Volume 21: Three Carbon–Heteroatom Bonds: Amides and Derivatives; Peptides; Lactams

Preface ... V

Table of Contents .. IX

21 Introduction

Y. R. Mahajan and S. M. Weinreb ... 1

21.1 Product Class 1: Amides

Y. R. Mahajan and S. M. Weinreb ... 17

21.1.1 Synthesis from Carbonic Acid Derivatives

D. Stien .. 27

21.1.2 Synthesis from Carboxylic Acids and Derivatives

T. Ziegler ... 43

21.1.3 Synthesis from Aldehydes, Ketones, and Related Compounds

D. J. Austin and S. M. Miller .. 77

21.1.4 Synthesis from Amines

G. R. Cook ... 111

21.1.5 Synthesis by Rearrangement

W. R. Judd, C. E. Katz, and J. Aubé .. 133

21.1.6 Synthesis with Retention of the Functional Group

W.-R. Li .. 179

21.2 Product Class 2: Triacylamines, Imides (Diacylamines), and Related Compounds

F. A. Luzzio ... 259

21.3 Product Class 3: N-[α-(Heteroatom)alkyl]-Substituted Alkanamides

J. K. Cha .. 325

21.4 Product Class 4: N-Arylalkanamides, Ynamides, Enamides, Dienamides, and Allenamides

21.5 Product Class 5: α-Heteroatom-Substituted Alkanamides

M. Pätzler, S. Pritz, and J. Liebscher .. 477

21.6 Product Class 6: α,β- Unsaturated Amides: Alk-2-ynamides, Arenecarboxamides, and Alk-2-enamides

M. F. Lipton and M. A. Mauragis ... 537

21.7 Product Class 7: β-Heteroatom-Substituted Alkanamides

S. Manyem and M. P. Sibi .. 565
21.8 Product Class 8: \(\alpha\)-Lactams
R. V. Hoffman and V. Cesare .. 591

21.9 Product Class 9: \(\beta\)-Lactams
C. Coates, J. Kabir, and E. Turos ... 609

21.10 Product Class 10: \(\gamma\)-Lactams and Larger Ring Lactams
M. B. Smith ... 647

21.11 Product Class 11: Peptides
W. D. Lubell, J. W. Blankenship, G. Fridkin, and R. Kaul 713

21.12 Product Class 12: Metal Amides and Imides
T. R. Bailey .. 811

21.13 Product Class 13: \(N\)-Heteroatom-Substituted Alkanamides
P. R. Blakemore .. 833

21.14 Product Class 14: Acylphosphorus Compounds
A. Whitehead, S. R. Sieck, S. Mukherjee, and P. R. Hanson 907

Keyword Index ... 941
Author Index .. 979
Abbreviations ... 1031
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Subtitle</th>
<th>Author(s)</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>Introduction</td>
<td></td>
<td>Y. R. Mahajan and S. M. Weinreb</td>
<td>1</td>
</tr>
<tr>
<td>21.1</td>
<td>Product Class 1: Amides</td>
<td></td>
<td>Y. R. Mahajan and S. M. Weinreb</td>
<td>17</td>
</tr>
<tr>
<td>21.1.1</td>
<td>Synthesis from Carbonic Acid Derivatives</td>
<td></td>
<td>D. Stien</td>
<td>27</td>
</tr>
<tr>
<td>21.1.1.1</td>
<td>Method 1:</td>
<td>Synthesis from Carbon Dioxide and Compounds Related to Carbonic Acid</td>
<td></td>
<td>27</td>
</tr>
<tr>
<td>21.1.1.1.1</td>
<td>Variation 1:</td>
<td>From Carbon Dioxide</td>
<td></td>
<td>27</td>
</tr>
<tr>
<td>21.1.1.1.2</td>
<td>Variation 2:</td>
<td>From Carbon Tetrachloride</td>
<td></td>
<td>28</td>
</tr>
<tr>
<td>21.1.1.1.3</td>
<td>Variation 3:</td>
<td>From Phosgene, Phosgene Surrogates, and Chloroformates</td>
<td></td>
<td>28</td>
</tr>
<tr>
<td>21.1.1.1.4</td>
<td>Variation 4:</td>
<td>From Carbonates</td>
<td></td>
<td>29</td>
</tr>
<tr>
<td>21.1.1.2</td>
<td>Method 2:</td>
<td>Synthesis from Carbamic Acids and Related Derivatives</td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>21.1.1.2.1</td>
<td>Variation 1:</td>
<td>From O-Alkyl or O-Aryl Carbamates</td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>21.1.1.2.2</td>
<td>Variation 2:</td>
<td>From Carbamoyl Halides and Related Derivatives</td>
<td></td>
<td>31</td>
</tr>
<tr>
<td>21.1.1.2.3</td>
<td>Variation 3:</td>
<td>From Cyanic Acid and Cyanic Acid Salts</td>
<td></td>
<td>32</td>
</tr>
<tr>
<td>21.1.1.2.4</td>
<td>Variation 4:</td>
<td>From Isocyanates</td>
<td></td>
<td>32</td>
</tr>
<tr>
<td>21.1.1.3</td>
<td>Method 3:</td>
<td>Synthesis from Ureas and Related Derivatives</td>
<td></td>
<td>33</td>
</tr>
<tr>
<td>21.1.1.3.1</td>
<td>Variation 1:</td>
<td>From Diverse N-Substituted Ureas</td>
<td></td>
<td>33</td>
</tr>
<tr>
<td>21.1.1.3.2</td>
<td>Variation 2:</td>
<td>From Diimides and Cyanamides</td>
<td></td>
<td>35</td>
</tr>
<tr>
<td>21.1.1.3.3</td>
<td>Variation 3:</td>
<td>From O-Alkylated Ureas</td>
<td></td>
<td>35</td>
</tr>
<tr>
<td>21.1.1.4</td>
<td>Method 4:</td>
<td>Synthesis from Sulfur-Containing Compounds</td>
<td></td>
<td>37</td>
</tr>
<tr>
<td>21.1.1.4.1</td>
<td>Variation 1:</td>
<td>Reduction of the C–S Bond</td>
<td></td>
<td>37</td>
</tr>
<tr>
<td>21.1.1.4.2</td>
<td>Variation 2:</td>
<td>C–C Bond Formation</td>
<td></td>
<td>38</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Subtitle</th>
<th>Author(s)</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>21.1.2</td>
