3.1.5 Method 5: By Nitrogen ... 388
13.12.4.1.3.2 Substitution of Oxygen ... 389
13.12.4.1.3.3 Substitution of Sulfur ... 389
13.12.4.1.3.3.1 Method 1: By Carbon ... 389
13.12.4.1.3.3.2 Method 2: By Oxygen ... 390
13.12.4.1.3.3.3 Method 3: By Nitrogen ... 391
13.12.4.1.3.4 Substitution of Nitrogen ... 391
13.12.4.1.3.4.1 Method 1: Reductive Deamination .. 391
13.12.4.1.3.4.2 Method 2: By Oxygen ... 392
13.12.4.1.3.4.3 Method 3: By Halogen .. 393
13.12.4.2 Addition Reactions ... 393
13.12.4.2.1 Of Organic and Heteroatom Groups .. 394
13.12.4.2.1.1 Method 1: N-Functionalization by Electrophiles 394
13.12.4.3 Modification of Substituents .. 396
13.12.4.3.1 Of Carbon ... 396
13.12.4.3.1.1 Method 1: Alkyl Groups .. 396
13.12.4.3.1.1.1 Variation 1: C-Metalation, Alkylation, and Acylation 396
13.12.4.3.1.1.2 Variation 2: C-Halogenation .. 398
13.12.4.3.2 Of Oxygen .. 399
13.12.4.3.2.1 Method 1: O-Acylation ... 399
13.12.4.3.2.2 Method 2: O-Dealkylation ... 400
13.12.4.3.3 Of Sulfur Groups ... 400
13.12.4.3.3.1 Method 1: S-Alkylation ... 401
13.12.4.3.3.2 Method 2: S-Dealkylation ... 402
13.12.4.3.4 Of Nitrogen .. 403
13.12.4.3.4.1 Method 1: N-Functionalization .. 403
13.13 **Product Class 13: 1,2,3-Triazoles**
A. C. Tomé

13.13 **Product Class 13: 1,2,3-Triazoles** .. 415

13.13.1 **Product Subclass 1: Monocyclic N-Unsubstituted and 1-Substituted 1,2,3-Triazoles** .. 418

13.13.1.1 **Synthesis by Ring-Closure Reactions** .. 418

13.13.1.1.1 **By Formation of One N—N and One N—C Bond** 418

13.13.1.1.1.1 **Fragments C—C—N—N and N** .. 418

13.13.1.1.1.1 **Method 1:** From 2-Diazo-1,3-dicarbonyl Compounds and Amine Derivatives ... 418

13.13.1.1.1.1 **Variation 1:** From 2-Diazo-3-oxopropanoates and Amine Derivatives .. 419

13.13.1.1.1.1 **Variation 2:** From 2-Diazo-3-oxoaldehydes and Amine Derivatives .. 420

13.13.1.1.1.2 **Variation 3:** From Dimethyl Diazomalonate and Amines 421

13.13.1.1.1.2 **Method 2:** From Vinlyldiazonium Salts and Amine Derivatives 422

13.13.1.1.1.3 **Method 3:** From Dichloro- or Trichloroacetaldehyde Sulfonylhydrazones and Primary Amines 423

13.13.1.1.1.2 **Fragments C—C—N and N—N** .. 424

13.13.1.1.2 **By Formation of One N—N and One C—C Bond** 426

13.13.1.1.2.1 **Method 1:** From Enaminones and Diazotransfer Reagents 424

13.13.1.1.2.1.1 **Variation 1:** From Enaminones and 3-Diazo-1,3-dihydro-2H-indol-2-one Derivatives .. 424

13.13.1.1.2.1.2 **Variation 2:** From Enaminones and Sulfonil Azides 426

13.13.1.1.2.2 **By Formation of One N—N and One C—C Bond** 426

13.13.1.1.2.1 **Fragments C—N—N and C—N** .. 426

13.13.1.1.2.1.1 **Method 1:** From Diazoalkanes and Nitriles 426

13.13.1.1.2.1.1.1 **Variation 1:** From Diazoalkanes and Aryl Cyanates 428

13.13.1.1.2.1.1.2 **Variation 2:** From Diazoalkanes and Unactivated Nitriles 428

13.13.1.1.2.1.1.3 **Variation 3:** From [Diazotrimethylsilyl]methyl]lithium and Nitriles 429

13.13.1.1.2.1.2 **Method 2:** From Diazoalkanes and Imines, Oximes, or Diarylazines 430

13.13.1.1.2.1.2.1 **Variation 1:** From Diazoalkanes and Imines 430

13.13.1.1.2.1.2.2 **Variation 2:** From Diazoalkanes and Oximes 431

13.13.1.1.2.1.2.3 **Variation 3:** From Diazoalkanes and Diarylazines 432

13.13.1.1.2.1.3 **Method 3:** From Diazoalkanes and Heterocumulenes 432

13.13.1.1.2.1.3.1 **Variation 1:** From Diazoalkanes and Ketenimines 433

13.13.1.1.2.1.3.2 **Variation 2:** From Diazoalkanes and Carbodiimides 434

13.13.1.1.2.1.3.3 **Variation 3:** From Diazoalkanes and Isocyanates 435

13.13.1.1.2.1.3.4 **Variation 4:** From Diazoalkanes and Isothiocyanates 436

13.13.1.1.2.1.4 **Method 4:** From N-Alkyl-N-nitrosoamines and Nitriles 437

13.13.1.1.3 **By Formation of Two N—C Bonds** .. 438

13.13.1.1.3.1 **Fragments N—N—N and C—C** .. 438

13.13.1.1.3.1.1 **Addition of Azides to Alkynes** .. 438

13.13.1.1.3.1.1 **Method 1:** Addition of Hydrazoic Acid to Alkynes 439

13.13.1.1.3.1.2 **Method 2:** Addition of the Azide Ion to Alkynes 440
13.13.1.1.3 Method 3: Addition of Alkyl, Aryl, or Hetaryl Azides to Alkynes 441
13.13.1.1.3.1 Variation 1: Addition of Azides to Acetylene and to Symmetrically Substituted Alkynes .. 442
13.13.1.1.3.2 Variation 2: Addition of Azides to Alk-1-ynes 443
13.13.1.1.3.3 Variation 3: Addition of Azides to Unsymmetrical Disubstituted Alkynes 446
13.13.1.1.3.4 Variation 4: Using Polymer-Supported Methods 448
13.13.1.1.3.5 Variation 5: Intramolecular 1,3-Dipolar Cycloadditions 450
13.13.1.1.3.6 Variation 6: Addition of Azides to Alkoxyalkynes 452
13.13.1.1.3.4 Variation 7: Addition of Ethyl Azidoformate and Cyanogen Azide to Alkynes ... 453
13.13.1.1.3.5 Method 5: Addition of Sulfonyl Azides to Alkynes 454
13.13.1.1.3.6 Method 6: Addition of Azidotrimethylsilane and Azidotributylstannane to Alkynes ... 456
13.13.1.1.3.7 Method 7: Addition of Azides to Metal Acetylides 457
13.13.1.1.2 Addition of Azides to C=C Bonds .. 458
13.13.1.1.2.1 Method 1: Addition of Sodium Azide to Activated Alkenes 458
13.13.1.1.2.2 Method 2: Addition of Azides to Activated Alkenes 461
13.13.1.1.2.3 Method 3: Addition of Azides to Strained Alkenes 462
13.13.1.1.2.4 Method 4: Addition of Azides to Allenes 464
13.13.1.1.2.5 Method 5: Addition of Azides to α-Acylphosphorus Ylides 466
13.13.1.1.2.6 Method 6: Addition of Azides to Enamines or Enol Ethers 468
13.13.1.1.2.6.1 Variation 1: Addition of Azides to Enamines 469
13.13.1.1.2.6.2 Variation 2: Addition of Azides to Enol Ethers 473
13.13.1.1.2.7 Method 7: Addition of Azides to Vinyl Acetate 474
13.13.1.1.2.8 Method 8: Addition of Azides to Ketene Acetals 475
13.13.1.1.3 Reaction of Azides with Active Methylene Compounds 478
13.13.1.1.3.1 Method 1: Reaction of Azides with 1,3-Diketones, 3-Oxo Esters, or 3-Oxaoamides ... 478
13.13.1.1.3.2 Method 2: Reaction of Azides with Malonic Esters, Malonamides, or Acetamides ... 481
13.13.1.1.3.3 Method 3: Reaction of Azides with Acetonitrile Derivatives 483
13.13.1.1.3.4 Method 4: Reaction of Aryl Azides with Alkoxides 486
13.13.1.1.4 By Formation of One N—N Bond ... 487
13.13.1.1.4.1 Fragment N—N—C—C—N .. 487
13.13.1.1.4.1 Method 1: Cyclization of α-Diazoamides 487
13.13.1.1.4.1 Method 2: Thermolysis of α-Azidoacetophenone (Phenylsulfonyl)hydrazones ... 487
13.13.1.1.4.1 Method 3: Cyclization of α-Hydroxyimino Hydrazones 488
13.13.1.1.4.1 Method 4: Cyclization of α-Hydroxyimino Areryl- or Arylsulfonylhydrazones 489
13.13.1.1.4.1 Method 5: Cyclization of 1,2-Diketone Bis(hydrazone) Derivatives 490
13.13.1.1.4.1.1 Variation 1: Cyclization of 1,2-Diketone Bis(hydrazone) 490
13.13.1.1.4.1.2 Variation 2: Cyclization of 1,2-Diketone Bis(arylsulfonylhydrazones) ... 491
13.13.1.1.4.1.3 Variation 3: Cyclization of 1,2-Diketone Bis(semicolonbazones) 491
13.13.1.1.4.1.4 Variation 4: Cyclization of 1,2-Diketone Bis(acylhydrazones) 492
13.13.1.1.4.1.5 Variation 5: Cyclization of (1,2-Diphenylethene-1,2-diyl)bis(trityldiazene) 493
13.1.1.5 By Formation of One N—C Bond
- Fragment N—N—N—C—C ... 494
- Method 1: Cyclization of Linear Triazenes and Tetrazenes 494
- Method 2: Cyclization of Vinyl Azides 495
- Method 3: Cyclization of 2-(Formyloxy)vinyl Azides 496

