Volume 20a:
Three Carbon–Heteroatom Bonds:
Acid Halides; Carboxylic Acids and Acid Salts

Preface .. V
Volume Editor’s Preface .. VII
Table of Contents .. XI
Introduction
J. S. Panek .. 1

20.1 Product Class 1: Acid Halides
S. G. Nelson .. 15

20.2 Product Class 2: Carboxylic Acids

20.2.1 Product Subclass 1: Alkanoic Acids

20.2.1.1 Synthesis from Carbonic Acid Derivatives
S. J. Collier and E. Kataisto ... 53

20.2.1.2 Synthesis from Carboxylic Acid Derivatives
N. F. Jain and C. E. Masse .. 75

20.2.1.3 Synthesis from Aldehydes, Ketones, and Derivatives
(Including Enol Ethers)
S. Lin, L. Yan, and P. Liu ... 93

20.2.1.4 Synthesis from Organic Halides
G. Evano ... 137

20.2.1.5 Synthesis from Alcohols
B. Figadère and X. Franck ... 173

20.2.1.6 Synthesis from Alkenes
(Excluding Reactions with Carboxylic Acid Derivatives)
G. Evano ... 205

20.2.1.7 Synthesis by Rearrangement
A. J. Phillips and C. E. Love ... 241

20.2.1.8 Synthesis with Retention of the Functional Group
P. Vedantham, M. Jiménez, and P. R. Hanson 265

20.2.2 Product Subclass 2: Arenedicarboxylic Acids
L. R. Subramanian .. 307

20.2.3 Product Subclass 3: Butenedioic and Butynedioic Acids
C. E. Masse ... 329

20.2.4 Product Subclass 4: Alkanedioic Acids
C. E. Masse ... 337
20.2.5 Product Subclass 5: 2-Oxo- and 2-Imino-Substituted Alkanoic Acids
J. A. Westbrook and S. E. Schaus ... 355

20.2.6 Product Subclass 6: 2,2-Diheteroatom-Substituted Alkanoic Acids
J. A. Westbrook and S. E. Schaus ... 371

20.2.7 Product Subclass 7: 2-Aminoalkanoic Acids (α-Amino Acids)
S. E. Wolkenberg and R. M. Garbaccio 385

20.2.8 Product Subclass 8: 2-Heteroatom-Substituted Alkanoic Acids
S. R. Chemler and T. P. Zabawa .. 483

20.2.9 Product Subclass 9: Alk-2-ynoic Acids
G. Evano ... 507

20.2.10 Product Subclass 10: Arenecarboxylic Acids
T. P. Yoon and E. N. Jacobsen .. 533

20.2.11 Product Subclass 11: Alk-2-enoic Acids
C. D. Vanderwal and E. N. Jacobsen .. 551

20.2.12 Product Subclass 12: 3-Oxoalkanoic and 3,3-Dioxyalkanoic Acids
J. Beignet .. 569

20.2.13 Product Subclass 13: 3-Heteroatom-Substituted Alkanoic Acids
G. Sartori and R. Maggi ... 579

20.3 Product Class 3: Carboxylic Acid Salts
L. Dakin and B. Lahue ... 605

20.4 Product Class 4: Carboxylic Acid Anhydrides and Their Sulfur, Selenium,
and Tellurium Derivatives
P. A. Keller ... 617

Keyword Index .. i

Author Index ... xxxiii

Abbreviations .. lxiii
Table of Contents

Introduction
J. S. Panek

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.1</td>
<td>Product Class 1: Acid Halides</td>
<td>15</td>
</tr>
<tr>
<td>20.1.1</td>
<td>Product Subclass 1: Acid Fluorides</td>
<td>20</td>
</tr>
<tr>
<td>20.1.1.1</td>
<td>Method 1: Fluorination of Carboxylic Acids</td>
<td>21</td>
</tr>
<tr>
<td>20.1.1.1.1</td>
<td>Variation 1: Treatment with 2,4,6-Trifluoro-1,3,5-triazine</td>
<td>21</td>
</tr>
<tr>
<td>20.1.1.2</td>
<td>Variation 2: Treatment with Tetramethylfluoroformamidinium Hexafluorophosphate</td>
<td>22</td>
</tr>
<tr>
<td>20.1.1.3</td>
<td>Variation 3: Treatment with (N, N)-diethylaminosulfur trifluoride or (N, N)-bis(2-methoxyethyl)aminosulfur trifluoride</td>
<td>23</td>
</tr>
<tr>
<td>20.1.1.4</td>
<td>Variation 4: Treatment with Pyridinium poly(hydrogen fluoride)/dicyclohexylcarbodiimide</td>
<td>25</td>
</tr>
<tr>
<td>20.1.1.5</td>
<td>Variation 5: Treatment with 1-fluoro-(N, N, 2)-trimethylprop-1-en-1-amine</td>
<td>26</td>
</tr>
<tr>
<td>20.1.1.6</td>
<td>Method 2: Reactions of Acid Chlorides with Fluoride Ion</td>
<td>27</td>
</tr>
<tr>
<td>20.1.1.7</td>
<td>Method 3: Reactions of Carboxylate Esters and Anhydrides with Hydrogen Fluoride or Hydrogen Fluoride/Pyridine</td>
<td>28</td>
</tr>
<tr>
<td>20.1.2</td>
<td>Product Subclass 2: Acid Chlorides</td>
<td>29</td>
</tr>
<tr>
<td>20.1.2.1</td>
<td>Synthesis of Product Subclass 2</td>
<td>30</td>
</tr>
<tr>
<td>20.1.2.1.1</td>
<td>Method 1: Chlorination of Carboxylic Acids</td>
<td>30</td>
</tr>
<tr>
<td>20.1.2.1.1.1</td>
<td>Variation 1: Treatment with oxalyl chloride</td>
<td>30</td>
</tr>
<tr>
<td>20.1.2.1.2</td>
<td>Variation 2: Treatment with thionyl chloride</td>
<td>33</td>
</tr>
<tr>
<td>20.1.2.1.3</td>
<td>Variation 3: Treatment with triphenylphosphine/carbon tetrachloride and other phosphorus-based reagents</td>
<td>36</td>
</tr>
<tr>
<td>20.1.2.1.4</td>
<td>Variation 4: Treatment with 1-chloro-(N, N, 2)-trimethylprop-1-en-1-amine</td>
<td>38</td>
</tr>
<tr>
<td>20.1.2.1.5</td>
<td>Variation 5: Treatment with bis(trichloromethyl) carbonate</td>
<td>39</td>
</tr>
<tr>
<td>20.1.2.1.6</td>
<td>Variation 6: Treatment with 2,4,6-trichloro-1,3,5-triazine</td>
<td>40</td>
</tr>
<tr>
<td>20.1.2.2</td>
<td>Method 2: Chlorination of trialkylsilyl carboxylate esters</td>
<td>41</td>
</tr>
<tr>
<td>20.1.3</td>
<td>Product Subclass 3: Acid Bromides</td>
<td>42</td>
</tr>
<tr>
<td>20.1.3.1</td>
<td>Synthesis of Product Subclass 3</td>
<td>43</td>
</tr>
<tr>
<td>20.1.3.1.1</td>
<td>Method 1: Reactions of carboxylic acids with phosphorus tribromide</td>
<td>43</td>
</tr>
<tr>
<td>20.1.3.1.2</td>
<td>Method 2: Reactions of carboxylic acids or trialkylsilyl carboxylate esters with dibromotriphenylphosphorane</td>
<td>43</td>
</tr>
<tr>
<td>20.1.3.1.3</td>
<td>Method 3: Reactions of carboxylic acids with 1-bromo-(N, N, 2)-trimethylprop-1-en-1-amine</td>
<td>45</td>
</tr>
<tr>
<td>20.1.3.1.4</td>
<td>Method 4: Halide-exchange reactions of acid chlorides</td>
<td>46</td>
</tr>
<tr>
<td>20.1.3.1.5</td>
<td>Method 5: Oxidation of aldehydes</td>
<td>47</td>
</tr>
</tbody>
</table>
20.1.4 Product Subclass 4: Acid Iodides ... 47

20.1.4.1 Synthesis of Product Subclass 4 ... 48

20.1.4.1.1 Method 1: Synthesis from Acid Chlorides 48

20.1.4.1.2 Method 2: Synthesis from Carboxylate Esters 49

20.2 Product Class 2: Carboxylic Acids

20.2.1 Product Subclass 1: Alkanoic Acids

20.2.1.1 Synthesis from Carbonic Acid Derivatives

S. J. Collier and E. Kataisto

20.2.1.1 Synthesis from Carbonic Acid Derivatives 53

20.2.1.1.1 Method 1: Reactions with Carbon Dioxide 53

20.2.1.1.1.1 Variation 1: Reaction with Unstabilized Organometallic Carbanions 54

20.2.1.1.1.2 Variation 2: Reaction with Benzylid Carbaniions 58

20.2.1.1.1.3 Variation 3: Reaction with Allylic and Propargylic Carbaniions 62

20.2.1.1.1.4 Variation 4: Reaction with α-Heteroatom-Stabilized Carbanions 63

20.2.1.1.1.5 Variation 5: Electrochemical Carboxylations 66

20.2.1.1.1.6 Variation 6: Miscellaneous Carboxylations with Carbon Dioxide 69

20.2.1.1.2 Method 2: Use of Other Carbonic Acid Derivatives 70

20.2.1.2 Synthesis from Carboxylic Acid Derivatives

N. F. Jain and C. E. Masse

20.2.1.2 Synthesis from Carboxylic Acid Derivatives 75

20.2.1.2.1 Method 1: Hydrolysis of Acid Halides 75

20.2.1.2.2 Method 2: Hydrolysis of Acid Anhydrides 76

20.2.1.2.3 Method 3: Hydrolysis of Esters ... 76

20.2.1.2.3.1 Variation 1: Base-Catalyzed Hydrolysis 76

20.2.1.2.3.2 Variation 2: Acid-Catalyzed Hydrolysis 78

20.2.1.2.3.3 Variation 3: Other Methods .. 79

20.2.1.2.4 Method 4: Hydrolysis of Amides 80

20.2.1.2.4.1 Variation 1: Base-Catalyzed Hydrolysis 80

20.2.1.2.4.2 Variation 2: Acid-Catalyzed Hydrolysis 81

20.2.1.2.5 Method 5: Hydrolysis of 2-Alkyl-4,5-dihydroxazoles 81

20.2.1.2.6 Method 6: Hydrolysis of Nitriles 84

20.2.1.2.6.1 Variation 1: Base-Catalyzed Hydrolysis 84

20.2.1.2.6.2 Variation 2: Acid-Catalyzed Hydrolysis 85

20.2.1.2.7 Method 7: Hydrolysis of Ketenes 86

20.2.1.2.8 Method 8: Hydrolysis of Ketene Acetals 87

20.2.1.2.9 Method 9: Hydrolysis of 1-Heteroatom-Substituted Alkynes 88

20.2.1.2.9.1 Variation 1: Hydrolysis of 1-Haloalkynes 88

20.2.1.2.9.2 Variation 2: Hydrolysis of 1-Sulfanylalkynes 88

20.2.1.2.9.3 Variation 3: Hydrolysis of Alkynylbenzotriazoles 89
Synthesis from Aldehydes, Ketones, and Derivatives (Including Enol Ethers)