<td>Synthesis from Carboxylic Acids and Derivatives</td>
<td></td>
<td>T. Ziegler</td>
<td>43</td>
</tr>
<tr>
<td>21.1.2.1</td>
<td>Method 1:</td>
<td>Aminolysis of Acylboranes</td>
<td></td>
<td>43</td>
</tr>
<tr>
<td>21.1.2.2</td>
<td>Method 2:</td>
<td>Synthesis from Acid Halides</td>
<td></td>
<td>43</td>
</tr>
<tr>
<td>21.1.2.2.1</td>
<td>Variation 1:</td>
<td>By Condensation with Amines and Alkyl(trialkylsilyl)amines</td>
<td></td>
<td>43</td>
</tr>
<tr>
<td>21.1.2.2.2</td>
<td>Variation 2:</td>
<td>By Indium Catalysis</td>
<td></td>
<td>44</td>
</tr>
<tr>
<td>21.1.2.3</td>
<td>Method 3:</td>
<td>Synthesis from Carboxylic Acids</td>
<td></td>
<td>44</td>
</tr>
<tr>
<td>21.1.2.3.1</td>
<td>Variation 1:</td>
<td>By Direct Condensation with Amines</td>
<td></td>
<td>44</td>
</tr>
<tr>
<td>21.1.2.3.2</td>
<td>Variation 2:</td>
<td>By Condensation with Borane or Borohydrides</td>
<td></td>
<td>45</td>
</tr>
<tr>
<td>Number</td>
<td>Method</td>
<td>Variation</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>--------</td>
<td>--------</td>
<td>-----------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>21.1.2.3.3</td>
<td>Variation 3</td>
<td>By Condensation with Carbodiimides</td>
<td>46</td>
<td></td>
</tr>
<tr>
<td>21.1.2.3.4</td>
<td>Variation 4</td>
<td>By Other Dehydrating Agents</td>
<td>46</td>
<td></td>
</tr>
<tr>
<td>21.1.2.3.5</td>
<td>Variation 5</td>
<td>By Redox Condensation</td>
<td>46</td>
<td></td>
</tr>
<tr>
<td>21.1.2.4</td>
<td>Method 4</td>
<td>Synthesis from Acid Anhydrides</td>
<td>47</td>
<td></td>
</tr>
<tr>
<td>21.1.2.4.1</td>
<td>Variation 1</td>
<td>By Condensation with Isocyanates</td>
<td>47</td>
<td></td>
</tr>
<tr>
<td>21.1.2.4.2</td>
<td>Variation 2</td>
<td>By Condensation with Amines</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>21.1.2.5</td>
<td>Method 5</td>
<td>Synthesis from Esters</td>
<td>49</td>
<td></td>
</tr>
<tr>
<td>21.1.2.5.1</td>
<td>Variation 1</td>
<td>By Aminolysis with Amines or Metal Amides</td>
<td>49</td>
<td></td>
</tr>
<tr>
<td>21.1.2.5.2</td>
<td>Variation 2</td>
<td>Via Intermediate Acyl Cyanides</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>21.1.2.5.3</td>
<td>Variation 3</td>
<td>By Electrolysis</td>
<td>51</td>
<td></td>
</tr>
<tr>
<td>21.1.2.5.4</td>
<td>Variation 4</td>
<td>By Enzyme Catalysis</td>
<td>51</td>
<td></td>
</tr>
<tr>
<td>21.1.2.6</td>
<td>Method 6</td>
<td>Synthesis from Thiocarboxylic Acids or Carbothioate Esters</td>
<td>51</td>
<td></td>
</tr>
<tr>
<td>21.1.2.6.1</td>
<td>Variation 1</td>
<td>From Thiocarboxylic Acids</td>
<td>52</td>
<td></td>
</tr>
<tr>
<td>21.1.2.6.2</td>
<td>Variation 2</td>
<td>From Carbothioate Esters and Amines</td>
<td>55</td>
<td></td>
</tr>
<tr>
<td>21.1.2.6.3</td>
<td>Variation 3</td>
<td>From S-Benzothiazol-2-yl Carbothioates</td>
<td>56</td>
<td></td>
</tr>
<tr>
<td>21.1.2.6.4</td>
<td>Variation 4</td>
<td>From Carbothioate Esters by Reaction with Alkyl Azides</td>
<td>56</td>
<td></td>
</tr>
<tr>
<td>21.1.2.7</td>
<td>Method 7</td>
<td>Synthesis from Acyl Azides</td>
<td>57</td>
<td></td>
</tr>
<tr>
<td>21.1.2.7.1</td>
<td>Variation 1</td>
<td>By Reduction</td>
<td>57</td>
<td></td>
</tr>
<tr>
<td>21.1.2.7.2</td>
<td>Variation 2</td>
<td>By Substitution with Amines</td>
<td>58</td>
<td></td>
</tr>
<tr>
<td>21.1.2.8</td>
<td>Method 8</td>
<td>Synthesis from Imidates and Related Compounds</td>
<td>58</td>
<td></td>
</tr>
<tr>
<td>21.1.2.8.1</td>
<td>Variation 1</td>
<td>By Rearrangement</td>
<td>58</td>
<td></td>
</tr>
<tr>
<td>21.1.2.8.2</td>
<td>Variation 2</td>
<td>From 4,5-Dihydrooxazoles by Ring Opening</td>
<td>58</td>
<td></td>
</tr>
<tr>
<td>21.1.2.9</td>
<td>Method 9</td>
<td>Synthesis from Nitriles by Functional Group Transformation</td>
<td>58</td>
<td></td>
</tr>
<tr>
<td>21.1.2.9.1</td>
<td>Variation 1</td>
<td>By Hydrolysis</td>
<td>58</td>
<td></td>
</tr>
<tr>
<td>21.1.2.9.2</td>
<td>Variation 2</td>
<td>N-Alkylation by Ritter-Type Reactions</td>
<td>61</td>
<td></td>
</tr>
<tr>
<td>21.1.2.10</td>
<td>Method 10</td>
<td>Synthesis from Isocyanides</td>
<td>66</td>
<td></td>
</tr>
<tr>
<td>21.1.2.10.1</td>
<td>Variation 1</td>
<td>By Passerini-Type Reactions</td>
<td>66</td>
<td></td>
</tr>
<tr>
<td>21.1.2.10.2</td>
<td>Variation 2</td>
<td>By Ugi Reactions</td>
<td>68</td>
<td></td>
</tr>
<tr>
<td>21.1.2.11</td>
<td>Method 11</td>
<td>Synthesis from 1,1,1-Trihaloalkanes</td>
<td>69</td>
<td></td>
</tr>
<tr>
<td>21.1.2.12</td>
<td>Method 12</td>
<td>Synthesis from Ketenes, Ketene Acetals, or Ynamines</td>
<td>70</td>
<td></td>
</tr>
</tbody>
</table>