13.1.2 Synthesis by Ring Transformation
- ... 497

13.1.3 Aromatization
- By Oxidation Reactions 500
- By Elimination Reactions 502

13.1.4 Synthesis by Substituent Modification
- By Oxidation Reactions 500
- By Elimination Reactions 502

13.1.1.1 Method 1: Lithiation
- 503
- N-Trimethylsilylation .. 505
- Carboxylation .. 505
- Acylation .. 506
- Formylation ... 507
- Arylation .. 507
- Alklylation .. 509
- Halogenation .. 511
- N-Amination .. 514
- Nitration ... 515
- Desilylation .. 516
- Decarboxylation .. 517
- Deformylation .. 517
- Deacylation ... 518
- Dearylation ... 519
- Dealkylation .. 519
- Substitution of Halogens by Nucleophiles 521
- Substitution of Hydroxy Groups by Halogens 522
- Substitution of Diazonium Groups by Nucleophiles 522
- Deoxygenation .. 523
- Dehalogenation .. 524
- Conversion into N-Oxides 524
- Rearrangement of Substituents 525

13.2 Product Subclass 2: Monocyclic 2-Substituted 1,2,3-Triazoles
- ... 528
13.1.3.1.1 By Formation of One N—N and One N—C Bond .. 528
13.1.3.1.1 Fragments C—C—N and C ... 528
13.1.3.1.1 Method 1: From N-Aminophthalimide and Conjugated Azoalkenes 528
13.1.3.1.2 By Formation of Two N—C Bonds .. 528
13.1.3.2 Fragments N—N and C—C .. 528
13.1.3.2.1 Method 1: Addition of Azidotrimethylsilane and Azidotributylstannane to Alkynes ... 528
13.1.3.2.2 Method 2: Addition of Acyl or Alkoxy carbonyl Azides to α-Acylphosphorus Ylides ... 529
13.1.3.2 By Formation of Two N—C Bonds .. 528
13.1.3.3 Fragment C—C—N and N .. 529
13.1.3.3.1 Method 1: From Aminophthalimide and Conjugated Azoalkenes 528
13.1.3.3.2 Method 2: From Azidobenzoxycarbonyl Azides to Alkynes 528
13.13.3.2 Synthesis by Ring Transformation ... 550
13.13.3.2.1 Method 1: From 4,5-Dimethylene-4,5-dihydro-1H-triazoles 550
13.13.3.2.2 Method 2: Transformation of 1,3-Dihydro-2H-benzimidazol-2-ones 550
13.13.3.2.3 Method 3: Transformation of 1,2,4-Benzotriazin-3(2H)-ones 551
13.13.3.2.4 Method 4: Transformation of 1,2,3,4-Benzotetrazine 1,3-Dioxides 551
13.13.3.3 Synthesis by Substituent Modification 552
13.13.3.3.1 Substitution of Existing Substituents 552
13.13.3.3.1.1 Of Hydrogen .. 552
13.13.3.3.1.1.1 Method 1: N-Trimethylsilylation 552
13.13.3.3.1.1.2 Method 2: Carboxylation ... 552
13.13.3.3.1.1.3 Method 3: Acylation ... 553
13.13.3.3.1.1.4 Method 4: N-Formylation .. 553
13.13.3.3.1.1.5 Method 5: Arylation ... 554
13.13.3.3.1.1.6 Method 6: Alkynylation .. 556
13.13.3.3.1.1.7 Method 7: Alkenylation .. 556
13.13.3.3.1.1.8 Method 8: Alkylation .. 557
13.13.3.3.1.1.9 Method 9: Halogenation ... 561
13.13.3.3.1.1.10 Method 10: Sulfonfylation ... 562
13.13.3.3.1.1.11 Method 11: N-Amination .. 563
13.13.3.3.1.1.12 Method 12: Nitration ... 564
13.13.3.3.1.1.13 Method 13: Azo Coupling ... 565
13.13.3.3.2 Of Carbon Functionalities ... 567
13.13.3.3.2.1 Method 1: Decarboxylation .. 567
13.13.3.3.2.2 Method 2: Deacylation ... 567
13.13.3.3.3 Of Heteroatoms .. 568
13.13.3.3.3.1 Method 1: Deoxygenation ... 568
13.13.3.3.3.2 Method 2: Dehalogenation .. 569
13.13.3.3.4 Addition Reactions ... 569
13.13.3.3.4.1 Method 1: Conversion into N-Oxides or Epoxides 569
13.13.4 Product Subclass 4: 2-Substituted Benzotriazoles 570
13.13.4.1 Synthesis by Ring-Closure Reactions 570
13.13.4.1.1 By Formation of Two N—N Bonds 570
13.13.4.1.1.1 Fragments N—C—C=N and N 570
13.13.4.1.1.1.1 Method 1: From Benzene-1,2-diamine and Nitrobenzenes .. 570
13.13.4.1.1.2 By Formation of One N—N Bond 571
13.13.4.1.2.1 Fragment N—N—C—C=N ... 571
13.13.4.1.2.1.1 Method 1: Cyclization of 2-Aminoazobenzenes 571
13.13.4.1.2.1.2 Method 2: Cyclization of 2-Azidoazobenzenes 572
13.13.4.1.2.1.3 Method 3: Cyclization of 2-Nitroazobenzenes 575
13.13.4.1.2.1.4 Method 4: Cyclization of 1-Substituted 2-(2-Nitroaryl)hydrazines 576
13.13.4.1.2.1.5 Method 5: Cyclization of Vicinal Diazides 577
13.13.4.2 Synthesis by Ring Transformation ... 578
13.13.4.2.1 Method 1: Isomerization of 4-(Arylazo)-2,1,3-benzoxadiazoles 578
13.13.4.2.2 Method 2: Transformation of 1,3,3-Trialkyl-2-(2,4-dinitrophenyl)diaziridines 578
13.13.4.2.3 Method 3: Transformation of 1-(2-Nitrophenyl)-1H-tetrazoles 579

13.13.4.3 Synthesis by Substituent Modification .. 580

13.13.5 Product Subclass 5: 1,2,3-Triazolium Salts 580
13.13.5.1 Synthesis by Ring-Closure Reactions ... 580
13.13.5.1.1 By Formation of One N—N and One N—C Bond 580
13.13.5.1.1.1 Method 1: From Diaryl nitrilimines and Alkyl isocyanides 580
13.13.5.1.2 By Formation of One N—C Bond ... 581
13.13.5.1.2.1 Fragment N—N—N—C .. 581
13.13.5.1.2.1.1 Method 1: Cyclization of α-Imino Hydrazones 581
13.13.5.1.2.1.2 Method 2: Cyclization of (3-Aryl-1-methyltriaz-2-enyl)acetic Acid Derivatives 581
13.13.5.2 Synthesis by Introduction of Substituents 582
13.13.5.2.1 Method 1: Alkylation of N-Alkyl-1,2,3-triazoles 582
13.13.5.2.2 Method 2: Alkylation of N-Alkylbenzotriazoles 583