S. Lin, L. Yan, and P. Liu

20.2.1.3 Synthesis from Aldehydes, Ketones, and Derivatives (Including Enol Ethers)

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.2.1.3.1</td>
<td>Oxidation of Aldehydes</td>
<td>93</td>
</tr>
<tr>
<td>20.2.1.3.1.1</td>
<td>Method 1: Oxidation Using the Jones Reagent</td>
<td>93</td>
</tr>
<tr>
<td>20.2.1.3.1.2</td>
<td>Method 2: Oxidation Using Permanganate Salts</td>
<td>94</td>
</tr>
<tr>
<td>20.2.1.3.1.2.1</td>
<td>Variation 1: Using Solid-Supported Permanganate Salts</td>
<td>95</td>
</tr>
<tr>
<td>20.2.1.3.1.3</td>
<td>Method 3: Oxidation Using Silver(I) Oxide</td>
<td>96</td>
</tr>
<tr>
<td>20.2.1.3.1.4</td>
<td>Method 4: Oxidation Using Hydrogen Peroxide</td>
<td>97</td>
</tr>
<tr>
<td>20.2.1.3.1.5</td>
<td>Method 5: Oxidation Using Peroxy Acids</td>
<td>98</td>
</tr>
<tr>
<td>20.2.1.3.1.6</td>
<td>Method 6: Oxidation Using a Peroxide</td>
<td>101</td>
</tr>
<tr>
<td>20.2.1.3.1.7</td>
<td>Method 7: Oxidation Using Oxygen</td>
<td>101</td>
</tr>
<tr>
<td>20.2.1.3.1.8</td>
<td>Method 8: Oxidation Using Pyridinium Chlorochromate or Pyridinium Dichromate</td>
<td>103</td>
</tr>
<tr>
<td>20.2.1.3.1.9</td>
<td>Method 9: Oxidation Using Ruthenium(III) Chloride or Ruthenium(IV) Oxide and Sodium Periodate</td>
<td>104</td>
</tr>
<tr>
<td>20.2.1.3.1.10</td>
<td>Method 10: Oxidation Using Sodium Chlorite or Sodium Hypochlorite</td>
<td>105</td>
</tr>
<tr>
<td>20.2.1.3.1.10.1</td>
<td>Variation 1: Using Solid-Supported Chlorite Ion</td>
<td>106</td>
</tr>
<tr>
<td>20.2.1.3.1.11</td>
<td>Method 11: Oxidation Using Iodine or Bromine</td>
<td>107</td>
</tr>
<tr>
<td>20.2.1.3.1.12</td>
<td>Method 12: Oxidation Using Fuming Nitric Acid</td>
<td>108</td>
</tr>
<tr>
<td>20.2.1.3.1.13</td>
<td>Method 13: Oxidation Using Oxone</td>
<td>109</td>
</tr>
<tr>
<td>20.2.1.3.1.14</td>
<td>Method 14: Oxidation Using 1-Hydroxy-1,2-benziodoxol-3(1H)-one 1-Oxide</td>
<td>111</td>
</tr>
<tr>
<td>20.2.1.3.1.15</td>
<td>Method 15: Enzymatic Oxidation</td>
<td>113</td>
</tr>
<tr>
<td>20.2.1.3.2</td>
<td>Oxidation of Methyl Ketones</td>
<td>116</td>
</tr>
<tr>
<td>20.2.1.3.2.1</td>
<td>Method 1: Oxidation Using Halogens (Haloform Reactions)</td>
<td>116</td>
</tr>
<tr>
<td>20.2.1.3.2.1.1</td>
<td>Variation 1: Using Sodium Bromite</td>
<td>118</td>
</tr>
<tr>
<td>20.2.1.3.2.2</td>
<td>Method 2: Oxidation Using Rhenium(VII) Oxide and tert-Butyl Hydroperoxide</td>
<td>119</td>
</tr>
<tr>
<td>20.2.1.3.3</td>
<td>Oxidation of α-Hydroxy Ketones</td>
<td>120</td>
</tr>
<tr>
<td>20.2.1.3.3.1</td>
<td>Method 1: Oxidation Using the Jones Reagent</td>
<td>120</td>
</tr>
<tr>
<td>20.2.1.3.3.2</td>
<td>Method 2: Oxidation Using Periodic Acid or a Periodate</td>
<td>120</td>
</tr>
<tr>
<td>20.2.1.3.3.3</td>
<td>Method 3: Oxidation Using Bismuth(III) Mandelate and Oxygen</td>
<td>122</td>
</tr>
<tr>
<td>20.2.1.3.3.4</td>
<td>Method 4: Oxidation Using a Bis(1,3-diketonato)nickel(II) Complex and Oxygen</td>
<td>123</td>
</tr>
<tr>
<td>20.2.1.3.3.5</td>
<td>Method 5: Oxidation Using a Peroxy Acid</td>
<td>125</td>
</tr>
<tr>
<td>20.2.1.3.4</td>
<td>Oxidation of α-Oxo Ketones</td>
<td>126</td>
</tr>
<tr>
<td>20.2.1.3.4.1</td>
<td>Method 1: Oxidation Using Hydrogen Peroxide</td>
<td>126</td>
</tr>
<tr>
<td>20.2.1.3.4.1.1</td>
<td>Variation 1: Using Sodium Perborate</td>
<td>126</td>
</tr>
<tr>
<td>20.2.1.3.5</td>
<td>Oxidation of Aldehyde and Ketone Derivatives</td>
<td>127</td>
</tr>
<tr>
<td>20.2.1.3.5.1</td>
<td>Method 1: Oxidation of Acetals</td>
<td>127</td>
</tr>
<tr>
<td>20.2.1.3.5.2</td>
<td>Method 2: Oxidation of Enol Ethers</td>
<td>130</td>
</tr>
<tr>
<td>20.2.1.3.5.2.1</td>
<td>Variation 1: From O-Alkylated Enol Ethers</td>
<td>130</td>
</tr>
<tr>
<td>20.2.1.3.5.2.2</td>
<td>Variation 2: From O-Silylated Enol Ethers</td>
<td>131</td>
</tr>
</tbody>
</table>
20.2.1.4 Synthesis from Organic Halides

G. Evano

20.2.1.4 Synthesis from Organic Halides

<table>
<thead>
<tr>
<th>Method</th>
<th>Reaction Type</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.2.1.4.1</td>
<td>Carboxylation</td>
<td>137</td>
</tr>
<tr>
<td>20.2.1.4.1.1</td>
<td>Method 1: Acid-Catalyzed Carboxylation with Carbon Monoxide</td>
<td>137</td>
</tr>
<tr>
<td>20.2.1.4.1.2</td>
<td>Method 2: Transition-Metal-Catalyzed Carboxylation with Carbon Monoxide</td>
<td>138</td>
</tr>
<tr>
<td>20.2.1.4.1.2.1</td>
<td>Variation 1: Of Aryl Halides</td>
<td>138</td>
</tr>
<tr>
<td>20.2.1.4.1.2.2</td>
<td>Variation 2: Of Vinyl Halides</td>
<td>144</td>
</tr>
<tr>
<td>20.2.1.4.1.2.3</td>
<td>Variation 3: Of Benzyl Halides</td>
<td>147</td>
</tr>
<tr>
<td>20.2.1.4.1.2.4</td>
<td>Variation 4: Of Allyl Halides</td>
<td>150</td>
</tr>
<tr>
<td>20.2.1.4.1.2.5</td>
<td>Variation 5: Of Simple Alkyl Halides</td>
<td>151</td>
</tr>
<tr>
<td>20.2.1.4.1.3</td>
<td>Method 3: Carboxylation with Formate or Its Derivatives</td>
<td>152</td>
</tr>
<tr>
<td>20.2.1.4.2</td>
<td>Electrocarboxylation</td>
<td>154</td>
</tr>
<tr>
<td>20.2.1.4.2.1</td>
<td>Method 1: Electrocarboxylation with Carbon Dioxide</td>
<td>154</td>
</tr>
<tr>
<td>20.2.1.4.3</td>
<td>Metallation</td>
<td>157</td>
</tr>
<tr>
<td>20.2.1.4.3.1</td>
<td>Method 1: Metallation of an Organic Halide Followed by Carbon Dioxide Addition</td>
<td>157</td>
</tr>
<tr>
<td>20.2.1.4.3.1.1</td>
<td>Variation 1: Via Grignard Reagents</td>
<td>158</td>
</tr>
<tr>
<td>20.2.1.4.3.1.2</td>
<td>Variation 2: Via Organolithium Reagents</td>
<td>160</td>
</tr>
<tr>
<td>20.2.1.4.3.1.3</td>
<td>Variation 3: Via Other Organometallic Reagents</td>
<td>165</td>
</tr>
<tr>
<td>20.2.1.4.3.2</td>
<td>Method 2: Metallation of an Organic Halide Followed by a Ring-Opening Reaction with a Lactone</td>
<td>166</td>
</tr>
<tr>
<td>20.2.1.4.4</td>
<td>Miscellaneous Routes</td>
<td>168</td>
</tr>
<tr>
<td>20.2.1.4.4.1</td>
<td>Method 1: Coupling with Chloroform</td>
<td>168</td>
</tr>
<tr>
<td>20.2.1.4.4.2</td>
<td>Method 2: Reaction with Sodium Nitrite and Acetic Acid</td>
<td>169</td>
</tr>
</tbody>
</table>