Synthesis from Aldehydes, Ketones, and Related Compounds

D. J. Austin and S. M. Miller

<table>
<thead>
<tr>
<th>Number</th>
<th>Method</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>21.1.3</td>
<td>Method 1:</td>
<td>Oxidation of Aldehydes</td>
<td>77</td>
</tr>
<tr>
<td>21.1.3.1</td>
<td>Variation 1:</td>
<td>Radical-Promoted Oxidation</td>
<td>78</td>
</tr>
<tr>
<td>21.1.3.1.2</td>
<td>Variation 2:</td>
<td>Palladium-Catalyzed Oxidation</td>
<td>79</td>
</tr>
<tr>
<td>21.1.3.1.3</td>
<td>Variation 3:</td>
<td>Manganese(IV) Oxide Promoted Oxidation</td>
<td>80</td>
</tr>
<tr>
<td>21.1.3.1.4</td>
<td>Variation 4:</td>
<td>Nickel Peroxide Mediated Oxidation</td>
<td>80</td>
</tr>
<tr>
<td>21.1.3.1.5</td>
<td>Variation 5:</td>
<td>Photochemical Oxidation of Aryl Aldehydes</td>
<td>81</td>
</tr>
<tr>
<td>21.1.3.1.6</td>
<td>Variation 6:</td>
<td>Electrochemical Oxidation</td>
<td>82</td>
</tr>
<tr>
<td>21.1.3.2</td>
<td>Method 2:</td>
<td>Oxidative Decyanation of α-Aminonitrile Derivatives of Aldehydes</td>
<td>83</td>
</tr>
<tr>
<td>21.1.3.3</td>
<td>Method 3:</td>
<td>Amination and Hydrolysis of O-Trimethylsilyl Cyanohydrins</td>
<td>84</td>
</tr>
<tr>
<td>21.1.3.3.1</td>
<td>Variation 1:</td>
<td>Direct Hydrolysis of O-Trimethylsilyl Cyanohydrins</td>
<td>84</td>
</tr>
<tr>
<td>21.1.3.4</td>
<td>Method 4:</td>
<td>Electrochemical Oxidation of Aryl and Aliphatic Ketones</td>
<td>85</td>
</tr>
<tr>
<td>Method</td>
<td>Reaction</td>
<td>Page</td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Fragmentation of Non-Enolizable Ketones (Haller–Bauer Reaction)</td>
<td>87</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Hydrolysis of Iminium Salts Formed from Ketones and Dichloromethylenedimethylammonium Chloride</td>
<td>88</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Reductive Amidation of Ketones (Leuckart Reaction)</td>
<td>89</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Condensation of Carbonyl Compounds with Ynamines</td>
<td>91</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Reaction of Ketones with Chloroform and Amines under Phase-Transfer Conditions</td>
<td>92</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Oxidation of Imines</td>
<td>93</td>
<td></td>
</tr>
<tr>
<td>10.1</td>
<td>Variation 1: With 3-Chloroperoxybenzoic Acid</td>
<td>93</td>
<td></td>
</tr>
<tr>
<td>10.2</td>
<td>Variation 2: With Sodium Perborate</td>
<td>94</td>
<td></td>
</tr>
<tr>
<td>10.3</td>
<td>Variation 3: With Potassium Permanganate</td>
<td>95</td>
<td></td>
</tr>
<tr>
<td>10.4</td>
<td>Variation 4: Oxidation of Quinone Imines</td>
<td>96</td>
<td></td>
</tr>
<tr>
<td>10.5</td>
<td>Variation 5: With Chromyl Chloride</td>
<td>97</td>
<td></td>
</tr>
<tr>
<td>10.6</td>
<td>Variation 6: With Phosphorus Pentachloride</td>
<td>97</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Oxidation of Cyclic Iminium Salts</td>
<td>99</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Transition-Metal-Catalyzed Carbonylation of Imines</td>
<td>99</td>
<td></td>
</tr>
<tr>
<td>12.1</td>
<td>Variation 1: With Octacarboxylicdibot(0), Thiols, Imines, and Carbon Monoxide</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>12.2</td>
<td>Variation 2: With Octacarboxylicdibot(0), Alkyl Boranes, and Carbon Monoxide</td>
<td>102</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Base-Induced Cycloreversion of Nitrile Oxide Cycloadducts</td>
<td>103</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Reaction of Acetals with Isocyanides</td>
<td>104</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Acylation of Enamines</td>
<td>105</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Palladium-Catalyzed Arylation with α-Anilinoalkenynitriles</td>
<td>105</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Reaction of α-Aminoalkenynitriles</td>
<td>107</td>
<td></td>
</tr>
</tbody>
</table>