13.14 Product Class 14: 1,2,4-Triazoles
A. D. M. Curtis

13.14 Product Class 14: 1,2,4-Triazoles .. 603
13.14.1 Synthesis by Ring-Closure Reactions ... 604
13.14.1.1 By Formation of Four N—C Bonds ... 604
13.14.1.1.1.1 Method 1: Reaction of Carboxylic Acids with Hydrazine 604
13.14.1.1.2 By Formation of Three N—C Bonds 605
13.14.1.1.2.1 Fragments C—N—N, C, and N ... 605
13.14.1.1.2.1.1 Method 1: From Acylhydrazines and Thioesters 605
13.14.1.1.2.2 Fragments N—C, N—N, and C ... 605
13.14.1.1.2.2.1 Method 1: From Amidines, Hydrazine, and Esters 605
13.14.1.1.3 By Formation of Two N—C Bonds 606
13.14.1.1.3.1 Fragments C—N—C and N—N ... 606
13.14.1.1.3.1.1 Method 1: From Iminoesters, Thioesters, Amidines, and Guanidines with Hydrazines 606
13.14.1.1.3.1.1.1 Variation 1: From N-Cyanoimines 606
13.14.1.1.3.1.1.2 Variation 2: From N-Acylimines 607
13.14.1.1.3.1.2 Method 2: From Diacylamines and Hydrazines 607
13.14.1.3.2 Fragments C—N—N and C—N .. 608
13.14.1.3.2.1 Method 1: From Acylhydrazines and Carboxylic Acid Derivatives 608
13.14.1.3.2.1.1 Variation 1: From Acylhydrazines and Carboxylic Ester Imides 608
13.14.1.3.2.1.2 Variation 2: From Aroylhydrazines and Thioamides 609
13.14.1.3.2.1.3 Variation 3: From Acylhydrazines and Aromatic Nitriles 609
13.14.1.3.2.2 Method 2: From Hydrazones of Carboxylic Acid Chlorides 610
13.14.1.3.3 Fragments C—N—N—C and N .. 610
13.14.1.3.3.1 Method 1: From Aroylsemicarbazides and Amines 610
13.14.1.3.3.2 Method 2: From Diacylhydrazines and Amines 611
13.14.1.3.3.3 Method 3: From Chlorinated Azines and Amines 612
13.14.1.3.4 Fragments N—C—N—N and C ... 612
13.14.1.3.4.1 Method 1: From Aminoguanidines 612
13.14.1.3.4.1.1 Variation 1: With Carboxylic Acids 613
13.14.1.3.4.1.2 Variation 2: With Carboxylic Ester Imides 614
13.14.1.3.4.2 Method 2: From Amidrazones .. 614
13.14.1.3.4.2.1 Variation 1: With Ortho Esters ... 614
13.14.1.3.4.2.2 Variation 2: With Carboxylic Acids 615
13.14.1.4 By Formation of One N—C Bond ... 615
13.14.1.4.1 Fragments N—C—N—N—C .. 615
13.14.1.4.1.1 Method 1: From Acylated Aminoguanidines 615
13.14.1.4.1.2 Method 2: From Acylated Amidrazones 616
13.14.1.4.1.3 Method 3: From Acylaminothioureas 616
13.14.1.4.2 Fragments C—N—C—N—N .. 617
13.14.1.4.2.1 Method 1: From Acylamidrazones 617
13.14.1.4.2.2 Method 2: By Oxidation of Amidrazones 617
13.14.1.4.2 Synthesis by Ring Transformation .. 618
13.14.1.4.2.1 Formal Exchange of Ring Members with Retention of the Ring Size 618
13.14.1.4.2.1.1 Method 1: From 1,3-Oxazolones 618
13.14.1.4.2.1.1.1 Variation 1: From 1,3-Oxazol-4(5H)-ones 618
13.14.1.4.2.1.1.2 Variation 2: From 4-Hydradno-1,3-oxazol-5(4H)-ones 619
13.14.1.4.2.1.2 Method 2: From 1,2,4-Oxadiazoles 619
13.14.1.4.2.1.2.1 Variation 1: From 3-Arylazo-1,2,4-oxadiazoles 620
13.14.1.4.2.1.2.2 Variation 2: From N-(Anilinomethylene)-1,2,4-oxadiazol-3-amines 620
13.14.1.4.2.1.3 Method 3: From 1,3,4-Oxadiazoles 620
13.14.1.4.2.1.3.1 Variation 1: From 2,5-Bis(trifluoromethyl)-1,3,4-oxadiazole 620
13.14.1.4.2.1.3.2 Variation 2: From 1,3,4-Oxadiazol-2-amines 621
13.14.1.4.2.1.4 Method 4: From 1,3,4-Oxadiazolium Salts 621
13.14.1.4.2.1.5 Method 5: From Tetrazoles ... 622
13.14.1.4.2.1.5.1 Variation 1: From 2,5-Disubstituted Tetrazoles and Nitriles 622
13.14.1.4.2.1.5.2 Variation 2: From 2-Substituted Tetrazoles and Benzimidoyl Chlorides 623
13.14.1.4.2.2 By Ring Contraction .. 623
13.14.1.4.2.2.1 Method 1: From 4H-1,3-Oxazin-4-ones and 4H-1,3-Benzoxazin-4-ones .. 623
13.14.1.4.2.2.2 Method 2: From Pyrimidine and Quinazoline Derivatives 624
<table>
<thead>
<tr>
<th>Section</th>
<th>Content</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.14.2.2.1 Variation 1:</td>
<td>From 4-Imino-3,4-dihydropyrimidines</td>
<td>624</td>
</tr>
<tr>
<td>13.14.2.2.2 Variation 2:</td>
<td>From 4,6-Diethoxypyrimidines</td>
<td>624</td>
</tr>
<tr>
<td>13.14.2.2.3 Variation 3:</td>
<td>From 4-Chloroquinazolines</td>
<td>625</td>
</tr>
<tr>
<td>13.14.2.2.3 Method 3:</td>
<td>From 1,3,5-Triazine</td>
<td>625</td>
</tr>
<tr>
<td>13.14.3 Aromatization</td>
<td></td>
<td>626</td>
</tr>
<tr>
<td>13.14.3.1 Method 1: By Dehydrogenation of Dihydro-1,2,4-triazoles</td>
<td></td>
<td>626</td>
</tr>
<tr>
<td>13.14.4 Synthesis by Substituent Modification</td>
<td></td>
<td>626</td>
</tr>
<tr>
<td>13.14.4.1 Substitution of Existing Substituents</td>
<td></td>
<td>626</td>
</tr>
<tr>
<td>13.14.4.1.1 Of Hydrogen</td>
<td></td>
<td>626</td>
</tr>
<tr>
<td>13.14.4.1.1.1 By Deuterium</td>
<td></td>
<td>626</td>
</tr>
<tr>
<td>13.14.4.1.1.2 By Metals</td>
<td></td>
<td>626</td>
</tr>
<tr>
<td>13.14.4.1.1.2.1 Method 1: Trimethylstannylation</td>
<td></td>
<td>626</td>
</tr>
<tr>
<td>13.14.4.1.1.3 By Carbon</td>
<td></td>
<td>627</td>
</tr>
<tr>
<td>13.14.4.1.1.3.1 Method 1: N-Alkylation</td>
<td></td>
<td>627</td>
</tr>
<tr>
<td>13.14.4.1.1.3.2 Method 2: C-Alkylation</td>
<td></td>
<td>628</td>
</tr>
<tr>
<td>13.14.4.1.1.3.2.1 Variation 1: By Lithiation</td>
<td></td>
<td>628</td>
</tr>
<tr>
<td>13.14.4.1.1.3.2.2 Variation 2: By Radical Substitution</td>
<td></td>
<td>628</td>
</tr>
<tr>
<td>13.14.4.1.1.3.3 Method 3: N-Arylation</td>
<td></td>
<td>629</td>
</tr>
<tr>
<td>13.14.4.1.1.3.4 Method 4: N-Acylation</td>
<td></td>
<td>629</td>
</tr>
<tr>
<td>13.14.4.1.1.3.5 Method 5: C-Acylation</td>
<td></td>
<td>630</td>
</tr>
<tr>
<td>13.14.4.1.1.4 By Halogens</td>
<td></td>
<td>631</td>
</tr>
<tr>
<td>13.14.4.1.1.5 By Other Heteroatoms</td>
<td></td>
<td>632</td>
</tr>
<tr>
<td>13.14.4.1.2 Of Metals</td>
<td></td>
<td>632</td>
</tr>
<tr>
<td>13.14.4.1.3 Of Carbon</td>
<td></td>
<td>633</td>
</tr>
<tr>
<td>13.14.4.1.4 Of Heteroatoms</td>
<td></td>
<td>633</td>
</tr>
<tr>
<td>13.14.4.1.4.1 Method 1: Of Halogens</td>
<td></td>
<td>633</td>
</tr>
<tr>
<td>13.14.4.1.4.2 Method 2: Of Sulfur</td>
<td></td>
<td>633</td>
</tr>
<tr>
<td>13.14.4.1.4.3 Method 3: Of Nitrogen</td>
<td></td>
<td>634</td>
</tr>
<tr>
<td>13.14.4.2 Addition Reactions</td>
<td></td>
<td>634</td>
</tr>
<tr>
<td>13.14.4.2.1 Method 1: N-Alkylation</td>
<td></td>
<td>634</td>
</tr>
<tr>
<td>13.14.4.3 Rearrangement</td>
<td></td>
<td>635</td>
</tr>
<tr>
<td>13.14.4.4 Modification of Substituents</td>
<td></td>
<td>635</td>
</tr>
<tr>
<td>13.14.4.4.1 Method 1: Modification of 1,2,4-Triazolones</td>
<td></td>
<td>636</td>
</tr>
<tr>
<td>13.14.4.4.2 Method 2: Modification of 1,2,4-Triazolethiones</td>
<td></td>
<td>636</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>13.15</td>
<td>Product Class 15: Dithiaphospholes and Their Analogues</td>
<td>641</td>
</tr>
<tr>
<td></td>
<td>R. K. Bansal, N. Gupta, and S. J. Collier</td>
<td></td>
</tr>
<tr>
<td>13.15.1</td>
<td>Product Subclass 1: 1,3,2-Benzodithiaphosphinium, 1,3,2-Benzodithiarsonium, and 1,3,2-Benzodithiastibolium Salts</td>
<td>641</td>
</tr>
<tr>
<td>13.15.1.1</td>
<td>Aromatization</td>
<td>643</td>
</tr>
<tr>
<td>13.15.1.1.1</td>
<td>Method 1: Synthesis by Chloride Abstraction</td>
<td>643</td>
</tr>
<tr>
<td>13.16</td>
<td>Product Class 16: Oxazaphospholes and Thiazaphospholes</td>
<td>647</td>
</tr>
<tr>
<td>13.16.1</td>
<td>Product Subclass 1: 1,2,4-Oxazaphospholes</td>
<td>647</td>
</tr>
<tr>
<td>13.16.1.1</td>
<td>Synthesis by Ring-Closure Reactions</td>
<td>648</td>
</tr>
<tr>
<td>13.16.1.1.1</td>
<td>By Formation of One O—C and One N—C Bond</td>
<td>648</td>
</tr>
<tr>
<td>13.16.1.1.1.1</td>
<td>Fragments C—P—C and O—N</td>
<td>648</td>
</tr>
<tr>
<td>13.16.1.1.1.1.1</td>
<td>Method 1: Cyclocondensation of a 2-Phosphaallylic Cation with Hydroxylamine</td>
<td>648</td>
</tr>
<tr>
<td>13.16.1.1.2</td>
<td>By Formation of One O—C and One P—C Bond</td>
<td>648</td>
</tr>
<tr>
<td>13.16.1.1.2.1</td>
<td>Fragments O—N—C and P—C</td>
<td>648</td>
</tr>
<tr>
<td>13.16.1.1.2.1.1</td>
<td>Method 1: [3 + 2] Cycloaddition of Nitrile Oxides</td>
<td>648</td>
</tr>
<tr>
<td>13.16.2</td>
<td>Product Subclass 2: 1,2,4-Thiazaphospholes</td>
<td>650</td>
</tr>
<tr>
<td>13.16.2.1</td>
<td>Synthesis by Ring-Closure Reactions</td>
<td>650</td>
</tr>
<tr>
<td>13.16.2.1.1</td>
<td>By Formation of One S—C and One P—C Bond</td>
<td>650</td>
</tr>
<tr>
<td>13.16.2.1.1.1</td>
<td>Fragments S—N—C and P—C</td>
<td>650</td>
</tr>
<tr>
<td>13.16.2.1.1.1.1</td>
<td>Method 1: Synthesis by [3 + 2] Cycloaddition</td>
<td>650</td>
</tr>
<tr>
<td>13.16.2.1.1.1.1.1</td>
<td>Variation 1: Using a Phosphaalkyne and 5-Phenyl-1,3,4-oxathiazol-2-one</td>
<td>650</td>
</tr>
<tr>
<td>13.16.2.1.1.1.1.2</td>
<td>Variation 2: Using a Phosphaalkyne and 4-Phenyl- 1,3,2-oxathiazolium-5-olate</td>
<td>650</td>
</tr>
<tr>
<td>13.16.2.1.1.1.3</td>
<td>Variation 3: Using a Phosphaalkene and 1,3,4-Oxathiazol-2-one</td>
<td>651</td>
</tr>
<tr>
<td>13.16.3</td>
<td>Product Subclass 3: 1,3,2-Oxazaphospholes</td>
<td>652</td>
</tr>
<tr>
<td>13.16.3.1</td>
<td>Synthesis by Ring-Closure Reactions</td>
<td>652</td>
</tr>
<tr>
<td>13.16.3.1.1</td>
<td>By Formation of One O—P and One N—P Bond</td>
<td>652</td>
</tr>
<tr>
<td>13.16.3.1.1.1</td>
<td>Fragments O—C—C—N and P</td>
<td>652</td>
</tr>
<tr>
<td>13.16.3.1.1.1.1</td>
<td>Method 1: Cyclocondensation of 2-Amino Ketones or 2-Aminophenols with Phosphorus(III) Compounds</td>
<td>652</td>
</tr>
<tr>
<td>13.16.4</td>
<td>Product Subclass 4: 1,3,2-Benzothiazaphospholes and -arsoles</td>
<td>653</td>
</tr>
<tr>
<td>13.16.4.1</td>
<td>Synthesis by Ring-Closure Reactions</td>
<td>653</td>
</tr>
<tr>
<td>13.16.4.1.1</td>
<td>By Formation of One S—P and One N—P Bond</td>
<td>653</td>
</tr>
</tbody>
</table>
Fragments S—Arene—N and P .. 653
Method 1: Condensation of 2-Aminothiophenol with Phosphines 653
Aromatization ... 654
Method 1: By Halide Abstraction ... 654
Product Subclass 5: 1,3,4-Thiazaphospholes 655
Synthesis by Ring-Closure Reactions ... 655
By Formation of One N—P and One P—C Bond 655
Fragments C—S—C—N and P .. 655
Method 1: [4 + 1] Cyclocondensation .. 655
By Formation of One N—P and One S—C Bond 656
Fragments S—C—N and P—C .. 656
Method 1: [3 + 2] Cyclocondensation ... 656
Product Class 17: Oxadiphospholes and Their Analogue s
S. J. Collier
Product Subclass 1: 1,2,4-Oxadiphospholes 660
Synthesis by Ring-Closure Reactions ... 661
By Formation of One O—P and One P—C Bond 661
Fragments P—C—O and P—C ... 661
Method 1: From Mesitylphosphaalkenes 661
Product Subclass 2: 1,2,4-Thiadiphospholes 662
Synthesis by Ring-Closure Reactions ... 665
By Formation of One S—P and Three P—C Bonds 665
Fragments S—C, C, and Two P Fragments 665
Method 1: From Lithium Phosphide and Carbon Disulfide 665
By Formation of One S—P, One S—C, and One P—C Bond 665
Fragments P—C, P—C, and S ... 665
Method 1: From Phosphaacetylenes and a Sulfur Source 665
Variation 1: Use of Stoichiometric Metal–Sulfur Complexes 666
Variation 2: Use of Elemental Sulfur with a Tantalum Catalyst 667
Variation 3: Use of Carbon Disulfide, Carbon Disulfide Ylides, and Other Sulfur Sources .. 669
Synthesis by Ring Transformation ... 670
Synthesis by Substituent Modification .. 671
Addition Reactions .. 671
Formation of Metal Complexes .. 671
13.17.3 Product Subclass 3: 1,2,4-Selenadiphospholes 673
 13.17.3.1 Synthesis by Ring-Closure Reactions 675
 13.17.3.1.1 By Formation of One Se—P, One Se—C, and One P—C Bond 675
 13.17.3.1.1.1 Fragments P—C, P—C, and Se 675
 13.17.3.1.1.1 Method 1: From Phosphaacetylenes and Elemental Selenium 675
 13.17.3.2 Synthesis by Ring Transformation 676
 13.17.3.3 Addition Reactions .. 677
 13.17.3.3.1 Formation of Metal Complexes .. 677
 13.17.4 Product Subclass 4: 1,2,4-Telluradiphospholes 678
 13.17.4.1 Synthesis by Ring-Closure Reactions 679
 13.17.4.1.1 By Formation of One Te—P, One Te—C, and One P—C Bond 679
 13.17.4.1.1.1 Fragments P—C, P—C, and Te .. 679
 13.17.4.1.1.1 Method 1: From Phosphaacetylenes and Elemental Tellurium 679
 13.17.4.2 Synthesis by Ring Transformation 680
 13.17.4.3 Synthesis by Substituent Modification 680
 13.17.4.3.1 Addition Reactions ... 680
 13.17.4.3.1.1 Formation of Metal Complexes .. 680
 13.17.5 Product Subclass 5: 1,2,5-Thiadiphospholes 681
 13.17.6 Product Subclass 6: 1,3,4-Thiadiphospholes 682
 13.17.6.1 Synthesis by Ring-Closure Reactions 682
 13.17.6.1.1 By Formation of One P—P, One S—C, and Two P—C Bonds 682
 13.17.6.1.1.1 Fragments S—C, C, and Two PFragments 682
 13.17.6.1.1.1 Method 1: From Metalloacetylenes and Carbon Disulfide 682
 13.17.6.1.2 By Formation of One P—P and Two S—C Bonds 683
 13.17.6.1.2.1 Fragments P—C, P—C, and S ... 683
 13.17.6.1.2.1 Method 1: From Phosphaacetylenes and a Sulfur Source 683
 13.17.6.2 Synthesis by Ring Transformation 684
 13.17.6.3 Synthesis by Substituent Modification 684
 13.17.6.3.1 Addition Reactions .. 684
 13.17.6.3.1.1 Formation of Bis(η1-Complexes) 684
 13.17.7 Product Subclass 7: 1,3,4-Selenadiphospholes 685
 13.17.7.1 Synthesis by Ring-Closure Reactions 685
 13.17.7.1.2 By Formation of One P—P and Two Se—C Bonds 685
 13.17.7.1.2.1 Fragments P—C, P—C, and Se ... 685
 13.17.7.1.2.1 Method 1: From Phosphaacetylenes and Elemental Selenium 685
13.18
Product Class 18: Diazaphospholes and Diazarsoles
R. K. Bansal and Neelima Gupta