20.2.1.5 Synthesis from Alcohols

B. Figadère and X. Franck

20.2.1.5 Synthesis from Alcohols

<table>
<thead>
<tr>
<th>Method</th>
<th>Reaction Type</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.2.1.5.1</td>
<td>Synthesis by Oxidation Mediated by Metallic Salts</td>
<td>173</td>
</tr>
<tr>
<td>20.2.1.5.1.1</td>
<td>Method 1: Electrochemical Oxidation with Mercury and Oxygen</td>
<td>174</td>
</tr>
<tr>
<td>20.2.1.5.1.2</td>
<td>Method 2: Oxidation with a Copper(II) Complex and Hydrogen Peroxide</td>
<td>174</td>
</tr>
<tr>
<td>20.2.1.5.1.3</td>
<td>Method 3: Electrochemical Oxidation with Silver and Oxygen</td>
<td>175</td>
</tr>
<tr>
<td>20.2.1.5.1.4</td>
<td>Method 4: Oxidation with Gold on Carbon and Oxygen</td>
<td>176</td>
</tr>
<tr>
<td>20.2.1.5.1.5</td>
<td>Method 5: Oxidation with Nickel</td>
<td>176</td>
</tr>
<tr>
<td>20.2.1.5.1.6</td>
<td>Method 6: Electrochemical Oxidation with Nickel(II) Hydroxide</td>
<td>177</td>
</tr>
<tr>
<td>20.2.1.5.1.7</td>
<td>Method 7: Oxidation with Palladium</td>
<td>177</td>
</tr>
<tr>
<td>20.2.1.5.1.8</td>
<td>Method 8: Oxidation with Cobalt</td>
<td>179</td>
</tr>
<tr>
<td>Section</td>
<td>Method</td>
<td>Variation 1</td>
</tr>
<tr>
<td>---------</td>
<td>--------</td>
<td>-------------</td>
</tr>
<tr>
<td>20.2.1.5.1.8.1</td>
<td>Variation 1:</td>
<td>With Cobalt(II) and Hydrogen Peroxide</td>
</tr>
<tr>
<td>20.2.1.5.1.8.2</td>
<td>Variation 2:</td>
<td>With a Heterogeneous Cobalt–Cerium–Ruthenium Catalyst</td>
</tr>
<tr>
<td>20.2.1.5.1.8.3</td>
<td>Variations 3:</td>
<td>Miscellaneous Oxidations</td>
</tr>
<tr>
<td>20.2.1.5.1.9</td>
<td>Method 9:</td>
<td>Oxidation with Ruthenium</td>
</tr>
<tr>
<td>20.2.1.5.1.9.1</td>
<td>Variation 1:</td>
<td>With Ruthenium(III) Chloride and Sodium Periodate</td>
</tr>
<tr>
<td>20.2.1.5.1.9.2</td>
<td>Variation 2:</td>
<td>With Ruthenium(III) Chloride and Potassium Persulfate</td>
</tr>
<tr>
<td>20.2.1.5.1.9.3</td>
<td>Variation 3:</td>
<td>With Ruthenium(III) Chloride and Hydrogen Peroxide</td>
</tr>
<tr>
<td>20.2.1.5.1.9.4</td>
<td>Variation 4:</td>
<td>With Ruthenium(III) Chloride and Trichloroisocyanuric Acid</td>
</tr>
<tr>
<td>20.2.1.5.1.9.5</td>
<td>Variation 5:</td>
<td>Electrochemical Oxidation with Ruthenium(IV) Oxide</td>
</tr>
<tr>
<td>20.2.1.5.1.10</td>
<td>Method 10:</td>
<td>Oxidation with Manganese</td>
</tr>
<tr>
<td>20.2.1.5.1.10.1</td>
<td>Variation 1:</td>
<td>With Sodium Permanganate</td>
</tr>
<tr>
<td>20.2.1.5.1.10.2</td>
<td>Variation 2:</td>
<td>With Copper(II) Permanganate</td>
</tr>
<tr>
<td>20.2.1.5.1.10.3</td>
<td>Variation 3:</td>
<td>With Zinc(II) Permanganate</td>
</tr>
<tr>
<td>20.2.1.5.1.10.4</td>
<td>Variation 4:</td>
<td>With Manganese(IV) Phosphate</td>
</tr>
<tr>
<td>20.2.1.5.1.11</td>
<td>Method 11:</td>
<td>Oxidation with Chromium</td>
</tr>
<tr>
<td>20.2.1.5.1.11.1</td>
<td>Variation 1:</td>
<td>With Chromium(VI) Oxide</td>
</tr>
<tr>
<td>20.2.1.5.1.11.2</td>
<td>Variation 2:</td>
<td>With Potassium or Sodium Dichromate</td>
</tr>
<tr>
<td>20.2.1.5.1.11.3</td>
<td>Variation 3:</td>
<td>With Pyridinium Dichromate</td>
</tr>
<tr>
<td>20.2.1.5.1.12</td>
<td>Method 12:</td>
<td>Oxidation with Sodium Tungstate</td>
</tr>
<tr>
<td>20.2.1.5.1.13</td>
<td>Method 13:</td>
<td>Oxidation with Ammonium Cerium(IV) Nitrate</td>
</tr>
<tr>
<td>20.2.1.5.1.14</td>
<td>Method 14:</td>
<td>Oxidation with Polyoxometalates</td>
</tr>
<tr>
<td>20.2.1.5.2</td>
<td>Synthesis by Metal-Free Oxidation</td>
<td></td>
</tr>
<tr>
<td>20.2.1.5.2.1</td>
<td>Method 1:</td>
<td>Oxidation with 2,2,6,6-Tetramethylpiperidin-1-oxyl</td>
</tr>
<tr>
<td>20.2.1.5.2.1.1</td>
<td>Variation 1:</td>
<td>2,2,6,6-Tetramethylpiperidin-1-oxyl with Sodium Hypochlorite</td>
</tr>
<tr>
<td>20.2.1.5.2.1.2</td>
<td>Variation 2:</td>
<td>2,2,6,6-Tetramethylpiperidin-1-oxyl with (Diacetoxyiodo)benzene</td>
</tr>
<tr>
<td>20.2.1.5.2.1.3</td>
<td>Variations 3:</td>
<td>Miscellaneous Oxidations with 2,2,6,6-Tetramethylpiperidin-1-oxyl</td>
</tr>
<tr>
<td>20.2.1.5.2.2</td>
<td>Method 2:</td>
<td>Oxidation with Hypervalent Iodine</td>
</tr>
<tr>
<td>20.2.1.5.2.2.1</td>
<td>Variation 1:</td>
<td>Hypervalent Iodine(III) with Potassium Bromide</td>
</tr>
<tr>
<td>20.2.1.5.2.2.2</td>
<td>Variation 2:</td>
<td>Hypervalent Iodine(V)</td>
</tr>
<tr>
<td>20.2.1.5.2.3</td>
<td>Methods 3:</td>
<td>Miscellaneous Oxidations</td>
</tr>
<tr>
<td>20.2.1.5.2.3.1</td>
<td>Variation 1:</td>
<td>Oxidation with Nitric Acid</td>
</tr>
<tr>
<td>20.2.1.5.2.3.2</td>
<td>Variation 2:</td>
<td>Oxidation with Sodium Bromate</td>
</tr>
<tr>
<td>20.2.1.5.3</td>
<td>Synthesis by Biotransformations</td>
<td></td>
</tr>
<tr>
<td>20.2.1.5.3.1</td>
<td>Method 1:</td>
<td>Oxidation with Enzymes</td>
</tr>
<tr>
<td>20.2.1.5.3.2</td>
<td>Method 2:</td>
<td>Oxidation with Microorganisms</td>
</tr>
</tbody>
</table>

20.2.1.6

Synthesis from Alkenes

Excluding Reactions with Carboxylic Acid Derivatives

G. Evano

20.2.1.6

Synthesis from Alkenes

Excluding Reactions with Carboxylic Acid Derivatives

<table>
<thead>
<tr>
<th>Section</th>
<th>Method</th>
<th>Variation 1</th>
<th>Variation 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.2.1.6.1</td>
<td>Method 1:</td>
<td>Oxidative C=C Bond Cleavage</td>
<td></td>
</tr>
<tr>
<td>20.2.1.6.1.1</td>
<td>Variation 1:</td>
<td>Using Ozone</td>
<td></td>
</tr>
</tbody>
</table>
20.2.1.6.1.2 Variation 2: Using Manganese Oxides 207
20.2.1.6.1.3 Variation 3: Using the Lemieux–von Rudloff Reagent 209
20.2.1.6.1.4 Variation 4: Using Ruthenium(VIII) Oxide 211
20.2.1.6.1.5 Variation 5: Using Chromium Oxides 213
20.2.1.6.1.6 Variation 6: Using Miscellaneous Reagents 215
20.2.1.6.2 Method 2: Hydrocarboxylation with Carbon Monoxide 217
20.2.1.6.2.1 Variation 1: Acid-Catalyzed Hydrocarboxylation (Koch Reaction) 218
20.2.1.6.2.2 Variation 2: Transition-Metal-Catalyzed Hydrocarboxylation 219
20.2.1.6.3 Method 3: Hydrocarboxylation without Carbon Monoxide 225
20.2.1.6.3.1 Variation 1: Acid-Catalyzed Hydrocarboxylation with Formic Acid (Koch–Haaf Reaction) 225
20.2.1.6.3.2 Variation 2: Transition-Metal-Catalyzed Hydrocarboxylation with Formic Acid .. 225
20.2.1.6.4 Method 4: Hydroboration–Oxidation Sequences 226
20.2.1.6.4.1 Variation 1: With Conservation of the Carbon Skeleton 226
20.2.1.6.4.2 Variation 2: With One- or Two-Carbon Homologation 228
20.2.1.6.5 Method 5: Metalation–Carboxylation Reactions 231
20.2.1.6.5.1 Variation 1: Hydrometalation–Carboxylation Sequence 231
20.2.1.6.5.2 Variation 2: Carbolithiation–Carboxylation Sequence 233
20.2.1.6.6 Methods 6: Miscellaneous Methods 235
20.2.1.6.6.1 Variation 1: Free-Radical Addition 235
20.2.1.6.6.2 Variation 2: Using 1,1-Dichloroalkenes 235