21.1.4 Synthesis from Amines

G. R. Cook

<table>
<thead>
<tr>
<th>Method</th>
<th>Reaction</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>By Oxidation</td>
<td>111</td>
</tr>
<tr>
<td>1.1</td>
<td>Method 1: Oxidation of Benzylamines with Potassium Permanganate</td>
<td>111</td>
</tr>
<tr>
<td>1.2</td>
<td>Method 2: Oxidation of 2-Aminonitriles</td>
<td>112</td>
</tr>
<tr>
<td>1.3</td>
<td>Method 3: Oxidation of Aldimines</td>
<td>112</td>
</tr>
<tr>
<td>1.3.1</td>
<td>Variation 1: With Sodium Perborate</td>
<td>113</td>
</tr>
<tr>
<td>1.3.2</td>
<td>Variation 2: With 3-Chloroperoxybenzoic Acid</td>
<td>113</td>
</tr>
<tr>
<td>2</td>
<td>By Carbonylation</td>
<td>114</td>
</tr>
<tr>
<td>2.1</td>
<td>Method 1: Palladium-Catalyzed Aminocarbonylation of Aryl and Vinyl Halides and Trifluoromethanesulfonates, and Related Compounds</td>
<td>114</td>
</tr>
<tr>
<td>2.1.1</td>
<td>Variation 1: Aminocarbonylation of Vinyl Halides and Trifluoromethanesulfonates</td>
<td>114</td>
</tr>
<tr>
<td>2.1.2</td>
<td>Variation 2: Palladium-Catalyzed Insertion into Aryl Halides and Trifluoromethanesulfonates</td>
<td>116</td>
</tr>
<tr>
<td>2.1.3</td>
<td>Variation 3: Palladium-Catalyzed Insertion into Hypervalent Iodine Compounds and Diazonium Salts</td>
<td>122</td>
</tr>
</tbody>
</table>
21.1.4.2.1.4 Variation 4: Palladium-Catalyzed Aminocarbonylation with In Situ Generated Carbon Monoxide ... 123
21.1.4.2.1.5 Variation 5: Ammonia Equivalents for the Palladium-Catalyzed Preparation of N-Unsubstituted Amides 125
21.1.4.2.2 Method 2: Palladium-Catalyzed Aminocarbonylation via Insertion into C–H Bonds .. 126
21.1.4.2.2.1 Variation 1: Insertion into Aryl C–H Bonds 126
21.1.4.2.2.2 Variation 2: Insertion into Acetylenic C–H Bonds 127
21.1.4.2.3 Method 3: Aminocarbonylation Involving Migratory Insertion into Alkene and Alkyne π-Bonds 128
21.1.4.2.3.1 Variation 1: Cobalt-Catalyzed Hydroformylation and Amination 128
21.1.4.2.3.2 Variation 2: Palladium-Catalyzed Aminocarbonylation of Alkynes 128
21.1.4.2.3.3 Variation 3: Palladium-Catalyzed Selenation and Carbonylation of Alkynes 129
21.1.4.2.4 Method 4: Photochemical Aminocarbonylation of Alkyl Iodides 129
21.1.4.2.5 Method 5: Ring Expansion of Aziridines 130

21.1.5 Synthesis by Rearrangement
W. R. Judd, C. E. Katz, and J. Aubé

21.1.5 Synthesis by Rearrangement ... 133
21.1.5.1 Method 1: Favorskii Rearrangement from α-Halo Ketones 133
21.1.5.1.1 Variation 1: From Mono-α-halo Ketones 135
21.1.5.1.2 Variation 2: From α-Substituted α-Halo Ketones 136
21.1.5.1.3 Variation 3: Reactions with α,α'-Dihalo Ketones 138
21.1.5.2 Method 2: Arndt–Eistert Synthesis from Diazo Ketones 139
21.1.5.2.1 Variation 1: Intermolecular Reactions with Amines 142
21.1.5.2.2 Variation 2: Synthesis of β-Amino Acids and β-Peptides 144
21.1.5.2.3 Variation 3: Intramolecular Reactions 145
21.1.5.2.4 Variation 4: Ring Contraction .. 145
21.1.5.3 Method 3: Schmidt Reaction from Ketones with Hydrazoic Acid 146
21.1.5.3.1 Variation 1: From Ketones with Alkyl Azides 150
21.1.5.3.2 Variation 2: By Intramolecular Reactions of Alkyl Azides with Ketones 152
21.1.5.3.3 Variation 3: From Hydroxyalkyl Azides 154
21.1.5.4 Method 4: Beckmann Rearrangement from Oximes 156
21.1.5.4.1 Variation 1: The Photochemical Beckmann Rearrangement 161
21.1.5.5 Method 5: Chapman Rearrangement from Aryl Imidates 162
21.1.5.6 Method 6: Aza-Claisen Rearrangement from Allyl Imidates 164
21.1.5.7 Method 7: Rearrangement of Oxaziridines 168
21.1.5.8 Method 8: Willgerodt Reaction from Aryl Ketones 173
21.1.5.8.1 Variation 1: The Kindler Modification 175
21.1.6 Synthesis with Retention of the Functional Group