13.18
Product Class 18: Diazaphospholes and Diazarsoles

13.18.1
Product Subclass 1: Monocyclic 1,2,3-Diazaphospholes and 1,2,3-Diazarsoles

13.18.1.1
Synthesis by Ring-Closure Reactions

13.18.1.1.1
By Formation of One N—P/As and One P/As—C Bond

13.18.1.1.1.1
Fragments N—N—C and P/As

13.18.1.1.1.1.1
Method 1: Synthesis by [4 + 1] Cyclocondensation

13.18.1.2
Synthesis by Ring Transformation

13.18.1.2.1
Method 1: By Cycloaddition/Cycloreversion

13.18.2
Product Subclass 2: 1,2,3-Diazaphospholo[1,5-a]pyridines

13.18.2.1
Synthesis by Ring-Closure Reactions

13.18.2.1.1
By Formation of One N—P and One P—C Bond

13.18.2.1.1.1
Fragments N—N—C and P

13.18.2.1.1.1.1
Method 1: Synthesis by [4 + 1] Cyclocondensation

13.18.3
Product Subclass 3: Monocyclic 1,2,4-Diazaphospholes and 1,2,4-Diazarsoles

13.18.3.1
Synthesis by Ring-Closure Reactions

13.18.3.1.1
By Formation of Two N—C Bonds

13.18.3.1.1.1
Fragments C—P/As—C and N—N

13.18.3.1.1.1.1
Method 1: Cyclocondensation of 2-Heteroallylic Cations with Hydrazines

13.18.3.1.2
By Formation of One N—C and One P/As—C Bond

13.18.3.1.2.1
Fragments C—N—N and C—P/As

13.18.3.1.2.1.1
Method 1: [3 + 2] Cycloaddition

13.18.3.1.2.1.1.1
Variation 1: Of Phosphaalkynes and Diazoalkanes

13.18.3.1.2.1.1.2
Variation 2: Of Phosphaalkynes and Nitrilimines

13.18.3.1.2.1.1.3
Variation 3: Of Phosphaalkynes and Sydnones

13.18.3.1.2.1.1.4
Variation 4: Of Phosphaalkenes or Arsaalkenes and Diazoalkanes

13.18.3.1.2.1.1.5
Variation 5: Of Phosphaalkenes and Sydnones

13.18.3.2
Synthesis By Ring Transformation

13.18.3.2.1
Method 1: By O/P Exchange

13.18.4
Product Subclass 4: 1,2,4-Diazaphospholo[1,5-a]pyridines and 1,2,4-Diazarsolo[1,5-a]pyridines

13.18.4.1
Synthesis by Ring Transformation

13.18.4.1.1
Method 1: By O/P or O/As Exchange

13.18.5
Product Subclass 5: Monocyclic 1,3,2-Diazaphospholes

13.18.5.1
Synthesis by Ring-Closure Reactions

<table>
<thead>
<tr>
<th>Subclass</th>
<th>Synthesis by Ring-Closure Reactions</th>
<th>Method</th>
<th>Fragments</th>
<th>Products</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>13.18.6</td>
<td>5.1.1.1.1</td>
<td>N—C—C—N and P</td>
<td>702</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Method 1: [4+1] Cyclocondensation</td>
<td></td>
<td>702</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Method 1: Cyclocondensation with Phosphorus Trichloride</td>
<td></td>
<td>702</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Method 2: Cyclocondensation with Hexamethylphosphorous Triamide</td>
<td></td>
<td>703</td>
</tr>
<tr>
<td>7</td>
<td>13.18.7</td>
<td>5.1.1.1.1</td>
<td>N—C—C—N and P</td>
<td>704</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Method 1: Cyclocondensation with Phosphorus Trichloride</td>
<td></td>
<td>704</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Method 1: Condensation of Benzene-1,2-diamines with Hexamethylphosphorous Triamide</td>
<td></td>
<td>706</td>
</tr>
<tr>
<td>8</td>
<td>13.18.8</td>
<td>5.1.1.1.1</td>
<td>N—C—C—N and P</td>
<td>705</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Method 1: [3+2] Cyclocondensation</td>
<td></td>
<td>707</td>
</tr>
<tr>
<td>9</td>
<td>13.18.9</td>
<td>5.1.1.1.1</td>
<td>N—C—C—N and C—P</td>
<td>708</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Method 1: [3+2] Cyclocondensation with (Chloromethyl)dichlorophosphine</td>
<td></td>
<td>708</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Method 1: [4+1] Cyclocondensation with Phosphorus Trichloride</td>
<td></td>
<td>709</td>
</tr>
<tr>
<td>10</td>
<td>13.18.10</td>
<td>5.1.1.1.1</td>
<td>N—C—N and C—P</td>
<td>710</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Method 1: [4+1] Cyclocondensation with Phosphorus Trichloride</td>
<td></td>
<td>709</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Method 1: [4+1] Cyclocondensation with Phosphorus Trichloride</td>
<td></td>
<td>709</td>
</tr>
</tbody>
</table>
13.18 10.1.1.1 Method 1: [3 + 2] Cyclocondensation with
(Chloromethyl)dichlorophosphine 711