20.2.1.7 Synthesis by Rearrangement
A. J. Phillips and C. E. Love

20.2.1.7 Synthesis by Rearrangement ... 241
20.2.1.7.1 Method 1: The Favorskii Rearrangement 241
20.2.1.7.2 Method 2: Claisen Rearrangements 246
20.2.1.7.2.1 Variation 1: Rearrangement of Ketene Silyl Acetals (The Ireland–Claisen Rearrangement) 246
20.2.1.7.2.2 Variation 2: Rearrangement of Zinc Enolates (The Reformatsky–Claisen Rearrangement) 254
20.2.1.7.3 Method 3: [2,3]-Wittig Rearrangements 255
20.2.1.7.4 Method 4: The Arndt–Eistert Reaction 257
20.2.1.7.5 Method 5: The Benzil–Benzilic Acid Rearrangement 259

20.2.1.8 Synthesis with Retention of the Functional Group
P. Vedantham, M. Jiménez, and P. R. Hanson

20.2.1.8 Synthesis with Retention of the Functional Group 265
20.2.1.8.1 Method 1: Synthesis by Alkylation 265
20.2.1.8.1.1 Variation 1: Direct Alkylation of Alkanoic and Alkenoic Acids 265
20.2.1.8.1.2 Variation 2: Regioselective Alkylation of Alkynoic Acids 266
20.2.1.8.1.3 Variation 3: Diastereoselective Alkylation 267
20.2.1.8.2 Method 2: Synthesis by Addition Across C–C Multiple Bonds 267
20.2.1.8.2.1 Variation 1: Addition of Sodium Hydrogen Telluride to Alkenes 268
20.2.1.8.2.2 Variation 2: \(\omega \)-Alkynoic Acids and Aromatic Acids by Addition–Elimination 269

20.2.1.8.3 Method 3: Synthesis by Conjugate Addition ... 273

20.2.1.8.3.1 Variation 1: Asymmetric Conjugate Addition .. 273

20.2.1.8.3.2 Variation 2: Stereospecific Conjugate Addition 274

20.2.1.8.4 Method 4: Synthesis by Cycloaddition .. 275

20.2.1.8.4.1 Variation 1: Diels–Alder Reaction .. 275

20.2.1.8.4.2 Variation 2: Tandem Ene/Intramolecular Diels–Alder Reaction 277

20.2.1.8.4.3 Variation 3: Asymmetric Diels–Alder Reaction 277

20.2.1.8.5 Method 5: Synthesis by Homologation .. 278

20.2.1.8.5.1 Variation 1: Homologation by One Carbon Atom 278

20.2.1.8.5.2 Variation 2: Homologation by Multiple Carbon Atoms 279

20.2.1.8.6 Method 6: Synthesis by Hydrogenation .. 281

20.2.1.8.6.1 Variation 1: Nonselective Hydrogenation ... 281

20.2.1.8.6.2 Variation 2: Regioselective Hydrogenation ... 284

20.2.1.8.6.3 Variation 3: Diastereoselective Hydrogenation 285

20.2.1.8.6.4 Variation 4: Asymmetric Hydrogenation ... 286

20.2.1.8.7 Method 7: Synthesis by Alkene Isomerization .. 287

20.2.1.8.7.1 Variation 1: Base-Catalyzed Deconjugation 287

20.2.1.8.7.2 Variation 2: \(Z \)–\(E \) Isomerization ... 288

20.2.1.8.8 Method 8: Synthesis by Oxidation ... 289

20.2.1.8.8.1 Variation 1: Aromatization ... 289

20.2.1.8.8.2 Variation 2: Oxidative Cleavage of Unsaturated Carboxylic Acids 290

20.2.1.8.8.3 Variation 3: Oxidative Dimerization of Carboxylic Acids 290

20.2.1.8.9 Method 9: Synthesis by Reduction ... 291

20.2.1.8.9.1 Variation 1: Hydroboration Reactions .. 291

20.2.1.8.9.2 Variation 2: Birch Reduction .. 292

20.2.1.8.10 Method 10: Synthesis by Wittig Reaction ... 293

20.2.1.8.11 Method 11: Synthesis by Resolution .. 294

20.2.1.8.11.1 Variation 1: Chemical Resolution ... 294

20.2.1.8.11.2 Variation 2: Enzymatic Resolution ... 297

20.2.1.8.12 Methods 12: Miscellaneous Reactions ... 298

20.2.1.8.12.1 Variation 1: Functional Group Transformation 298

20.2.1.8.12.2 Variation 2: Transcarboxylation ... 298

20.2.1.8.12.3 Variation 3: Ring-Closing Metathesis ... 299

20.2.1.8.12.4 Variation 4: Barton’s Radical Decarboxylation 300

20.2.1.8.12.5 Variation 5: The Kolbe Reaction .. 301

20.2.1.8.12.6 Variation 6: Reactions on Solid Support .. 301

20.2.2

Product Subclass 2: Arenedicarboxylic Acids

L. R. Subramanian

20.2.2

Product Subclass 2: Arenedicarboxylic Acids .. 307

20.2.2.1 Synthesis of Product Subclass 2 ... 307

20.2.2.1.1 Method 1: Carboxylation Using Carbon Tetrachloride and Copper with Cyclodextrin as Catalyst ... 307

20.2.2.1.2 Method 2: Carboxylation Using Carbon Dioxide 309

20.2.2.1.3 Method 3: Synthesis by Carboxylation of Aryl Halides 310
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.2.1.3.1</td>
<td>Variation 1: Under Photostimulation</td>
</tr>
<tr>
<td>20.2.1.3.2</td>
<td>Variation 2: Using Palladium Complexes as Catalysts</td>
</tr>
<tr>
<td>20.2.1.4</td>
<td>Method 4: Electrochemical Carboxylation of Iodoarenes</td>
</tr>
<tr>
<td>20.2.1.5</td>
<td>Method 5: Hydrolysis Reactions</td>
</tr>
<tr>
<td>20.2.1.5.1</td>
<td>Variation 1: Hydrolysis of Arenedinitriles</td>
</tr>
<tr>
<td>20.2.1.5.2</td>
<td>Variation 2: Hydrolysis of Arenedicarboxylic Esters</td>
</tr>
<tr>
<td>20.2.1.5.3</td>
<td>Variation 3: Hydrolysis of Phthalimide Derivatives</td>
</tr>
<tr>
<td>20.2.1.6</td>
<td>Method 6: Ring Aromatization Using Trifluoroacetic Acid</td>
</tr>
<tr>
<td>20.2.1.7</td>
<td>Method 7: Reduction of Anhydrides</td>
</tr>
<tr>
<td>20.2.1.8</td>
<td>Method 8: Oxidation</td>
</tr>
<tr>
<td>20.2.1.8.1</td>
<td>Variation 1: Oxidation of Alkylarenes</td>
</tr>
<tr>
<td>20.2.1.8.2</td>
<td>Variation 2: Oxidation of Aromatic Aldehydes</td>
</tr>
<tr>
<td>20.2.1.8.3</td>
<td>Variation 3: Oxidation of Arenes with Annulated Alcohols, Ketones, or Anhydrides</td>
</tr>
<tr>
<td>20.2.3</td>
<td>Product Subclass 3: Butenedioic and Butynedioic Acids</td>
</tr>
<tr>
<td>20.2.3.1</td>
<td>Synthesis of Product Subclass 3</td>
</tr>
<tr>
<td>20.2.3.1.1</td>
<td>Method 1: Butenedioic Acids by Transition-Metal Mediated Oxidation</td>
</tr>
<tr>
<td>20.2.3.1.1.1</td>
<td>Variation 1: From Furfural</td>
</tr>
<tr>
<td>20.2.3.1.1.2</td>
<td>Variation 2: From Furan</td>
</tr>
<tr>
<td>20.2.3.1.1.3</td>
<td>Variation 3: From But-2-enal</td>
</tr>
<tr>
<td>20.2.3.1.2</td>
<td>Method 2: Butenedioic Acids from 3-Oxobutanoate Esters by Rearrangement</td>
</tr>
<tr>
<td>20.2.3.1.3</td>
<td>Method 3: Butenedioic Acids by Aldol Condensation</td>
</tr>
<tr>
<td>20.2.3.1.4</td>
<td>Method 4: Acetylenedicarboxylic Acid by Carboxylation of Organometallic Species</td>
</tr>
<tr>
<td>20.2.3.1.5</td>
<td>Method 5: Acetylenedicarboxylic Acid by Oxidative Methods</td>
</tr>
<tr>
<td>20.2.3.1.5.1</td>
<td>Variation 1: Electrochemical Oxidation</td>
</tr>
<tr>
<td>20.2.3.1.5.2</td>
<td>Variation 2: Chromic Acid Oxidation</td>
</tr>
<tr>
<td>20.2.3.1.6</td>
<td>Method 6: Acetylenedicarboxylic Acid by Elimination Protocols</td>
</tr>
<tr>
<td>20.2.3.1.6.1</td>
<td>Variation 1: From Halosuccinic Acids</td>
</tr>
<tr>
<td>20.2.3.1.6.2</td>
<td>Variation 2: From Halobutenedioic Acids</td>
</tr>
<tr>
<td>20.2.4</td>
<td>Product Subclass 4: Alkanedioic Acids</td>
</tr>
<tr>
<td>20.2.4.1</td>
<td>Synthesis of Product Subclass 4</td>
</tr>
<tr>
<td>20.2.4.1.1</td>
<td>Method 1: Azeotropic Dehydration of Oxalic Acid Dihydrate with Carbon Tetrachloride</td>
</tr>
<tr>
<td>20.2.4.1.2</td>
<td>Method 2: Oxalic Acid by Oxidative Methods</td>
</tr>
<tr>
<td>20.2.4.1.2.1</td>
<td>Variation 1: Oxidative Dimerization of Sodium Formate</td>
</tr>
<tr>
<td>20.2.4.1.2.2</td>
<td>Variation 2: Oxidation of Acetic Acid Derivatives</td>
</tr>
<tr>
<td>20.2.4.1.3</td>
<td>Method 3: Malonic Acids by Cyanation of Chloroacetic Acid</td>
</tr>
</tbody>
</table>
20.2.4.1.4 Method 4: Malonic Acids by Nucleophilic Acyl Substitution 340
20.2.4.1.4.1 Variation 1: Microwave Hydrolysis of Meldrum’s Acid Derivatives 340
20.2.4.1.4.2 Variation 2: Phenolysis of Meldrum’s Acid 341
20.2.4.1.4.3 Variation 3: Alcoholysis of Meldrum’s Acid with tert-Butyl Alcohol 342
20.2.4.1.4.4 Variation 4: Using Silicon Nucleophiles 342
20.2.4.1.5 Method 5: Malonic Acids by Acylation of Acetic Acid Derivatives 344
20.2.4.1.5.1 Variation 1: From Lithio Dianions of Acetic Acid 344
20.2.4.1.6 Method 6: Succinic Acids by Oxidative Coupling of Carboxylate Dianions 345
20.2.4.1.6.1 Variation 1: Cross Coupling with Lithium α-Halocarboxylates 345
20.2.4.1.6.2 Variation 2: Homocouplings Mediated by Iodine 346
20.2.4.1.7 Method 7: Succinic Acid by Hydrolysis of Succinic Anhydride 346
20.2.4.1.8 Method 8: Succinic Acids by Oxidative Protocols 347
20.2.4.1.8.1 Variation 1: From Lactones 347
20.2.4.1.8.2 Variation 2: From Nitroalkanes 348
20.2.4.1.8.3 Variation 3: From Cyclobutanones 348
20.2.4.1.8.4 Variation 4: From Dihalocyclobutanones 349
20.2.4.1.8.5 Variation 5: From Halocyclobutenes 350
20.2.4.1.9 Method 9: Succinic Acids by Allylic Alkylation 351
20.2.4.1.9.1 Variation 1: From Chiral Allylic Carbonates 351