W.-R. Li

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>21.1.6</td>
<td>Synthesis with Retention of the Functional Group</td>
<td>179</td>
</tr>
<tr>
<td>21.1.6.1</td>
<td>Synthesis from Acyl Nitroso Compounds, Acyl Azides, N-Hydroxy Amides, N-Nitroso Amides, N-Nitro Amides, Acyl Hydrazines, Acyl Nitrenes, and Related Compounds</td>
<td>179</td>
</tr>
<tr>
<td>21.1.6.1.1</td>
<td>Method 1: Synthesis from Acyl Nitroso Compounds</td>
<td>179</td>
</tr>
<tr>
<td>21.1.6.1.2</td>
<td>Method 2: Reduction of Acyl Azides</td>
<td>180</td>
</tr>
<tr>
<td>21.1.6.1.2.1</td>
<td>Variation 1: With Hydride Reducing Agents</td>
<td>180</td>
</tr>
<tr>
<td>21.1.6.1.2.2</td>
<td>Variation 2: Conversion into Acetylated Amides with Acetic Anhydride and Chlorotrimerethylsilane</td>
<td>181</td>
</tr>
<tr>
<td>21.1.6.1.3</td>
<td>Method 3: Synthesis from N-Hydroxy Amides and Their Derivatives</td>
<td>182</td>
</tr>
<tr>
<td>21.1.6.1.3.1</td>
<td>Variation 1: By Reductive Cleavage of N-Alkoxy Amides</td>
<td>182</td>
</tr>
<tr>
<td>21.1.6.1.3.2</td>
<td>Variation 2: By Reductive Cleavage of N-Benzylxy β-Lactams</td>
<td>184</td>
</tr>
<tr>
<td>21.1.6.1.3.3</td>
<td>Variation 3: By Amidyl Radical–Alkene Cyclizations</td>
<td>185</td>
</tr>
<tr>
<td>21.1.6.1.3.4</td>
<td>Variation 4: By Diastereoselective Addition of Nucleophiles to the C3 Position of N-Tosyloxy β-Lactams</td>
<td>186</td>
</tr>
<tr>
<td>21.1.6.1.3.5</td>
<td>Variation 5: By Base-Promoted Reaction of O-Sulfonylated N-Hydroxy Amides with Nucleophiles</td>
<td>187</td>
</tr>
<tr>
<td>21.1.6.1.4</td>
<td>Method 4: Synthesis from N-Nitroso Amides or N-Nitro Amides</td>
<td>189</td>
</tr>
<tr>
<td>21.1.6.1.5</td>
<td>Method 5: Synthesis from Acyl Hydrazines</td>
<td>190</td>
</tr>
<tr>
<td>21.1.6.1.5.1</td>
<td>Variation 1: By Reductive Cleavage</td>
<td>190</td>
</tr>
<tr>
<td>21.1.6.1.5.2</td>
<td>Variation 2: By Oxidative Amidation</td>
<td>191</td>
</tr>
<tr>
<td>21.1.6.1.6</td>
<td>Method 6: Synthesis from Acyl Nitrenes</td>
<td>192</td>
</tr>
<tr>
<td>21.1.6.2</td>
<td>Synthesis from Formamides by Substitution of Hydrogen</td>
<td>193</td>
</tr>
<tr>
<td>21.1.6.2.1</td>
<td>Method 1: Palladium-Catalyzed Aminocarbonylation</td>
<td>193</td>
</tr>
<tr>
<td>21.1.6.2.2</td>
<td>Method 2: Carboxamidation of Organolithium and Organomagnesium Reagents</td>
<td>195</td>
</tr>
<tr>
<td>21.1.6.3</td>
<td>Synthesis from Imides (Diacylamines) and Triacylamines by Decylation</td>
<td>196</td>
</tr>
<tr>
<td>21.1.6.3.1</td>
<td>Method 1: Samarium(II) Iodide Mediated Coupling Reaction</td>
<td>196</td>
</tr>
<tr>
<td>21.1.6.3.2</td>
<td>Method 2: Aluminum Trichloride Promoted Aminolysis of Cyclic Imides</td>
<td>197</td>
</tr>
<tr>
<td>21.1.6.3.3</td>
<td>Method 3: Hydride Reduction</td>
<td>198</td>
</tr>
<tr>
<td>21.1.6.3.4</td>
<td>Method 4: Photoinduced Single-Electron-Transfer (SET) Reaction</td>
<td>199</td>
</tr>
<tr>
<td>21.1.6.4</td>
<td>Synthesis from Enamides</td>
<td>199</td>
</tr>
<tr>
<td>21.1.6.4.1</td>
<td>Method 1: Asymmetric Hydrogenation</td>
<td>199</td>
</tr>
<tr>
<td>21.1.6.4.2</td>
<td>Method 2: Enantioselective Hydrogen Atom Transfer Reactions</td>
<td>206</td>
</tr>
<tr>
<td>21.1.6.4.3</td>
<td>Method 3: Chemoselective Conjugate Addition of Nucleophiles</td>
<td>207</td>
</tr>
<tr>
<td>21.1.6.4.4</td>
<td>Method 4: Cycloaddition Reactions</td>
<td>208</td>
</tr>
<tr>
<td>21.1.6.5</td>
<td>Synthesis from Other Amides by Transamidation</td>
<td>209</td>
</tr>
<tr>
<td>21.1.6.5.1</td>
<td>Method 1: Catalytic Transamidation</td>
<td>209</td>
</tr>
<tr>
<td>21.1.6.5.2</td>
<td>Method 2: Transamidation of Activated Amides</td>
<td>211</td>
</tr>
<tr>
<td>21.1.6.6</td>
<td>Synthesis from Other Amides by Acyl Exchange on Nitrogen</td>
<td>211</td>
</tr>
<tr>
<td>21.1.6.6.1</td>
<td>Method 1: Conversion of Carbamates</td>
<td>211</td>
</tr>
</tbody>
</table>
21.1.6.7 Synthesis from Other Amides by Modification of a Substituent on Nitrogen

21.1.6.7.1 Method 1: Amidoalkylation

21.1.6.7.1.1 Variation 1: Under Lewis Acid Catalysis

21.1.6.7.1.2 Variation 2: By Nucleophilic Attack

21.1.6.7.2 Method 2: Catalytic Asymmetric Allylation

21.1.6.7.3 Method 3: Radical Cyclization or Addition

21.1.6.7.4 Method 4: Oxidation

21.1.6.8 Synthesis from Other Amides by N-Alkylation

21.1.6.8.1 Method 1: Palladium-Catalyzed Alkylation

21.1.6.8.2 Method 2: Rhodium Carbenoid Reactions

21.1.6.8.3 Method 3: Ruthenium-Catalyzed Propargylic Substitution Reactions

21.1.6.8.4 Method 4: Copper(I)-Catalyzed Amidation

21.1.6.8.5 Method 5: Osmium-Catalyzed Asymmetric Aminohydroxylation of Alkenes

21.1.6.8.6 Method 6: Multicomponent Coupling of Aldehydes, Amides, and Dienophiles

21.1.6.9 Synthesis from Other Amides by N-Dealkylation

21.1.6.9.1 Method 1: Reduction by Lithium of Low-Molecular-Weight Amines and Ethane-1,2-diamine

21.1.6.9.2 Method 2: Ruthenium(VIII) Oxidation of Serine/Threonine Peptides

21.1.6.9.3 Method 3: Aza-Claisen Rearrangement

21.1.6.10 Synthesis from Lactams with Ring Opening

21.1.6.10.1 Method 1: Cleavage of the β-Lactam Ring

21.1.6.11 Synthesis from 2-Hydroxyamino Amides, α-Oxo Amides, α-Sulfanyl Amides, and Other Functionalized Amides

21.1.6.11.1 Method 1: Reduction of 2-Hydroxyamino Amides

21.1.6.11.2 Method 2: Reduction of α-Oxo Amides

21.1.6.11.3 Method 3: Desulfurization of α-Sulfanyl Amides

21.1.6.11.4 Method 4: Reduction of α-Functionalized Amides

21.1.6.11.5 Method 5: Free-Radical C-Allylation Reactions

21.1.6.11.6 Method 6: Sequential Elimination–Cyclopropanation Reactions

21.1.6.12 Synthesis from α-Amido Nitriles by Decyanation

21.1.6.12.1 Method 1: Catalytic Reduction of Nitriles

21.1.6.13 Synthesis from Alkynamides and Alkenamides by Reduction

21.1.6.13.1 Method 1: Enantioselective Conjugate Reduction with Semicorrin Cobalt Catalysts

21.1.6.13.2 Method 2: Regioselective Reduction with the Sodium Borohydride/Iodine System

21.1.6.14 Synthesis from Alkynamides and Alkenamides by Addition of Carbon Moieties to Carbon—Carbon Multiple Bonds, Other than 1,4-Addition of Heteroatoms