13.18 10.1.2 By Formation of One N—P and One P—C Bond 712

13.18 10.1.2.1 Fragments N—C—N—C and P 712

13.18 10.1.2.1.1 Method 1: [4 + 1] Cyclocondensation with Phosphorus Trichloride 712

13.19 Product Class 19: Azadiphospholes and Their Analogues
S. J. Collier

13.19 Product Class 19: Azadiphospholes and Their Analogues 717

13.19.1 Product Subclass 1: Monocyclic 1,2,3-Azadiphospholes 717

13.19.1.1 Synthesis by Ring-Closure Reactions 719

13.19.1.1.1 By Formation of One P—P and One P—C Bond 719

13.19.1.1.1.1 Fragments C—C—N—P and P 719

13.19.1.1.1.1.1 Method 1: Flash Pyrolysis of Substituted Aminophosphines 719

13.19.1.2 Synthesis by Ring Transformation 720

13.19.2 Product Subclass 2: 1,2,3-Benzazadiphospholes and Analogues 721

13.19.2.1 Synthesis by Ring-Closure Reactions 721

13.19.2.1.1 By Formation of One N—P(As, Sb) and One P—P(As, Sb) Bond 721

13.19.2.1.1.1 Fragments P—C—C and N 721

13.19.2.1.1.1.1 Method 1: Condensation of Phosphinoanilines with Hexamethylphosphorous Triamide, Hexamethylarsenous Triamide, or Tris(dimethylamino)stibine 721

13.19.3 Product Subclass 3: 1,2,4-Azadiphospholes 722

13.19.3.1 Synthesis by Ring-Closure Reactions 723

13.19.3.1.1 By Formation of One N—P, One N—C, and One P—C Bond 723

13.19.3.1.1.1 Fragments P—C, P—C, and N 723

13.19.3.1.1.1.1 Method 1: Synthesis from Alkylidynephosphines and Imidometal Complexes 723

13.19.3.1.2 By Formation of One N—P and One P—C Bond 724

13.19.3.1.2.1 Fragments N—C—P and C—P 724

13.19.3.1.2.1.1 Method 1: Dimerization of N-(tert-Butyl)-N-(phosphinidynemethyl)amine 724

13.19.4 Product Subclass 4: 1,2,5-Azadiphospholes 725

13.19.4.1 Synthesis by Ring-Closure Reactions 726

13.19.4.1.1 By Formation of Two N—P Bonds and One C—C Bond 726

13.19.4.1.1.1 Fragments P—C, P—C, and N 726

13.19.4.1.1.1.1 Method 1: Synthesis from Alkylidynephosphines and Imidovanadium Complexes 726
13.19.4.1.1.2 Method 2: Direct Synthesis of η^4-1,2,5-Azadiphosphole Complexes from Alkylidynephosphines and Imidoiridium Complexes

13.19.5 Product Subclass 5: 1,3,4-Azadiphospholes

13.20 Product Class 20: Triphospholes and Diphospharsolides
R. K. Bansal and Neelima Gupta

13.20.1 Product Subclass 1: 1,2,3-Triphospholides

13.20.1.1 Synthesis by Aromatization

13.20.1.1.1 Method 1: From 1,3-Dihydro-1,2,3-triphospholes

13.20.1.1.1.1 Method 1: Reductive Cyclocondensation of Phosphaalkynes or Phosphaalkenes

13.20.1.1.1.1.1 Variation 1: By the Use of Lithium Bis(trimethylsilyl)phosphide

13.20.1.1.1.1.2 Variation 2: By the Use of Potassium Menthoxide

13.20.1.2 By Formation of One P–P and Two P–C Bonds

13.20.1.1.1.2 Fragments P–C, P–C, and P

13.20.1.1.1 Method 1: Synthesis from a 2,3,4-Triphosphapentadienide Anion

13.20.2 Product Subclass 2: 1,2,4-Triphospholides and 1,2,4-Triphospholes

13.20.2.1 Synthesis by Ring-Closure Reactions

13.20.2.1.1 Method 1: Synthesis from a 2,3,4-Triphosphapentadienide Anion

13.20.2.2 Synthesis by Ring Transformation

13.20.2.2.1 Ring Contraction

13.20.2.2.1.1 Method 1: Of Tri-tert-butyl-1,3,5-triphosphabenzene

13.20.2.3 Aromatization

13.20.2.3.1 Method 1: Of a Triphospholane

13.20.2.4 Synthesis by Substituent Modification

13.20.2.4.1 Addition Reactions

13.20.2.4.1.1 Method 1: Reaction of 1,2,4-Triphospholides with Electrophiles

13.20.3 Product Subclass 3: Diphospharsolides

13.20.3.1 Synthesis by Ring-Closure Reactions

13.20.3.1.1 Method 1: Reductive Cyclization of a Phosphaalkyne with Lithium Bis(trimethylsilyl)arsenide
13.21
Product Class 21: Thiadiazaphospholes

S. J. Collier

Aromatization

Method 1: Synthesis by Chloride Abstraction

13.22
Product Class 22: Triazaphospholes

R. K. Bansal and Neelima Gupta

13.22
Product Subclass 1: 1,2,3,4-Triazaphospholes

Synthesis by Ring-Closure Reactions

By Formation of One N—P and One N—C Bond

Fragments N—N—N and P—C

Method 1: [3 + 2] Cycloaddition of Azides

Variation 1: Use of Phosphaalkynes

Variation 2: Use of Phosphaalkenes

By Formation of One N—N and One P—C Bond

Fragments N—N—C and N—P

Method 1: [3 + 2] Cycloaddition of Halo(imino)phosphines

13.22
Product Subclass 2: Monocyclic 1,2,4,3-Triazaphospholes

Synthesis by Ring-Closure Reactions

By Formation of Two N—P Bonds

Fragments N—N—C—N and P

Method 1: [4 + 1] Cyclocondensation

Variation 1: From Amidrazone Hydrochlorides and Hexaalkylphosphorous Triamides

Variation 2: From Amidrazone Hydrochlorides and Phosphorus Pentachloride

By Formation of One N—P and One N—C Bond

Fragments P—N—C and N—N

Method 1: [3 + 2] Cyclocondensation of N-Phosphino Imidates and Hydrazines

Synthesis by Substituent Modification

Substitution of Hydrogen

13.22
Product Subclass 3: Thiazolo[2,3-e][1,2,4,3]triazaphospholes and [1,2,4,3]Triazaphospholo[1,5-a]pyridines

Synthesis by Ring-Closure Reactions

By Formation of Two N—P Bonds
13.22.3.1.1 Fragments N—N—C—N and P ... 752
13.22.3.1.1.1 Method 1: [4 + 1] Cyclocondensation .. 752

13.23 Product Class 23: Diazadiphospholes
S. J. Collier

13.23 Product Class 23: Diazadiphospholes ... 757
13.23.1 Product Subclass 1: 1,2,3,4-Diazadiphospholes 757
13.23.1.1 Synthesis by Ring-Closure Reactions ... 758
13.23.1.1.1 By Formation of One N—P and One P—C Bond 758
13.23.1.1.1 Fragments N—N—C and P—P .. 758
13.23.1.1.1.1 Method 1: From Lithium Diazo(trimethylsilyl)methanide and White Phosphorus .. 758
13.23.1.2 Synthesis by Substituent Modification ... 758
13.23.1.2.1 Substitution of Existing Substituents 758
13.23.1.2.1.1 Of Hydrogen ... 758
13.23.1.2.1.1 Method 1: By a Metal ... 758
13.23.2 Product Subclass 2: 1,2,3,5-Diazadiphospholes 759
13.23.2.1 Synthesis by Ring-Closure Reactions ... 760
13.23.2.1.1 By Formation of Two N—P Bonds ... 760
13.23.2.1.1 Fragments P—C—P and N—N .. 760
13.23.2.1.1.1 Method 1: Condensation of Bis(dichlorophosphino)methane with Alkyl- and Arylhydrazines 760

13.24 Product Class 24: Tetraphospholes
S. J. Collier

13.24 Product Class 24: Tetraphospholes ... 763
13.24.1 Synthesis by Ring-Closure Reactions ... 764
13.24.1.1 Formation of Two P—C Bonds ... 764
13.24.1.1.1 Fragments P—P—P—P and C .. 764
13.24.1.1.1 Method 1: From White Phosphorus and Sodium Powder in Diglyme .. 764

13.25 Product Class 25: Tetraazaphospholes
S. J. Collier

13.25 Product Class 25: Tetraazaphospholes .. 767
13.25.1 Synthesis by Ring-Closure Reactions ... 767
13.25.1.1 By Formation of One N—N and One N—P Bond 767
13.25.1.1 Fragments N—N—N and N—P .. 767
13.25.1.1.1 Method 1: By 1,3-Dipolar Cycloaddition of Alkyl Azides with
\(N\)-Aryl-\(N\)-phosphinidyneammonium Ions 767