20.2.5 Product Subclass 5: 2-Oxo- and 2-Imino-Substituted Alkanoic Acids
J. A. Westbrook and S. E. Schaus

20.2.5.1 Synthesis of Product Subclass 5 355
20.2.5.1.1 Method 1: Synthesis by Hydrolysis 355
20.2.5.1.1.1 Variation 1: 2-Oxo and 2-(Oxyimino) Acids by Hydrolysis of the Corresponding Esters 355
20.2.5.1.1.2 Variation 2: α-Oxo Acids by Hydrolysis of Acyl Cyanides 358
20.2.5.1.1.3 Variation 3: 3-Aryl-2-oxopropanoic Acids by Hydrolysis of 4-(Arylmethylene)oxazol-5(4H)-ones 359
20.2.5.1.1.4 Variation 4: Aryl(oxo)acetic Acids by Hydrolysis of Indole-2,3-diones 360
20.2.5.1.1.5 Variation 5: α-Oxo Acids by Acid Hydrolysis of 2-Hydroxymorpholin-3-ones 361
20.2.5.1.2 Method 2: Synthesis by Oxidation 361
20.2.5.1.2.1 Variation 1: α-Oxo Acids by Oxidation of α-Amino or α-Hydroxy Acids 361
20.2.5.1.2.2 Variation 2: α-Oxo Acids by Oxidation of Methyl Ketones 362
20.2.5.1.2.3 Variation 3: Aryl(oxo)acetic Acids by Oxidation of 1-Aryl-2-nitroethanols 363
20.2.5.1.2.4 Variation 4: α-Oxo Acids by Oxidation of α-Sulfanyl Esters 364
20.2.5.1.2.5 Variation 5: α-Oxo Acids by Oxidative Cleavage of 2-Alkylidene-Substituted Carboxylic Acids 364
20.2.5.1.3 Method 3: Friedel–Crafts Acylation 365
20.2.5.1.3.1 Variation 1: Hetaryl(oxo)acetic Acids by Acylation of Hetarenes 365
20.2.5.1.3.2 Variation 2: Oxo(phenyl)acetic Acids by Acylation of Benzenes 365
20.2.5.1.4 Method 4: Aldol Condensations between Pyruvic Acid and Benzaldehydes 366
20.2.6 Product Subclass 6: 2,2-Diheteroatom-Substituted Alkanoic Acids
J. A. Westbrook and S. E. Schaus

20.2.6.1 Synthesis of Product Subclass 6 .. 371
 20.2.6.1.1 Method 1: Synthesis by Hydrolysis 371
 20.2.6.1.1.1 Variation 1: Hydrolysis of 2,2-Diheteroatom-Substituted Esters 371
 20.2.6.1.1.2 Variation 2: Hydrolysis of 2,2-Diheteroatom-Substituted Amides 373
 20.2.6.1.1.3 Variation 3: Hydrolysis of a 2,2-Diheteroatom-Substituted Thioester 374
 20.2.6.1.1.4 Variation 4: Hydrolysis of Thiazoles 375
 20.2.6.1.1.5 Variation 5: Hydrolysis of 2,2-Dihalo Acid Halides 375
 20.2.6.1.2 Method 2: Synthesis by Oxidation 376
 20.2.6.1.2.1 Variation 1: Oxidation of \(-\)-Hydroxycarboxylic Acids 376
 20.2.6.1.2.2 Variation 2: Oxidation of 2,2-Diheteroatom-Substituted Aldehydes 376
 20.2.6.1.2.3 Variation 3: Oxidation of 2,2-Dihaloalkan-1-ols 377
 20.2.6.1.2.4 Variation 4: Oxidative Cleavage of an Alkynol 378
 20.2.6.1.3 Method 3: Synthesis by Addition 378
 20.2.6.1.3.1 Variation 1: Addition to \(\alpha\)-Oxo or \(\alpha\)-Hydrazono Acids 378
 20.2.6.1.3.2 Variation 2: Addition of the Carboxy Group to Dithioates 380
 20.2.6.1.3.3 Variation 3: Addition to an \(\alpha,\beta\)-Unsaturated Carboxylic Acid 380
 20.2.6.1.4 Method 4: Sigmatropic Rearrangement of Allyl Trihaloacetates 381
 20.2.6.1.5 Method 5: Nucleophilic Substitution at the \(\alpha\)-Carbon of 2,2-Diheteroatom-Substituted Acetic Acids 382