21.1.6.14.2 Method 2: Lewis Acid Promoted Cyclization
21.1.6.15 Synthesis from Amides by α-Alkylation and α-Halogenation 243
21.1.6.15.1 Method 1: Asymmetric Alkylation Using Pseudoephedrine as a Chiral
Auxiliary .. 243
21.1.6.15.1.1 Variation 1: By Alkylation with Haloalkanes 243
21.1.6.15.1.2 Variation 2: By Alkylation with Epoxides and Their Derivatives 244
21.1.6.15.1.3 Variation 3: By Asymmetric Michael Reactions 246
21.1.6.15.1.4 Variation 4: By Mannich Reaction with Enolizable Imines 247
21.1.6.15.1.5 Variation 5: By Asymmetric Aldol Reactions 247
21.1.6.15.2 Method 2: Diastereoselective α-Iodination Reactions 248

21.2 \hspace{1em} \textbf{Product Class 2: Triacylamines, Imides (Diacylamines), and Related Compounds} \\
\hspace{1em} F. A. Luzzio

21.2 \hspace{1em} \textbf{Product Class 2: Triacylamines, Imides (Diacylamines), and Related Compounds} ... 259
21.2.1 \hspace{1em} \textbf{Product Subclass 1: Triacylamines} ... 259
21.2.1.1 Synthesis of Product Subclass 1 .. 259
21.2.1.1 Method 1: Acylation of Imides ... 259
21.2.2 \hspace{1em} \textbf{Product Subclass 2: Imides (Diacylamines) Unsubstituted on Nitrogen} ... 261
21.2.2.1 Synthesis of Product Subclass 2 .. 262
21.2.2.1 Method 1: Acylation of Acid Halides ... 262
21.2.2.1.2 Method 2: Acylation of Dicarboxylic Acids 262
21.2.2.1.3 Method 3: Synthesis from Dicarboxylic Acids and Thiourea through
Microwave Irradiation ... 263
21.2.2.1.4 Method 4: Acylation of Acid Anhydrides 264
21.2.2.1.5 Method 5: Amidation of Esters ... 265
21.2.2.1.6 Method 6: Synthesis from Ketene Dithioacetals via Nitriles 268
21.2.2.1.7 Method 7: Acylation of Amides and Thioamides 269
21.2.2.1.8 Method 8: Synthesis of Lactams ... 269
21.2.2.1.9 Method 9: Photodecarboxylation of N-Acylamino Acids 271
21.2.2.1.10 Method 10: Oxidation/Rearrangement of Azlactones 272
21.2.2.3 \hspace{1em} \textbf{Product Subclass 3: Imides (Diacylamines) Substituted at Nitrogen \hspace{1.5em} by Groups Other than Acyl} ... 274
21.2.2.3.1 Synthesis of Product Subclass 3 .. 274
21.2.2.3.1.1 Method 1: Acylation of Acid Halides 274
21.2.2.3.1.2 Method 2: Amination and Dehydration of Carboxylic Acids 275
21.2.2.3.1.3 Method 3: Synthesis from Carboxylic Acid Anhydrides 282
21.2.2.3.1.4 Method 4: Synthesis from Activated Esters 293
21.2.2.3.1.5 Method 5: Rearrangement of Amides and Lactams 294
21.2.2.3.1.6 Method 6: Synthesis from Ketenes 296
21.2.2.3.1.7 Method 7: Rearrangement of β-Oxo Esters 296
21.2.2.3.1.8 Method 8: Acylation of Amides ... 297
21.2.3.1.9 Method 9: Synthesis from Lactams by Oxidation of \(\alpha\)-Methylene Groups 301
21.2.3.1.10 Method 10: Synthesis from Isoimides by Rearrangement 303
21.2.3.1.11 Method 11: Synthesis from Imides through N-Alkylation or N-Arylation 304
21.2.3.1.12 Method 12: Synthesis from Esters and Amido Esters 313
21.2.3.1.13 Method 13: Carbonylation of Alkynes and Amines 316
21.2.4 Product Subclass 4: Imides (Diacylamines) N-Substituted by Amino or Hydroxy Groups, or by a Halogen 317
21.2.4.1 Synthesis of Product Subclass 4 317
21.2.4.1.1 Method 1: N-Aminated Imides from Anhydrides 317
21.2.4.1.2 Method 2: N-Hydroxylated Imides from Anhydrides 318
21.2.4.1.3 Method 3: N-Acyloxylated Imides from N-Hydroxylated Imides 319
21.2.4.1.4 Method 4: N-Brominated Imides from Imides 320
21.2.4.1.5 Method 5: Hydroxylated Imides by the Rearrangement of Cyclic Nitro Ketones 321
21.3 Product Class 3: \(N\)-[\(\alpha\)-(Heteroatom)alkyl]-Substituted Alkanamides
J. K. Cha
21.3.1 Product Subclass 1: \(N\)-(1-Haloalkyl) Amides and Carbamates 325
21.3.1.1 Synthesis of Product Subclass 1 325
21.3.1.1.1 Method 1: Treatment of \(N\)-(1-Hydroxyalkyl) Amides with Inorganic Halides 325
21.3.1.1.1 Variation 1: Treatment of Amides with Paraformaldehyde 326
21.3.1.1.2 Method 2: Addition of Acid Chlorides to Imines 326
21.3.1.1.3 Method 3: Halogenation of Glycinates 327
21.3.1.2 Applications of Product Subclass 1 in Organic Synthesis 328
21.3.1.2.1 Method 1: Displacement Reactions 328
21.3.1.2.2 Method 2: \(\alpha\)-Amidoalkylation 330
21.3.1.2.3 Method 3: Free-Radical Reactions 331
21.3.2 Product Subclass 2: \(N\)-(1-Alkoxyalkyl) Amides and Carbamates 332
21.3.2.1 Synthesis of Product Subclass 2 332
21.3.2.1.1 Method 1: Addition of Amides to Aldehydes 332
21.3.2.1.1 Variation 1: Addition of N-Silylated Amides to Aldehydes 333
21.3.2.1.2 Variation 2: Cyclization of Amides to Tethered Aldehydes 334
21.3.2.1.3 Variation 3: Condensation of Amino Alcohols and Oxo Acids 335
21.3.2.2 Applications of Product Subclass 2 in Organic Synthesis 336
21.3.2.2.1 Method 1: Hetero [4 + 2] Cycloadditions 336
21.3.2.2.2 Method 2: Partial Reduction of Imides 338
21.3.2.2.1 Variation 1: Diastereoselective Reduction of Imides 341
21.3.2.2.2 Variation 2: Desymmetrization of \(meso\)-Imides 342
21.3.2.2.3 Method 3: Addition of Grignard Reagents to Cyclic Imides 343
21.3.2.2.4 Method 4: Kulinkovich Reactions of Vinyl-Tethered Imides 345
21.3.2.2.5 Method 5: Treatment of Imines with Carboxylic Acid Anhydrides 347
21.3.2.6 Method 6: Reduction of N-Acylimidates 347
21.3.2.7 Method 7: Electrochemical Oxidation of Amides and Carbamates 348
21.3.2.7.1 Variation 1: Anodic Oxidation of Carbamates in Acetic Acid 351
21.3.2.7.2 Variation 2: Decarboxylative Oxidation of N-Acylamino Acids 351
21.3.2.7.3 Variation 3: Oxidative Decarboxylation of N-Acylamino Acids by Chemical Methods ... 352
21.3.2.8 Method 8: Ruthenium-Catalyzed Oxidation of Amides and Carbamates 353
21.3.2.8.1 Variation 1: Decomposition of Diazonium Salts of 1-(2-Aminobenzoyl)azacycloalkanes ... 354
21.3.2.8.2 Variation 2: Oxidation of Amines by 2-Iodoxybenzoic Acid 355
21.3.2.9 Methods 9: Miscellaneous Procedures .. 355
21.3.2.10 Method 10: Further Applications of Iminium and N-Acyliminium Ions in Total Synthesis ... 358