13.26 Product Class 26: Pentaphospholes and Pentarsoles
R. K. Bansal and Neelima Gupta

13.26 Product Class 26: Pentaphospholes and Pentarsoles 771
13.26.1 Product Subclass 1: Pentaphospholides 771
13.26.1.1 Synthesis by Ring-Closure Reactions 772
13.26.1.1 Method 1: Synthesis of Metal Pentaphospholides from Phosphorus and
an Alkali Metal Phosphide ... 772
13.26.1.1.1 Variation 1: From White Phosphorus and Sodium Dihydrogenphosphide . 772
13.26.1.1.2 Variation 2: From White Phosphorus and Lithium Dihydrogenphosphide . 773
13.26.1.1.3 Variation 3: From Red Phosphorus and Potassium Dihydrogenphosphate 773
13.26.2 Product Subclass 2: Pentarsoles ... 774
13.26.2.1 Synthesis by Ring-Closure Reactions 775
13.26.2.1.1 Method 1: Synthesis of Pentarsolyl Complexes from Yellow Arsenic 775

13.27 Product Class 27: Selenazoles and Tellurazoles Containing One or
More Other Heteroatoms
R. A. Aitken

13.27 Product Class 27: Selenazoles and Tellurazoles Containing
One or More Other Heteroatoms ... 777
13.27.1 Product Subclass 1: 1,2,3,5-Diselenadiazolium Salts and
1,2,3,5-Diselenadiazolyl-Containing Compounds 777
13.27.1.1 Synthesis by Ring-Closure Reactions 778
13.27.1.1 By Formation of One Se—Se and Two Se—N Bonds 778
13.27.1.1.1 Method 1: Reaction of \(N\),\(N\),\(N\)¢-Tris(trimethylsilyl)amidines with
Selenium Dichloride .. 778
13.27.1.2 Synthesis by Ring Transformation .. 778
13.27.1.2.1 One-Electron Reduction .. 778
13.27.2 Product Subclass 2: 1,2,3-Benzoxaselenazoles 779
13.27.2.1 Synthesis by Ring-Closure Reactions 780
13.27.2.1 By Formation of One Se—O, One Se—N, and One O—C Bond 780
13.27.2.1.1 Method 1: Reaction of a Hindered Aniline with Selenium Oxychloride . 780
13.27.3 Product Subclass 3: 2,1,3-Benzoxatellurazoles and Naphth[2,1-
c][1,2,5]oxatellurazoles .. 780
13.27.3.1 Synthesis by Ring-Closure Reactions 781
13.27.3.1 By Formation of One Te—O, One Te—C, and One N—C Bond 781
13.27.3.1.1 Method 1: From \(\alpha\)-Tetralone Oximes 781
13.27.3.1.2 By Formation of One Te—O and One N—C Bond

13.27.3.1.2.1 Method 1: Nitration and Reduction of an Aryltellurium Trichloride

13.27.4 Product Subclass 4: 1,2,3-Benzothiaselenazolium Salts and Benzobis(1,2,3-thiasele-noazoles)

13.27.4.1 Synthesis by Ring-Closure Reactions

13.27.4.1.1 By Formation of One Se—S and One Se—N Bond

13.27.4.1.1.1 Method 1: Reaction of 2-Aminobenzenethiols with Selenious Acid

13.27.4.1.1.2 Method 2: Reaction of 1,2,3-Benzodithiazolium Salts with Selenious Acid

13.27.4.1.1.3 Method 3: Reaction of a Diaminobenzenedithiol with Selenium Tetrachloride

13.27.4.2 Synthesis by Substituent Modification

13.27.4.2.1 Substitution of Existing Substituents

13.27.4.2.1.1 Of Halogens

13.27.4.2.1.1.1 Method 1: Reaction with Anilines

13.27.4.2.1.2 Of Methoxy Groups

13.27.4.2.1.2.1 Method 1: Reaction with Dialkylammonium Acetates

13.27.5 Product Subclass 5: 2,1,3-Benzothiaselenazolium Salts

13.27.5.1 Synthesis by Ring-Closure Reactions

13.27.5.1.1 By Formation of One S—Se and One S—N Bond

13.27.5.1.1.1 Method 1: Reaction of 2-Aminobenzeneselenol Hydrochlorides with Thionyl Chloride

13.27.5.2 Synthesis by Substituent Modification

13.27.5.2.1 Substitution of Existing Substituents

13.27.5.2.1.1 Of Halogens

13.27.5.2.1.1.1 Method 1: Reaction with Anilines

13.27.5.2.1.2 Of Methoxy Groups

13.27.5.2.1.2.1 Method 1: Reaction with Dialkylammonium Acetates

13.27.6 Product Subclass 6: 1,2,4-Diselenazolium Salts

13.27.6.1 Synthesis by Ring-Closure Reactions

13.27.6.1.1 By Formation of One Se—Se and Two Se—C Bonds

13.27.6.1.1.1 Method 1: Reaction of a Chlorinated Iminium Salt with Sodium Hydrogen Selenide Followed by Oxidation

13.27.6.1.2 By Formation of One Se—Se and One Se—C Bond

13.27.6.1.2.1 Method 1: Reaction of an N-Benzoylselenourea Nickel Complex with Diphosgene

13.27.6.1.3 By Formation of One Se—Se and One N—C Bond

13.27.6.1.3.1 Method 1: Iodine Oxidation of Aromatic Selenoamides
13.27.7 **Product Subclass 7: 1,2,3-Benzodiselenazolium Salts** .. 788
 13.27.7.1 Synthesis by Ring-Closure Reactions ... 789
 13.27.7.1.1 By Formation of One Se—Se and One Se—N Bond .. 789
 13.27.7.1.1.1 Method 1: Reaction of 2-Aminobenzeneselenol Hydrochlorides with Selenious Acid .. 789
 13.27.7.2 Synthesis by Substituent Modification ... 789
 13.27.7.2.1 Substitution of Existing Substituents ... 789
 13.27.7.2.1.1 Of Halogens .. 789
 13.27.7.2.1.1.1 Method 1: Reaction with Anilines .. 789
 13.27.7.2.1.2 Of Methoxy Groups .. 790
 13.27.7.2.1.2.1 Method 1: Reaction with Dialkylammonium Acetates 790
 13.27.7.8 **Product Subclass 8: 1,3,2-Benzodiselenazolium Salts** 790
 13.27.7.8.1 Synthesis by Ring-Closure Reactions ... 790
 13.27.7.8.1.1 By Formation of Two Se—N Bonds ... 790
 13.27.7.8.1.1.1 Method 1: Reaction of Benzene-1,2-diselenenyl Dichloride with Trimethylsilyl Azide ... 790
 13.27.7.9 **Product Subclass 9: 1,2,3-Selenadiazoles** ... 791
 13.27.7.9.1 Synthesis by Ring-Closure Reactions ... 791
 13.27.7.9.1.1 By Formation of One Se—N and One Se—C Bond .. 791
 13.27.7.9.1.1.1 Method 1: Reaction of Semicarbazones with Selenium Dioxide 791
 13.27.7.9.1.1.1.1 Variation 1: In Acetic Acid ... 791
 13.27.7.9.1.1.1.2 Variation 2: In Aqueous Dioxane ... 792
 13.27.7.9.1.1.2 Method 2: Reaction of Tosylhydrazones with Diselenium Dichloride 793
 13.27.7.9.1.1.3 Method 3: Reaction of Tosylhydrazones with Selenium Oxychloride 793
 13.27.7.9.1.2 By Formation of One Se—N and One C—C Bond .. 794
 13.27.7.9.1.2.1 Method 1: Reaction of an Aryl Isoselenocyanate with Diazomethane 794
 13.27.7.9.2 Aromatization .. 795
 13.27.7.9.2.1 Method 1: N-Debenzoylation of 2-Benzoyl-5-(benzoylimino)-2,5-dihydroselenadiazoles .. 795
 13.27.7.9.3 Synthesis by Substituent Modification ... 795
 13.27.7.9.3.1 Rearrangement of Substituents ... 795
 13.27.7.9.3.1.1 Method 1: Curtius Rearrangement of 5-(Azidocarbonyl)-1,2,3-selenadiazoles .. 795
 13.27.7.10 **Product Subclass 10: 1,2,3-Benzoselenadiazoles** .. 796
 13.27.7.10.1 Synthesis by Ring-Closure Reactions .. 796
 13.27.7.10.1.1 By Formation of One Se—N and One N—N Bond 796
 13.27.7.10.1.1.1 Method 1: Diazotization of 2-Aminobenzeneselenol 796
 13.27.7.10.2 Aromatization .. 796
13.27.10.2.1 Method 1: Reaction of a 6,7-Dihydro-1,2,3-benzoselenadiazole with Selenium ... 796

13.27.11 Product Subclass 11: 1,2,4-Selenadiazoles ... 797
13.27.11.1 Synthesis by Ring-Closure Reactions ... 797
13.27.11.1.1 By Formation of One Se—N and One N—C Bond ... 797
13.27.11.1.1 Method 1: Oxidation of Selenoamides ... 797
13.27.11.1.1.1 Variation 1: Using Iodine ... 797
13.27.11.1.1.2 Variation 2: Using N-Bromosuccinimide ... 798
13.27.11.1.1.3 Variation 3: Using Hydrogen Peroxide .. 798
13.27.11.1.1.4 Variation 4: Using 3-Chloroperoxybenzoic Acid ... 799
13.27.11.1.2 Method 2: Reaction of N-Bromoamidines with Potassium Selenocyanate 799

13.27.12 Product Subclass 12: 1,2,5-Selenadiazoles ... 800
13.27.12.1 Synthesis by Ring-Closure Reactions ... 800
13.27.12.1.1 By Formation of Two Se—N Bonds ... 800
13.27.12.1.1 Method 1: Reaction of 1,2-Diamines with Selenium Compounds 800
13.27.12.1.1.1 Variation 1: Using Diselenium Dichloride ... 800
13.27.12.1.1.2 Variation 2: Using Selenium Dioxide .. 800
13.27.12.1.1.3 Variation 3: Using a Selenium Diimide .. 801
13.27.12.1.1.2 Method 2: Reaction of 1,2-Diimines with Selenium Compounds 801
13.27.12.1.1.2.1 Variation 1: Using Diselenium Dichloride ... 801
13.27.12.1.1.2.2 Variation 2: Using Selenium Oxychloride .. 802
13.27.12.1.1.3 Method 3: Reaction of 1,2-Dioximes with Selenium Compounds 802
13.27.12.1.1.3.1 Variation 1: Using Diselenim Dichloride ... 802
13.27.12.1.1.3.2 Variation 2: Using Selenium Dioxide .. 803
13.27.12.1.1.4 Method 4: Reaction of 1,2-Bis[(trimethylsilyl)imines] with Selenium Oxychloride ... 803