20.2.7 Product Subclass 7: 2-Aminoalkanoic Acids (\(\alpha\)-Amino Acids)
S. E. Wolkenberg and R. M. Garbaccio

20.2.7.1 Synthesis of Product Subclass 7 .. 385
 20.2.7.1.1 \(\alpha,\beta\)-Didehydroamino Acids .. 385
 20.2.7.1.1.1 Synthesis of \(\alpha,\beta\)-Didehydroamino Acids through Elimination 385
 20.2.7.1.1.1.1 Method 1: Acetamide Condensation with \(\alpha\)-Oxo Acids 385
 20.2.7.1.2 \(\alpha\)-Aminoalkanoic Acids .. 386
 20.2.7.1.2.1 Introduction of the Side Chain: Alkylation of Glycine and Related Enolates ... 386
 20.2.7.1.2.1.1 Method 1: Alkylation of Chiral Cyclic Enolates 386
 20.2.7.1.2.1.1.1 Variation 1: Alkylation of Chiral Oxazinones 386
 20.2.7.1.2.1.1.2 Variation 2: Alkylation of Chiral Imidazolidinones 388
 20.2.7.1.2.1.1.3 Variation 3: Alkylation of Transition-Metal Complexes 389
 20.2.7.1.2.1.2 Method 2: Alkylation of Chiral Acyclic Schiff Bases 390
 20.2.7.1.2.1.2.1 Variation 1: Alkylation of Chiral trans-Pyrrolidine Amides 390
 20.2.7.1.2.1.2.2 Variation 2: Alkylation of Chiral Acyloxazolidinones 391
 20.2.7.1.2.2 Introduction of the Side Chain: Addition to Glycine Cations 392
 20.2.7.1.2.2.1 Method 1: Alkylation of Cyclic Imines 393
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.2.71.2.3</td>
<td>Introduction of the α-Amino Group: Nucleophilic Addition of Nitrogen to Electrophiles</td>
<td>395</td>
</tr>
<tr>
<td>20.2.71.2.3.1</td>
<td>Method 1: Intermolecular Nucleophilic Addition to Chiral Epoxides</td>
<td>395</td>
</tr>
<tr>
<td>20.2.71.2.3.1.1</td>
<td>Variation 1: Nucleophilic Amination of α,β-Epoxy Acids Using Ammonia</td>
<td>395</td>
</tr>
<tr>
<td>20.2.71.2.3.1.2</td>
<td>Variation 2: Nucleophilic Amination of 2,3-Epoxy Alcohols Using Diazidotitanium(IV) Diisopropoxide</td>
<td>396</td>
</tr>
<tr>
<td>20.2.71.2.3.2</td>
<td>Method 2: Intramolecular Nucleophilic Addition to Epoxides</td>
<td>396</td>
</tr>
<tr>
<td>20.2.71.2.3.2.1</td>
<td>Variation 1: Intramolecular Nucleophilic Nitrogen Addition to Epoxides To Generate Cyclic Carbamates</td>
<td>397</td>
</tr>
<tr>
<td>20.2.71.2.3.2.2</td>
<td>Variation 2: Intramolecular Nucleophilic Addition to Epoxides Using Trichloroacetimidate</td>
<td>398</td>
</tr>
<tr>
<td>20.2.71.2.3.3</td>
<td>Method 3: Nucleophilic Displacement of Halides</td>
<td>399</td>
</tr>
<tr>
<td>20.2.71.2.3.4</td>
<td>Method 4: Using Azide via Chiral (Trichloromethyl)methanols</td>
<td>400</td>
</tr>
<tr>
<td>20.2.71.2.4</td>
<td>Introduction of theα-Amino Group: Electrophilic Amination of Enolates</td>
<td>401</td>
</tr>
<tr>
<td>20.2.71.2.4.1</td>
<td>Method 1: Electrophilic Amination of Chiral Enolates Using Azodicarboxylates</td>
<td>401</td>
</tr>
<tr>
<td>20.2.71.2.4.1.1</td>
<td>Variation 1: Electrophilic Amination of Chiral Silyl Enol Ethers with Azodicarboxylates</td>
<td>403</td>
</tr>
<tr>
<td>20.2.71.2.4.1.2</td>
<td>Variation 2: Direct Amination of Enolates with Azodicarboxylates</td>
<td>404</td>
</tr>
<tr>
<td>20.2.71.2.4.2</td>
<td>Method 2: Electrophilic Amination of Chiral Enolates Using Sulfonyl Azides</td>
<td>405</td>
</tr>
<tr>
<td>20.2.71.2.4.3</td>
<td>Method 3: Electrophilic Amination of Enolates Using a Chiral Catalyst and Azodicarboxylate</td>
<td>406</td>
</tr>
<tr>
<td>20.2.71.2.4.4</td>
<td>Method 4: Electrophilic Amination of Enolates Using 1-Chloro-1-nitrosocyclohexane</td>
<td>407</td>
</tr>
<tr>
<td>20.2.71.2.5</td>
<td>Introduction of the Nitrogen: Reductive Amination</td>
<td>409</td>
</tr>
<tr>
<td>20.2.71.2.5.1</td>
<td>Method 1: Rhodium(I)-Catalyzed Asymmetric Reductive Amination of α-Oxo Acids</td>
<td>409</td>
</tr>
<tr>
<td>20.2.71.2.5.2</td>
<td>Method 2: Chiral Pyridoxamine Promoted Asymmetric Reductive Amination of α-Oxo Acids</td>
<td>410</td>
</tr>
<tr>
<td>20.2.71.2.6</td>
<td>Asymmetric Hydrogenation of α,β-Didehydroamino Acids Using Homogeneous Catalysis</td>
<td>410</td>
</tr>
<tr>
<td>20.2.71.2.7</td>
<td>Introduction of the α-Hydrogen: Asymmetric Hydrogenation of α,β-Didehydroamino Acids Using Heterogeneous Catalysts</td>
<td>411</td>
</tr>
<tr>
<td>20.2.71.2.7.1</td>
<td>Method 1: Asymmetric Reduction of Hydrazono Lactones Based on Chiral N-Aminodihydroindoles</td>
<td>411</td>
</tr>
<tr>
<td>20.2.71.2.7.2</td>
<td>Method 2: Asymmetric Hydrogenation of Dehydropiperazinediones</td>
<td>412</td>
</tr>
<tr>
<td>20.2.71.2.7.3</td>
<td>Method 3: Asymmetric Hydrogenation Using Pinene-Based Cyclic Imino Esters as Templates</td>
<td>413</td>
</tr>
<tr>
<td>20.2.71.2.8</td>
<td>Introduction of the Carboxylate: Catalytic Asymmetric Addition of Nitriles to Imines (Strecker and Ugi Syntheses)</td>
<td>414</td>
</tr>
<tr>
<td>20.2.71.2.8.1</td>
<td>Method 1: Chiral Salicylamine Catalyzed Strecker Reaction</td>
<td>415</td>
</tr>
<tr>
<td>20.2.71.2.8.2</td>
<td>Method 2: Chiral Salicylamine–Titanium Complex Catalyzed Strecker Synthesis</td>
<td>416</td>
</tr>
<tr>
<td>20.2.71.2.8.3</td>
<td>Method 3: Chiral Guanidine Catalyzed Strecker Synthesis</td>
<td>418</td>
</tr>
</tbody>
</table>
20.2.7.1.2.8.4 Method 4: Addition of Cyanide to Chiral Sulfinimines .. 419
20.2.7.1.2.8.5 Method 5: Carbohydrate Templates for Asymmetric Strecker Synthesis 420
20.2.7.1.2.8.6 Method 6: 5-Amino-1,3-dioxanes as Chiral Auxiliaries 421
20.2.7.1.2.8.7 Method 7: β-Amino Alcohols as Chiral Auxiliaries 422
20.2.7.1.2.8.8 Method 8: α-Arylethylamines as Chiral Auxiliaries 423
20.2.7.1.2.8.9 Method 9: Asymmetric Addition of Isocyanide to Imines (Ugi Synthesis) 424
20.2.7.1.2.9 Introduction of the Side Chain: Additions to Oximes and Imino Esters 426
20.2.7.1.2.9.1 Method 1: Copper-Catalyzed Alkylations of Imino Esters 427
20.2.7.1.2.9.2 Method 2: Asymmetric Addition to Chiral Oximes 429
20.2.7.1.2.9.3 Method 3: Asymmetric Addition to Camphorsultam-Based Oximes 430
20.2.7.1.2.9.4 Method 4: [2 + 2] Cycloaddition and the β-Lactam Route to Amino Acids ... 430
20.2.7.1.2.10 Introduction of the α-Amino Group .. 431
20.2.7.1.2.10.1 Method 1: Diels–Alder Cycloaddition Reactions of Chiral Nitroso Compounds ... 431
20.2.7.1.2.10.2 Method 2: Intramolecular Amidomercuration 432
20.2.7.1.2.10.3 Method 3: Diastereoselective Michael Addition to Nitroalkenes 433
20.2.7.1.2.10.4 Method 4: Rearrangement of Allylic Trichloroacetimidates 435
20.2.7.1.2.10.4.1 Variation 1: Thermal Rearrangement of Allylic Trichloroacetimidates on a Chiral Template .. 435
20.2.7.1.2.10.4.2 Variation 2: Diastereoselective Palladium-Catalyzed Rearrangement of Allylic Trichloroacetimidates ... 436
20.2.7.1.2.11 Introduction of the Side Chain: Claisen Rearrangement 437
20.2.7.1.2.11.1 Method 1: Ester Enolate Claisen Rearrangement 437
20.2.7.1.2.11.1.1 Variation 1: Diastereoselective Ester Enolate Claisen Rearrangement 437
20.2.7.1.2.11.1.2 Variation 2: Enantioselective Ester Enolate Claisen Rearrangement 438
20.2.7.1.2.11.2 Method 2: Introduction of the Carboxylate Group: Carbene Rearrangement ... 439
20.2.7.1.2.11.3 Method 1: Photolysis of Chromium–Carbene Complexes 439
20.2.7.1.3 α-Alkyl-α-aminoalkanoic Acids ... 440
20.2.7.1.3.1 Method 1: Introduction of the Side Chain: Self-Reproduction of Chirality 441
20.2.7.1.3.2 Method 1: Alkylation of cis- and trans-Imidazolidinones 441
20.2.7.1.3.3 Method 2: Alkylation of cis- and trans-Oxazolidinones 443
20.2.7.1.3.4 Variation 1: Alkylation of tert-Butyloxazolidinones 443
20.2.7.1.3.5 Variation 2: Alkylation of Aryloxazolidinones ... 444
20.2.7.1.3.6 Method 3: Alkylation of Oxazolidines, Thiazolidines, and Pyrrolindoones 446
20.2.7.1.3.7 Method 4: Alkylation of Orazaborolidinones ... 447
20.2.7.1.3.8 Method 5: Alkylation of Chiral Borane–Amine Adducts 449
20.2.7.1.3.9 Method 6: Memory of Chirality Alkylation .. 450
20.2.7.1.3.10 Method 1: Introduction of the Side Chain: Alkylation of Chiral Amino Acid Enolates 451
20.2.7.1.3.11 Method 1: Alkylation of Dihydroimidazol-4-ones 451
20.2.7.1.3.12 Method 2: Oxazinone Alkylation ... 453
20.2.7.1.3.13 Variation 1: 5,6-Diphenyltetrahydro-1,4-oxazin-2-one Alkylation 453
20.2.7.1.3.14 Variation 2: 3,6-Dihydro-2H-1,4-oxazin-2-one Alkylation 454
20.2.7.1.3.15 Method 3: Alkylation of Chiral Nickel Complexes 455
20.2.7.1.3.16 Method 4: Alkylation of Menthol Derivatives ... 455

Science of Synthesis Original Edition Volume 20a
© Georg Thieme Verlag KG
20.2.7.1.3.3 Introduction of the Side Chain: Chiral β-Lactams as Building Blocks

20.2.7.1.3.3.1 Method 1: Alkylation at C3 of a Chiral β-Lactam

20.2.7.1.3.3.2 Method 2: Alkylation at the α-Carbon of a Chiral β-Lactam

20.2.7.1.3.4 Introduction of the Side Chain: Reductive Methods

20.2.7.1.3.4.1 Method 1: Stereoselective Birch Reduction of Chiral Pyrrole-2-carboxylates

20.2.7.1.3.5 Introduction of the Side Chain: Addition to C=N Bonds

20.2.7.1.3.5.1 Method 1: Addition of Grignard Reagents to Chiral Dehydromorpholinones

20.2.7.1.3.5.2 Method 2: Addition to Chiral Sulfinimines

20.2.7.1.3.6 Introduction of the Side Chain: Cycloaddition to C=C Bonds

20.2.7.1.3.6.1 Method 1: Diels–Alder Cycloadditions

20.2.7.1.3.6.2 Method 2: Cyclopropanation

20.2.7.1.3.6.3 Method 3: [3 + 2]-Dipolar Cycloaddition Reactions

20.2.7.1.3.7 Introduction of the Carboxylate: Addition of Nitrile or α-Bromo Ester Enolates to Imines (Strecker and Darzens Syntheses)