21.3.3 Product Subclass 3: N-(1-Amino- or 1-Acyliminoalkyl) Amides and Carbamates ... 358
21.3.3.1 Synthesis of Product Subclass 3 .. 358
21.3.3.1.1 Method 1: Condensation of Amides and Aldehydes 358
21.3.3.1.1 Variation 1: Treatment of Acetals with Isocyanates 359
21.3.3.1.2 Variation 2: Condensation of Amides, Formaldehyde, and Amines 360
21.3.3.1.3 Variation 3: Use of Benzotriazole in a Mannich-Type Reaction 360
21.3.3.1.2 Method 2: Curtius Rearrangement ... 361
21.3.3.1.3 Method 3: Treatment of N-(1-Haloalkyl) or N-(1-Acyloxyalkyl) Amides and Carbamates with Amines or Azides 362
21.3.3.2 Applications of Product Subclass 3 in Organic Synthesis 362
21.3.3.2.1 Method 1: α-Amidoalkylation .. 362
21.3.3.2.2 Method 2: Reductive Cleavage of Reduced Pyridazines 362
21.3.3.2.3 Method 3: α-Azidonation of Amides and Carbamates 363

21.3.4 Product Subclass 4: N-(1-Thioalkyl) Amides and Carbamates 365
21.3.4.1 Synthesis of Product Subclass 4 .. 365
21.3.4.1.1 Method 1: By Displacement Reactions 365
21.3.4.1.2 Method 2: Acylation of Thiazolidines 366
21.3.4.1.3 Method 3: Mannich Condensations Involving Sulfinic Acids 367
21.3.4.1.3 Variation 1: Pummerer Reactions of Amido Sulfoxides 368
21.3.4.2 Applications of Product Subclass 4 in Organic Synthesis 369
21.3.4.2.1 Method 1: Ring Cleavage via N-Acyliminium Ions 369
21.3.4.2.2 Method 2: Generation of α-Acylamino Radicals 373

21.3.5 Product Subclass 5: N-(1-Phosphoniumalkyl) or N-(1-Phosphonylalkyl) Amides and Carbamates ... 374
21.3.5.1 Synthesis of Product Subclass 5 .. 374
21.3.5.1.1 Method 1: Displacement by Phosphine or Phosphite 374
21.3.5.1.2 Method 2: Acylation of Amino Phosphonic and Phosphinic Acids 375
21.3.5.1.2 Variation 1: Staudinger Reactions of 1-Azidoalkylphosphonates 376
21.3.5.1.3 Method 3: Three-Component Coupling of Carboxyls, Amides, and Phosphorus-Based Nucleophiles .. 376
21.3.5.1.4 Method 4: Curtius Rearrangements of α-Acylazido Phosphonates