13.27.12.2 Synthesis by Ring Transformation ... 804
13.27.12.2.1 From 1,2,5-Thiadiazoles ... 804
13.27.12.2.1 Method 1: Reaction of 1,2,5-Thiadiazoles with Grignard Reagents and Diselenium Dichloride ... 804
13.27.12.2.2 From a Pyrimidin-4(3H)-one ... 805
13.27.12.2.1 Method 1: Reaction of a 5-Aminopyrimidin-4(3H)-one with Selenium Dioxide ... 805

13.27.13 Product Subclass 13: 2,1,3-Benzoselenadiazoles .. 805
13.27.13.1 Synthesis by Ring-Closure Reactions ... 806
13.27.13.1.1 By Formation of Two Se—N Bonds ... 806
13.27.13.1.1 Method 1: Reaction of 1,2-Diaminoarenes with Selenium Dioxide 806
13.27.13.1.1.2 Method 2: Reaction of 1,2-Diaminoarenes with Selenium Oxychloride 806
13.27.13.1.1.3 Method 3: Reaction of 1,2-Diaminoarenes with Selenium Tetrachloride 807
13.27.13.1.1.4 Method 4: Reaction of Spirocyclic Aminals with Selenium Dioxide 808
13.27.13.1.1.5 Method 5: Reaction of 1,2-Bis[(trimethylsilyl)imines] with Selenium Oxychloride or Selenium Tetrachloride 808
13.27 Synthesis by Substituent Modification 809
13.27.1 Substitution of Existing Substituents 809
13.27.1.1 Of Hydrogen ... 809
13.27.1.1.1 Method 1: Nitration ... 809
13.27.1.2 Of Bromine or Iodine ... 810
13.27.1.2.1 Method 1: Nucleophilic Substitution 810
13.27.2 Addition Reactions ... 811
13.27.2.1 Method 1: N-Alkylation .. 811
14 Product Subclass 14: 1,3,4-Selenadiazoles and 1,3,4-Selenadiazolium Salts 811
14.1 Synthesis by Ring-Closure Reactions 811
14.1.1 By Formation of One Se—C and Two N—C Bonds 811
14.1.1.1 Method 1: Reaction of Selenobenzamides with Hydrazine Hydrate 811
14.1.2 By Formation of Two Se—C Bonds .. 812
14.1.2.1 Method 1: Reaction of Dimethylformamide Azine with Hydrogen Selenide 812
14.1.2.2 Method 2: Reaction of 1,2-Diacetylhydrazine with Phosphorus Pentaselenide 812
14.1.3 By Formation of One Se—C and One N—C Bond 813
14.1.3.1 Method 1: Reaction of Isoselenocyanates with Selenosemicarbazides 813
14.1.3.2 Method 2: Reaction of Carboxylic Acids with Selenosemicarbazide and Phosphoryl Chloride 813
14.1.4 By Formation of One Se—C Bond .. 814
14.1.4.1 Method 1: Reaction of N-Acyl-N’-selenoacylhydrazines with Acetic Anhydride/Perchloric Acid 814
15 Product Subclass 15: 1,2,3-Benzotelluradiazolium Salts 815
15.1 Synthesis by Ring-Closure Reactions 815
15.1.1 By Formation of One Te—N Bond .. 815
15.1.1.1 Method 1: Reaction of a 2-(Arylazo)arenetellurenyl Chloride with Silver Perchlorate 815
16 Product Subclass 16: 1,2,5-Telluradiazoles 816
16.1 Synthesis by Ring Transformation .. 816
16.1.1 Method 1: Reaction of 1,2,5-Thiadiazoles or 1,2,5-Selenadiazoles with a Grignard Reagent Followed by Tellurium Tetrachloride 816
17 Product Subclass 17: 2,1,3-Benzotelluradiazoles 817
17.1 Synthesis by Ring-Closure Reactions 817
17.1.1 By Formation of Two Te—N Bonds .. 817
17.1.1.1 Method 1: Reaction of a 1,2-Bis[(trimethylsilyl)imine] with Tellurium Tetrachloride 817
17.1.1.2 Method 2: Reaction of a 1,2-Diamine with Tellurium Tetrachloride 817
13.27.17.1.2 By Formation of One Te—N and One N—C Bond 818
13.27.17.1.2.1 Method 1: Reaction of a Lithiated Arylamine with a Silylated Tellurium Imide 818
13.27.17.2 Synthesis by Ring Transformation .. 818
13.27.17.2.1 Method 1: Reaction of an Aromatic-Fused 1,2,5-Selenadiazole with a Grignard Reagent, Followed by Tellurium Tetrachloride ... 818

13.28 Product Class 28: Oxatriazoles
M. Begtrup

13.28 Product Class 28: Oxatriazoles ... 823
13.28.1 Product Subclass 1: 1,2,3,4-Oxatriazoles 823
13.28.1.1 Synthesis by Ring-Closure Reactions 824
13.28.1.1.1 By Formation of One N—N, One O—C, and One N—C Bond 824
13.28.1.1.1.1 Method 1: 1,2,3,4-Oxatriazol-3-ium-5-olates from Nitromethide Anions and Arenediazonium Ions 824
13.28.1.1.2 By Formation of One N—N and One O—C Bond 825
13.28.1.1.2.1 Fragments C—N—N and N—O .. 825
13.28.1.1.2.1.1 Method 1: 1,2,3,4-Oxatriazol-3-ium-5-thiolates from Hydrazinium Dithiocarbazates and Nitrous Acid 825
13.28.1.1.2.2 Method 2: 1,2,3,4-Oxatriazolium-5-aminides from Thiosemicarbazides and Nitrous Acid or Alkyl Nitrites 825
13.28.1.1.3 By Formation of One O—C and One N—C Bond 826
13.28.1.1.3.1 Fragments O—N—N—N and C 826
13.28.1.1.3.1.1 Method 1: 1,2,3,4-Oxatriazolium-5-olates from N-Nitrosohydrazines and Phosgene 826
13.28.1.1.4 By Formation of One O—C Bond .. 827
13.28.1.1.4.1 Fragment C—N—N—O .. 827
13.28.1.1.4.1.1 Method 1: 1,2,3,4-Oxatriazolium-5-aminide Hydrochlorides from 1-Nitroso-2-guanidinohydrazines 827
13.28.1.1.4.1.2 Method 2: 1,2,3,4-Oxatriazol-3-ium-5-olates from (Arylhydrazono)-methanedisulfonates and Nitrous Acid 827
13.28.1.1.4.1.3 Method 3: 1,2,3,4-Oxatriazolium-5-olates from Semicarbazides and Nitrous Acid 828
13.28.1.2 Synthesis by Ring Transformation .. 828
13.28.1.2.1 Method 1: 1,2,3,4-Oxatriazolium-5-aminides from 1,2,3,4-Oxatriazolium-5-anilides and Aryl Isocyanates 828
13.28.1.3 Synthesis by Substituent Modification 829
13.28.1.3.1 Method 1: 1,2,3,4-Oxatriazolium Salts by Alkylation of 1,2,3,4-Oxatriazolium-5-thiolates 829
13.28.1.3.2 Method 2: N-Acylation and Sulfonation of 1,2,3,4-Oxatriazolium-5-aminides 829
13.28.1.3.3 Method 3: 1,2,3,4-Oxatriazolium-5-olates from 1,2,3,4-Oxatriazolium-5-aminides and Nitrous Acid 830

13.28.2 Product Subclass 2: 1,2,3,5-Oxatriazoles 830

13.28.2.1 Synthesis by Ring-Closure Reactions 830
13.28.2.1.1 By Formation of One O—N and One N—C Bond 830
13.28.2.1.1.1 Fragments C—N—O and N—N 830
13.28.2.1.1.1.1 Method 1: 2,3-Dihydro-1,2,3,5-oxatriazoles from Nitrile Oxides and Azo Compounds 830