20.2.7.1.3.7.1 Method 1: Chiral Salicylamine-Based Strecker Synthesis

20.2.7.1.3.7.2 Method 2: Sulfinimine-Mediated Strecker Synthesis

20.2.7.1.3.7.3 Method 3: Chiral Dioxane-Based Strecker Synthesis

20.2.7.1.3.7.4 Method 4: 1-Phenylethylamine-Based Strecker Synthesis

20.2.7.1.3.7.5 Method 5: Morpholinone-Based Strecker Synthesis

20.2.7.1.3.7.6 Method 6: Darzens Condensation of α-Bromo Ester Enolates with Sulfinimines

20.2.7.1.3.8 Introduction of the Nitrogen and Carboxylate Groups

20.2.7.1.3.8.1 Method 1: Spirohydantoins of Ketones (Bucherer–Bergs Reaction)

20.2.7.1.3.9 Introduction of the Side Chain: Sigmatropic Rearrangements

20.2.7.1.3.9.1 Method 1: Claisen Rearrangement

20.2.7.1.3.10 Introduction of the α-Amino Group: Rearrangement of α,α-Dialkyl-β-carbonyl Carboxylic Acids and Sigmatropic Rearrangements

20.2.7.1.3.10.1 Method 1: Rearrangement of Allylic Trichloroacetimidates

20.2.7.1.3.10.2 Method 2: Curtius Rearrangement of α,α-Dialkyl β-Ester Carboxylic Acids

20.2.7.1.3.10.3 Method 3: Hofmann Rearrangement of α,α-Dialkyl β-Amido Esters

20.2.8 Product Subclass 8: 2-Heteroatom-Substituted Alkanoic Acids

S. R. Chemler and T. P. Zabawa

20.2.8.1 Synthesis of Product Subclass 8

20.2.8.1.1 2-Haloalkanoic Acids

20.2.8.1.1.1 Method 1: Deaminative Fluorination (Fluorodediazoniation) of Chiral α-Amino Acids
20.2.8.1.1.2 Method 2: Electrophilic Fluorination with Acetyl Hypofluorite 485
20.2.8.1.1.3 Method 3: Enantioselective Hydrogenation of α-Fluoro-α,β-unsaturated Acids 485
20.2.8.1.1.2 Method 2: Deaminative Chlorination (Chlorodediazoniation) of α-Amino Acids 487
20.2.8.1.1.3 Method 3: Enantioselective Hydrogenation of α-Fluoro-α,β-unsaturated Acids 485
20.2.8.1.1.3 Method 2: Deaminative Chlorination (Chlorodediazoniation) of α-Amino Acids 487
20.2.8.1.1.4 2-Chloroalkanoic Acids 486
20.2.8.1.1.2 Method 1: Chlorination of Acylphosphonates with Sulfuryl Chloride 487
20.2.8.1.1.2.1 Method 2: Deaminative Chlorination (Chlorodediazoniation) of α-Amino Acids 487
20.2.8.1.1.2.2 Method 2: Deaminative Chlorination (Chlorodediazoniation) of α-Amino Acids 487
20.2.8.1.1.4 2-Chloroalkanoic Acids 486
20.2.8.1.1.3 Method 1: Chlorination of Alkanoic Acids with N-Bromosuccinimide 488
20.2.8.1.1.3.1 Method 2: Deaminative Chlorination (Chlorodediazoniation) of Chiral α-Amino Acids 489
20.2.8.1.1.3.2 Method 2: Deaminative Chlorination (Chlorodediazoniation) of Chiral α-Amino Acids 489
20.2.8.1.1.4 2-Iodoalkanoic Acids 490
20.2.8.1.1.4.1 Method 1: 2-Iodoalkanoic Acids by Treatment with Iodine and Chlorosulfonic Acid 490
20.2.8.1.1.3 2-Bromoalkanoic Acids 488
20.2.8.1.1.3.1 Method 1: Bromination of Alkanoic Acids with N-Bromosuccinimide 488
20.2.8.1.1.3.2 Method 2: Deaminative Bromination (Bromodediazoniation) of Chiral α-Amino Acids 489
20.2.8.1.2 2-Hydroxyalkanoic Acids 491
20.2.8.1.2.1 Method 1: Deaminative Hydroxylation (Hydroxydediazoniation) of α-Amino Acids 492
20.2.8.1.2.2 Method 2: Stereoselective Reduction of 2-Oxoalkanoic Acids and Esters 493
20.2.8.1.2.2.1 Variation 1: Enantioselective Reduction with (+)-Chlorodiisopinocamphenylborane or (−)-Diisopinocamphenylborane 493
20.2.8.1.2.2.2 Variation 2: Enzyme-Catalyzed Enantioselective Reduction 494
20.2.8.1.3 2-Alkoxyalkanoic Acids 494
20.2.8.1.3.1 Method 1: Oxidation of a Chiral Enolate 495
20.2.8.1.3.1 Method 1: Oxidation of a Chiral Enolate 495
20.2.8.1.3.2 Method 2: Catalytic Enantioselective Hydrogenation of 2-(Aryloxy)but-2-enoic Acids 496
20.2.8.1.4 2,3-Epoxalkanoic Acids 497
20.2.8.1.4.1 Method 1: Synthesis from 2,3-Epoxalkanoic Acid Esters 497
20.2.8.1.4.2 Method 2: Oxidation of 2,3-Epoxalkan-1-ols 497
20.2.8.1.5 2-Sulfanylalkanoic Acids 499
20.2.8.1.5.1 Method 1: Nucleophilic Displacement on an α-Substituted Carbonyl Compound 499
20.2.8.1.5.1 Method 1: Nucleophilic Displacement on an α-Substituted Carbonyl Compound 499
20.2.8.1.5.1.1 Variation 1: Achiral 2-Sulfanylalkanoic Acids 499
20.2.8.1.5.1.2 Variation 2: Chiral 2-Sulfanylalkanoic Acids 499
20.2.8.1.5.2 Method 2: Chiral 2-Sulfanylalkanoic Acids by α-Carboxylation 500
20.2.8.1.6 2-Selanylalkanoic Acids 501
20.2.8.1.7 2-Tellanylalkanoic acids 502
20.2.8.1.7.1 Method 1: Synthesis from 2-Bromoalkanoic Acids 501
20.2.8.1.7.1 Method 1: Synthesis from 2-Bromoalkanoic Acids 501
20.2.8.1.7.1 Method 1: Synthesis from 2-Bromoalkanoic Acids 501
Product Subclass 9: Alk-2-ynoic Acids

G. Evano

Synthesis of Product Subclass 9 .. 507

Method 1: Oxidation of Propargylic Alcohols or Aldehydes 507

Variation 1: Oxidation of Propargylic Alcohols 507

Variation 2: Oxidation of Conjugated Ynals or Synthetic Equivalents 510

Method 2: Carboxylation of Metalated Alk-1-ynes 511

Variation 1: Carboxylation of Alk-1-ynes 511

Variation 2: Carboxylation of 1,1-Dibromoalkenes 516

Variation 3: Carboxylation of 1-Haloalkenes 517

Method 3: Hydrolysis of Alk-2-ynoic Acid Esters 518

Method 4: Bromination/Dehydrobromination of Alk-2-enoic Acids 519

Method 5: Oxidation of the C≡C Bond of Enynes 521

Method 6: Substituent Modification of Propynoic Acids 521

Variation 1: Coupling of Alk-1-ynes with Bromopropynoic Acid (Cadiot–Chodkiewicz Reaction) ... 521

Variation 2: Coupling of Haloarenes with Propynoic Acid 522

Variation 3: Addition of Metalated Propynoic Acid to Electrophiles 525

Product Subclass 10: Arenecarboxylic Acids

T. P. Yoon and E. N. Jacobsen

Synthesis of Product Subclass 10 ... 533

Method 1: Electrophilic Aromatic Substitution 533

Variation 1: Friedel–Crafts Carboxylation 533

Variation 2: Kolbe–Schmitt Reaction 534

Method 2: Palladium-Mediated C—H Activation and Carboxylation 535

Method 3: Oxidative Degradation ... 536

Variation 1: Oxidation of Alkyl Substituents 536

Variation 2: Oxidation of Aryl Ketones 537

Method 4: Carboxylation of Arylmetal Species 538

Variation 1: Simple Metalation ... 538

Variation 2: Directed ortho-Metalation 539

Variation 3: Reductive Metalation of Haloarenes 540

Variation 4: Lithium–Halogen Exchange 540

Method 5: Base-Promoted Cleavage of Diaryl Ketones 541

Method 6: Substitution of Halogen ... 542

Variation 1: Metal-Catalyzed Carboxylation of Haloarenes 542

Variation 2: Cyanation/Hydrolysis of Haloarenes 543

Method 7: Carboxylation of Arenediazonium Salts 544

Method 8: Addition to Benzynic Intermediates 544

Method 9: The von Richter Rearrangement 545

Method 10: Metalation/Alkylation of Arene Carboxylates 545
20.2.10.1.1 Variation 1: ortho-Lithiation of Arene Carboxylates 545
20.2.10.1.2 Variation 2: Lithiation of ortho-Alkyl Substituents of Arene Carboxylic Acids 546
20.2.10.1.11 Method 11: S_{Ar} Reaction of 2-(Methoxyaryl)dihydrooxazoles 547

20.2.11 Product Subclass 11: Alk-2-enoic Acids
C. D. Vanderwal and E. N. Jacobsen

20.2.11 Product Subclass 11: Alk-2-enoic Acids ... 551
20.2.11.1 Synthesis of Product Subclass 11 .. 551
20.2.11.1.1 Method 1: Carboxylation of Alkenyl Organometallics 551
20.2.11.1.1.1 Variation 1: Metalation/Carboxylation of Alkenyl Ethers, Carbamates,
and Sulfides ... 551
20.2.11.1.1.2 Variation 2: Reductive Metalation/Carboxylation of Haloalkenes 552
20.2.11.1.1.3 Variation 3: Reductive Carboxylation of Alkynes 553
20.2.11.1.1.4 Variation 4: Carbometalation/Carboxylation of Alkynes 554
20.2.11.1.1.5 Variation 5: Palladium-Catalyzed Hydroxycarbonylation of Alkenyl
Electrophiles ... 555
20.2.11.1.2 Method 2: Elimination Reactions ... 556
20.2.11.1.2.1 Variation 1: Elimination from β-Heteroatom-Substituted Alkanoic Acids
... 556
20.2.11.1.2.2 Variation 2: Reductive Elimination of Vicinal Heteroatom Substituents ... 557
20.2.11.1.3 Method 3: Carbonyl Alkenations ... 558
20.2.11.1.3.1 Variation 1: Knoevenagel–Doebner Condensation 558
20.2.11.1.3.2 Variation 2: Perkin Reaction ... 559
20.2.11.1.3.3 Variation 3: Wittig Reaction ... 560
20.2.11.1.3.4 Variation 4: Horner–Wadsworth–Emmons Reaction 560
20.2.11.1.3.5 Variation 5: Peterson Reaction .. 561
20.2.11.1.3.6 Variation 6: Alkenation of α-Oxo Acids .. 562
20.2.11.1.4 Method 4: Reduction of Alk-1-ynoic Acids ... 562
20.2.11.1.5 Method 5: Cycloaddition of Alkynoic Acids 563
20.2.11.1.6 Method 6: Palladium-Catalyzed Cross Coupling to β-Halogen-Substituted
Alk-2-enoic Acids .. 564
20.2.11.1.7 Method 7: Heck Reaction .. 564
20.2.11.1.8 Method 8: Alkene Metathesis .. 565

20.2.12 Product Subclass 12: 3-Oxoalkanoic and 3,3-Dioxyalkanoic Acids
J. Beignet

20.2.12 Product Subclass 12: 3-Oxoalkanoic and 3,3-Dioxyalkanoic Acids 569
20.2.12.1 Synthesis of Product Subclass 12 ... 569
20.2.12.1.1 3-Oxoalkanoic Acids .. 569
20.2.12.1.1.1 Method 1: Acylation of Bis(trimethylsilyl) Malonate 569
20.2.12.1.1.1.1 Variation 1: Use of the Lithium Enolate of Bis(trimethylsilyl) Malonate ... 569
20.2.12.1.1.2 Variation 2: Use of Triethylamine and Metal Salts 570
20.2.12.1.2 Method 2: Carboxylation of Methyl Ketones 571
20.2.12.1.2.1 Variation 1: Use of Magnesium Methyl Carbonate 571
20.2.12.1.2.2 Variation 2: Use of Carbon Dioxide 572
20.2.12.1.3 Method 3: Acylation of Trimethylsilyl Acetate 572
20.2.12.1.4 Method 4: Electrocarboxylation of Chloroacetone 573
20.2.12.1.5 Method 5: Electrocarboxylation of Vinyl Trifluoromethanesulfonates 574
20.2.12.1.6 Method 6: Hydration of Alk-2-ynoic Acids 575
20.2.12.1.7 3,3-Dioxyalkanoic Acids ... 575
20.2.12.1.1 Method 1: Hydroxyacylation and Oxidation of Alkenes 575

20.2.13

Product Subclass 13: 3-Heteroatom-Substituted Alkanoic Acids
G. Sartori and R. Maggi

20.2.13.1

Synthesis of Product Subclass 13 ... 579
20.2.13.1.1 3-Haloalkanoic Acids ... 579
20.2.13.1.1.1 Method 1: Nucleophilic Substitutions .. 579
20.2.13.1.1.2 Method 2: Ring-Opening Reactions .. 580
20.2.13.1.1.2.1 Variation 1: Ring Opening of Lactones 580
20.2.13.1.1.2.2 Variation 2: Ring Opening of Epoxides 580
20.2.13.1.1.3 Method 3: Oxidation Reactions .. 582
20.2.13.1.1.4 Methods 4: Miscellaneous Reactions .. 582
20.2.13.1.2 3-Hydroxy- and 3-Sulfanylalkanoic Acids and Derivatives 584
20.2.13.1.2.1 Method 1: Addition to α,β-Unsaturated Compounds 584
20.2.13.1.2.2 Method 2: Ring Opening of Cyclic Precursors 584
20.2.13.1.2.2.1 Variation 1: Ring Opening of Lactones 584
20.2.13.1.2.2.2 Variation 2: Ring Opening of Heterocyclic Compounds 586
20.2.13.1.2.3 Method 3: Selective Reduction of Dicarbonyl Compounds 588
20.2.13.1.2.4 Method 4: Oxidation Reactions .. 589
20.2.13.1.2.5 Method 5: Carboxylation Reactions .. 591
20.2.13.1.2.6 Methods 6: Miscellaneous Reactions .. 593
20.2.13.1.3 3-Amino- and 3-Phosphorus-Substituted Alkanoic Acids and Derivatives 593
20.2.13.1.3.1 Method 1: Addition to α,β-Unsaturated Acids 593
20.2.13.1.3.2 Method 2: Ring Opening of Cyclic Precursors 597
20.2.13.1.3.3 Methods 3: Miscellaneous Reactions .. 600

20.3

Product Class 3: Carboxylic Acid Salts
L. Dakin and B. Lahue

20.3.1

Product Subclass 1: Group 1 Metal Carboxylic Acid Salts 607
20.3.1.1 Synthesis of Product Subclass 1 ... 607
20.3.1.1.1 Method 1: Deprotonation of Carboxylic Acids 607
20.3.1.1.2 Method 2: Saponification of Esters ... 608
20.3.2 Product Subclass 2: Non-Group 1 Metal Carboxylic Acid Salts 610
20.3.2.1 Synthesis of Product Subclass 2 610
20.3.2.1.1 Method 1: Synthesis from Carboxylic Acids and Esters 610
20.3.3 Product Subclass 3: Amine Carboxylic Acid Salts 612
20.3.3.1 Synthesis of Product Subclass 3 612
20.3.3.1.1 Method 1: Synthesis of Amine Carboxylic Acid Salts 612
20.3.3.1.2 Method 2: Asymmetric Resolution of Amines with Carboxylic Acids 614

20.4 Product Class 4: Carboxylic Acid Anhydrides and Their Sulfur, Selenium, and Tellurium Derivatives
P. A. Keller

20.4 Product Class 4: Carboxylic Acid Anhydrides and Their Sulfur, Selenium, and Tellurium Derivatives 617
20.4.1 Product Subclass 1: Carboxylic Acid Anhydrides 617
20.4.1.1 Synthesis of Product Subclass 1 617
20.4.1.1.1 Method 1: Direct Elimination of Water from Carboxylic Acids 617
20.4.1.1.2 Method 2: Formal Elimination of Water from Carboxylic Acids via an Intermediate 617
20.4.1.1.2.1 Variation 1: Via Acid Chloride Intermediates 617
20.4.1.1.2.2 Variation 2: Via Carboxylate Phosphorus Intermediates 618
20.4.1.1.2.3 Variation 3: Using Phosphine-Based Reagents 619
20.4.1.1.2.4 Variation 4: Exchange Reactions with Acetic Anhydride 620
20.4.1.1.2.5 Variation 5: Using Phosgene 621
20.4.1.1.2.6 Variation 6: Using Ethyl Chloroformate 622
20.4.1.1.2.7 Variation 7: Using Carboximidates 622
20.4.1.1.2.8 Variation 8: Using Imidazoles 623
20.4.1.1.2.9 Variation 9: Using Cyanates 624
20.4.1.1.2.10 Variation 10: Reaction of Carboxylic Acids with Acetylenes 625
20.4.1.1.2.11 Variation 11: Activation with 1-Ethoxy-2-silylacetylenes 626
20.4.1.1.2.12 Variation 12: Activation Using Methanesulfonyl Chloride and Triethylamine 627
20.4.1.1.3 Method 3: Using Acid Chlorides in the Presence of Pyridinium Bases 628
20.4.1.1.4 Method 4: Using Acid Chlorides and 4-Benzylpyridine as an Activator 628
20.4.1.1.5 Method 5: Activation of Acid Chlorides with Methyl(2-pyridyl)carbamoyl Chloride 629
20.4.1.1.6 Method 6: Zinc(II) Chloride Mediated Reaction of Acid Chlorides with Acylypyridazine Derivatives 630
20.4.1.1.7 Method 7: Activation of Acid Chlorides Using Pyridine-2-thiones 631
20.4.1.1.8 Method 8: Cobalt(II)-Catalyzed Reaction of Acid Chlorides 631
20.4.1.1.9 Method 9: Synthesis by Reaction of Carboxylate Anions 632
20.4.1.1.9.1 Variation 1: Reaction with Acid Chlorides 632
20.4.1.1.9.2 Variation 2: Reaction with Sulfonpyridazinones 633
20.4.1.1.9.3 Variation 3: In Situ Halogenation of Carboxylate Anions 634
20.4.1.1.9.4 Variation 4: Using Thallium Carboxylate Salts 634
20.4.1.1.10 Method 10: Insertion of Carbon Monoxide into Arenediazonium Salts 635
<table>
<thead>
<tr>
<th>Section</th>
<th>Product Subclass</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.4.2</td>
<td>Product Subclass 2: Sulfur-Based Anhydrides</td>
<td>636</td>
</tr>
<tr>
<td>20.4.2.1</td>
<td>Synthesis of Product Subclass 2</td>
<td>636</td>
</tr>
<tr>
<td>20.4.2.1.1</td>
<td>Method 1: Oxo/Thioxo Anhydrides Using Hydrogen Sulfide</td>
<td>636</td>
</tr>
<tr>
<td>20.4.2.1.2</td>
<td>Method 2: Oxo/Thioxo Anhydrides Using Hydrogen Disulfide</td>
<td>637</td>
</tr>
<tr>
<td>20.4.2.1.3</td>
<td>Method 3: Oxo/Thioxo Anhydrides by Cyclization of Aromatic Compounds with Adjacent Methyl and Carboxylic Acid Substituents</td>
<td>638</td>
</tr>
<tr>
<td>20.4.2.1.4</td>
<td>Method 4: Dithioxo Anhydrides from Naphthalic Anhydride</td>
<td>638</td>
</tr>
<tr>
<td>20.4.3</td>
<td>Product Subclass 3: Selenium- and Tellurium-Based Anhydrides</td>
<td>639</td>
</tr>
</tbody>
</table>

Keyword Index .. i

Author Index .. xxxiii

Abbreviations ... lxiii