13.29 Product Class 29: Thiatriazoles
M. Begtrup

13.29 Product Class 29: Thiatriazoles ... 833
13.29.1 Product Subclass 1: 1,2,3,4-Thiatriazoles 833
13.29.1.1 Synthesis by Ring-Closure Reactions 834
13.29.1.1.1 By Formation of One S—N and One N—N Bond 834
13.29.1.1.1.1 Method 1: From Thiohydrazides and Nitrous Acid 834
13.29.1.1.1.1.1 Variation 1: 5-Substituted 1,2,3,4-Thiatriazoles from Thiohydrazides and Nitrous Acid 834
13.29.1.1.1.1.2 Variation 2: Alkoxy- and Aryloxy-1,2,3,4-thiatriazoles from O-Substituted Hydrazinecarbothioates and Nitrous Acid 834
13.29.1.1.1.1.3 Variation 3: 5-(Alkylsulfanyl)-1,2,3,4-thiatriazoles from Hydrazinecarbothioates and Nitrous Acid 835
13.29.1.1.1.1.3 Variation 4: 1,2,3,4-Thiatriazol-5-amines from Thiosemicarbazides and Nitrous Acid 835
13.29.1.1.1.1.5 Variation 5: 1,2,3,4-Thiatriazol-5-amines from Thiosemicarbazides and Diazonium Salts 836
13.29.1.1.1.1.6 Variation 6: 5-Hydrazino-1,2,3,4-thiatriazole from Thiocarbazole and Nitrous Acid 836
13.29.1.1.2 By Formation of One S—N and One N—C Bond 837
13.29.1.1.2.1 Method 1: 1,2,3,4-Thiatriazoles from Dithiocarboxylates and Sodium Azide 837
13.29.1.1.2.2 Method 2: 5-Chloro-1,2,3,4-thiatriazole from Thiophosgene and Sodium Azide 837
13.29.1.1.2.3 Method 3: 5-Alkyl- and 5-Aryl-1,2,3,4-thiatriazoles from 1-Methyl-2-[(thioacyl)sulfanyl]pyridinium Iodides and Sodium Azide 838
13.29.1.1.2.4 Method 4: 5-Alkoxy- and 5-Aryloxy-1,2,3,4-thiatriazoles from O-Alkyl or O-Aryl Chloroithiocarbonates and Sodium Azide 839
13.29.1.1.2.5 Method 5: From Thioketenes and Hydrazoic Acid 839
13.29.1.1.2.6 Method 6: 1,2,3,4-Thiatriazol-5-amines from Isothiocyanates and Hydrazoic Acid or Trimethylsilyl Azide 840
13.29.1.2.6.1 Variation 1: 1,2,3,4-Thiatriazol-5-amine from Isothiocyanates and
Hydrazoic Acid .. 840
13.29.1.2.6.2 Variation 2: 1,2,3,4-Thiatriazol-5-amine from Isothiocyanates and
Trimethylsilyl Azide .. 841
13.29.1.2.7 Method 7: 1,2,3,4-Thiatriazole-5-thiol from Carbon Disulfide and
Azide Salts .. 841
13.29.1.2.7.1 Variation 1: 1,2,3,4-Thiatriazole-5-thiol from Carbon Disulfide and
Diazodis(triphenylphosphine)palladium 842
13.29.1.2 Synthesis by Ring Transformation .. 842
13.29.1.2.1 Method 1: 1,2,3,4-Thiatriazol-3-ium-5-olates from
1,2,3,4-Oxatriazol-3-ium-5-thiolates 842
13.29.1.2.2 Method 2: N-Substituted 1,2,3,4-Thiatriazol-5-amine from
Substituted Tetrazole-5-thiols 843
13.29.1.2.3 Method 3: 5-Diazoalkyl-1,2,3,4-thiatriazoles from
5-Chloro-1,2,3-thiadiazoles and Sodium Azide 843
13.29.1.2.4 Method 4: Sulfonylamino-1,2,3,4-thiatriazoles from
1,3-Thiazetidine-2,4-diimines and Sodium Azide 844
13.29.1.3 Synthesis by Substituent Modification 844
13.29.1.3.1 Method 1: 5-Substituted 1,2,3,4-Thiatriazoles by Reaction of
5-Chloro-1,2,3,4-thiatriazole with Nucleophiles 844
13.29.1.3.2 Method 2: 5-Substituted 3-Alkyl-1,2,3,4-thiatriazolium Salts by Reaction
of 5-Alkoxy-3-alkyl-1,2,3,4-thiatriazolium Salts with Nucleo-
philes .. 845
13.29.1.3.3 Method 3: 5-Substituted 1,2,3,4-Thiatriazolium Salts by Alkylation of
1,2,3,4-Thiatriazoles, 1,2,3,4-Thiatriazol-3-ium-5-olates,
and 1,2,3,4-Thiatriazol-3-ium-5-aminides 845
13.29.1.3.4 Method 4: Oxidation of 5-Phenyl-1,2,3,4-thiatriazole 846
13.29.1.3.5 Method 5: Alkylation and Acylation of 1,2,3,4-Thiatriazole-5-thiol 847
13.29.1.3.6 Method 6: Alkylation and Acylation of 1,2,3,4-Thiatriazol-5-amine 847
13.29.2 Product Subclass 2: 1,2,3,5-Thiatriazoles .. 848
13.29.2.1 Synthesis by Ring-Closure Reactions .. 849
13.29.2.1.1 By Formation of Two S—N Bonds .. 849
13.29.2.1.1.1 Method 1: 1,2,3,5-Thiatriazol-3-ium-4-aminides from
1-Aminoguanidines and Thionyl Chloride 849
13.29.2.1.1.2 Method 2: From Amidrazones and Thionyl Chloride 850
13.29.2.1.1.3 Method 3: From Amidrazones and Sulfuryl Fluoride 850
13.29.2.1.1.4 Method 4: 1,2,3,5-Thiatriazolidin-4-one 1-Oxides from
Semicarbazides and Thionyl Chloride 851
13.29.2.1.1.5 Method 5: 1,2,3,5-Thiatriazolidine-4-thiones from 1,2,4-Triaza-
3-silacyclopentane-5-thiones and Sulfur Dichloride 851
13.29.2.1.2 By Formation of One S—N and One N—C Bond 852
13.29.2.1.2.1 Method 1: 2,5-Dihydro-1,2,3,5-thiatriazoles from Nitrilimines and
N-Thionylaniline .. 852
13.29.2.1.2.2 Method 2: From Nitrilimines and N-Sulfonylamines 852
13.29.2.1.2.3 Method 3: From N’-(Chlorosulfonyl)carbamimidic Chlorides and Hydrazines ... 852
13.29.2.1.2.4 Method 4: From Sulfonylecarbamoyl Chlorides and Hydrazines .. 853
13.29.2.1.3 By Formation of One N—C Bond ... 853
13.29.2.1.3.1 Method 1: From Hydrazinesulfonamides and Base 853
13.29.2.2 Synthesis by Ring Transformation .. 854
13.29.2.2.1 Method 1: From 1,2,5-Thiadiazol-3(2H)-one 1-Oxides and Hydrazines .. 854
13.29.2.3 Synthesis by Substituent Modification 855
13.29.2.3.1 Method 1: N-Alkylation of 2,5-Dihydro-1,2,3,5-thiatriazole 1-Oxides 855
13.29.2.3.2 Method 2: N-Alkylation of 2,5-Dihydro-1,2,3,5-thiatriazole 1,1-Dioxides 855
13.29.2.3.3 Method 3: N-Alkylation of 1,2,3,5-Thiatriazolidin-4-one 1,1-Dioxides ... 856
13.29.2.3.4 Method 4: Treatment of 2,5-Dihydro-1,2,3,5-thiatriazole 1-Oxides with Phosphorus Pentachloride 856

13.30 Product Class 30: Tetrazoles
A. F. Brigas

13.30.1 Synthesis by Ring-Closure Reactions 861
13.30.1.1 By Formation of One N—N and Two N—C Bonds 864
13.30.1.1.1 Fragments N—N—N, N, and C ... 864
13.30.1.1.1.1 Method 1: From Carbon Disulfide or Carboxylic Acid Derivatives with Amine and Azide 864
13.30.1.1.1.1.1 Variation 1: From Ortho Esters .. 864
13.30.1.1.1.2 Variation 2: From Acid Chlorides 864
13.30.1.1.1.3 Variation 3: From Amidines .. 865
13.30.1.1.1.4 Variation 4: From Chloroalkaniminium Salts 865
13.30.1.1.2 Method 2: Via Ketone and Azide (Schmidt Reaction) 866
13.30.1.2 By Formation of Two N—N Bonds .. 867
13.30.1.2.1 Fragments N—C—N—N and N ... 867
13.30.1.2.1.1 Method 1: From Amidrazones and Sodium Nitrite 867
13.30.1.3 By Formation of One N—N and One N—C Bond 868
13.30.1.3.1 Fragments C—N—N—N and N ... 868
13.30.1.3.1.1 Method 1: Via Azidochloroalkaniminium Chlorides and Amines 868
13.30.1.3.1.2 Method 2: Via 1,1-Diazido-1-ethoxyalkanes and Amines 868
13.30.1.3.2 Fragments N—N—N and C—N ... 868
13.30.1.3.2.1 Method 1: From Carbonic Acid Derivatives 869
13.30.1.3.2.1.1 Variation 1: From Carbonimidic Dichlorides 869
13.30.1.3.2.1.2 Variation 2: From Isocyanates, Isothiocyanates, or Carbodiimides 869
13.30.1.3.2.1.3 Variation 3: From Other Carbonic Acid Derivatives 871
13.30.1.3.2.1.4 Variation 4: From Cyanates, Thiocyanates, and Their Derivatives .. 872
13.30.1.3.2.2 Method 2: From Carboxylic Acid Derivatives 874
13.30.4.1.2.4 Method 4: By Carbon ... 895
13.30.4.1.2.5 Method 5: By a Heteroatom ... 897
13.30.4.1.3 Of Carbon Functionalities .. 897
13.30.4.1.3.1 Nitrogen and Carbon Decarboxylation, Decylation, and Dealkylation ... 897
13.30.4.1.4 Of Heteroatoms ... 898
13.30.4.1.4.1 Of Halogen .. 898
13.30.4.1.4.1.1 Method 1: By Hydrogen ... 898
13.30.4.1.4.1.2 Method 2: By Palladium at Carbon 899
13.30.4.1.4.1.3 Method 3: By Carbon at Carbon 899
13.30.4.1.4.1.4 Method 4: By Nitrogen .. 900
13.30.4.1.4.1.5 Method 5: By Fluorine at Carbon 901
13.30.4.1.4.1.6 Method 6: By Oxygen at Carbon 901
13.30.4.1.4.1.6.1 Variation 1: By Reaction with Phenols 901
13.30.4.1.4.1.6.2 Variation 2: By Reaction with Alcohols 902
13.30.4.1.4.1.7 Method 7: Of Chlorine by Sulfur or Selenium at Carbon 903
13.30.4.1.4.2 Of Other Functions .. 903
13.30.4.1.4.2.1 Method 1: Of Oxygen Functions 903
13.30.4.1.4.2.2 Method 2: Of Sulfur Functions 904
13.30.4.2 Addition Reactions .. 904
13.30.4.3 Rearrangements ... 905
13.30.4.3.1 Method 1: Dimroth Rearrangement 905
13.30.4.3.2 Method 2: N1 to N2 Isomerization 906
13.30.4.3.3 Method 3: Smiles Rearrangement 906
13.30.4.3.4 Method 4: Claisen-Type Rearrangement 907
13.30.4.3.5 Method 5: N1-Alkyl Group Rearrangement 908

13.31 Product Class 31: Pentazoles
R. C. Storr

13.31 Product Class 31: Pentazoles .. 917
13.31.1 Synthesis by Ring-Closure Reactions 919
13.31.1.1 By Formation of Two N—N Bonds 919
13.31.1.1.1 Method 1: From a Diazonium Salt and an Azide Ion 919
13.31.2 Synthesis by Substituent Modification 920
13.31.2.1 Method 1: Dearylation of N-Arylpentazoles 920

Keyword Index ... 923
Author Index ... 955
Abbreviations ... 1005