21.3.5.2 Applications of Product Subclass 5 in Organic Synthesis

21.3.5.2.1 Method 1: Wittig Alkenation

21.4 Product Class 4: N-Arylalkanamides, Ynamides, Enamides, Dienamides, and Allenamides

21.4 Product Class 4: N-Arylalkanamides, Ynamides, Enamides, Dienamides, and Allenamides

21.4.1 Product Subclass 1: N-Arylalkanamides

21.4.1.1 Synthesis of Product Subclass 1

21.4.1.1.1 Method 1: Palladium-Catalyzed Intermolecular Coupling of Aryl Halides and Amides

21.4.1.1.1.1 Variation 1: Palladium(II)-Catalyzed Intermolecular Coupling of Aryl Halides and Lactams

21.4.1.1.1.2 Variation 2: Palladium(0)-Catalyzed Intermolecular Coupling of Aryl Halides and Carbamates

21.4.1.1.1.3 Variation 3: Palladium(II)-Catalyzed Intermolecular Coupling of Aryl Halides and Oxazolidinones

21.4.1.1.1.4 Variation 4: Palladium(0)-Catalyzed Intermolecular Coupling of Aryl Halides and Ureas

21.4.1.1.1.5 Variation 5: Palladium(II)-Catalyzed Intramolecular Cyclization of Amides

21.4.1.1.1.6 Variation 6: Palladium(II)-Catalyzed Intramolecular Cyclization of Chiral Amides

21.4.1.1.2 Method 2: Palladium(0)-Catalyzed Coupling of Epoxides and Isocyanates via a π-Allyl Intermediate

21.4.1.1.2.1 Variation 1: Palladium(0)-Catalyzed Coupling of Dicarbonates and Isocyanates via a π-Allyl Intermediate

21.4.1.1.3 Method 3: Copper(I)-Catalyzed Intermolecular Coupling of Aryl Halides and Amides (The Goldberg Reaction)

21.4.1.1.3.1 Variation 1: Copper(I)-Catalyzed Intermolecular Coupling of Hetaryl Halides with Carbamates

21.4.1.1.3.2 Variation 2: Copper(I)-Catalyzed Intermolecular Coupling of Aryl Halides and Hydrazides

21.4.1.1.3.3 Variation 3: Microwave-Enhanced Goldberg Reaction

21.4.1.1.4 Method 4: Alkylation of N-Aryl Amides with Alkyl Halides

21.4.1.1.4.1 Variation 1: Generation of Solid-Supported N-Arylalkanamides by Three-Component Coupling of N-Arylamines, Carbon Dioxide, and Merrifield’s Resin

21.4.1.1.5 Method 5: Oxidation of Thioamides with 3-Chloroperoxybenzoic Acid

21.4.1.1.5.1 Variation 1: Oxidation of Thioamides with Vinyl \(\lambda^3 \)-Iodanes

21.4.1.1.6 Method 6: Dicyclohexylcarbodiimide Peptide Coupling

21.4.1.1.7 Method 7: Solid-Phase Synthesis of Boronic Acids Containing Amide Functionality via Ugi Reactions
21.4.1.8 Method 8: 2-Iodoxybenzoic Acid Mediated Radical Cyclization of N-Arylated Amides and Carbamates 400
21.4.1.9 Method 9: Intramolecular Epoxide Opening and Oxazolidinone Formation 401
21.4.1.9.1 Variation 1: Intermolecular Epoxide Opening and Oxazolidinone Formation ... 402
21.4.1.10 Method 10: N-Pyridinylation of Amides with Pyridine 1-Oxide 402
21.4.1.11 Method 11: Anionic Additions of Prop-2-yn-1-ols to Isocyanates 403
21.4.1.12 Method 12: Hydrolysis of Imidazolium Chlorides under Basic Conditions 403

21.4.2 Product Subclass 2: Ynamides ... 404
21.4.2.1 Synthesis of Product Subclass 2 .. 406
21.4.2.1.1 Method 1: Addition of Amides to Alkynyliodonium Trifluoromethanesulfonates ... 406
21.4.2.1.1 Variation 1: Ring-Opening of Aziridines with Lithium Alkynes, and Trapping with Alkynyliodonium Trifluoromethanesulfonates 407
21.4.2.1.2 Method 2: Copper(II)-Catalyzed Coupling of Amides and Haloalkynes ... 407
21.4.2.1.2.1 Variation 1: Copper(I)-Catalyzed Coupling of Amides and Haloalkynes 408
21.4.2.1.2.2 Variation 2: Stoichiometric Copper(I) Coupling of Amides and Alkynes 409
21.4.2.1.3 Method 3: Base-Induced Isomerization of Prop-2-yn-1-ylated Amides 410
21.4.2.1.4 Method 4: Sonogashira Coupling of Unsubstituted Ynamides ... 410
21.4.2.1.4.1 Variation 1: Negishi Coupling of Unsubstituted Ynamides .. 411
21.4.2.1.5 Method 5: Elimination of Vinyl Chlorides .. 412
21.4.2.1.5.1 Variation 1: Elimination of Vinyl Bromides .. 412
21.4.2.1.6 Method 6: Acylation of C-Halogenated Ketenimines ... 413
21.4.2.1.6.1 Variation 1: Acylation of β-Lithio-β-silyl Ketenimines .. 414
21.4.2.1.7 Method 7: Pyrolysis of Alkynyl Azides .. 415

21.4.3 Product Subclass 3: Enamides ... 415
21.4.3.1 Synthesis of Product Subclass 3 .. 416
21.4.3.1.1 Method 1: Copper(I)-Catalyzed Coupling of Amides and Vinyl Iodides with Copper(I) Thiophenecarboxylate ... 416
21.4.3.1.1.1 Variation 1: Copper(I)-Catalyzed Coupling of Amides and Vinyl Iodides with Copper(I) Iodide .. 417
21.4.3.1.1.2 Variation 2: Copper(I)-Catalyzed Coupling of Amides and Vinyl Iodides with (Acetonitrile)copper(1+)Phosphorus Hexafluoride(1-)/Rubidium Carbonate ... 417
21.4.3.1.2 Method 2: Palladium(II)-Catalyzed Amidation of Alkenes .. 418
21.4.3.1.2.1 Variation 1: Palladium(0)-Catalyzed Amidation of Enol Trifluoromethanesulfonates and 4-Toluenesulfonates 419
21.4.3.1.2.2 Variation 2: Palladium(II)-Catalyzed Amidation of Enol Ethers 420
21.4.3.1.2.3 Variation 3: Palladium(II)-Catalyzed N,O-Acetal Formation and Isomerization 420
21.4.3.1.3 Method 3: Titanium(II)-Mediated Coupling of Ynamides and Aldehydes .. 421
21.4.3.1.3.1 Variation 1: Ruthenium(II)-Mediated Coupling of Alkynes and N-Allylated Amides ... 421
21.4.3.1.3.2 Variation 2: Chromium(0)-Mediated Coupling of Amino Alcohols and Chromium Carbene Complexes 422
21.4.3.1.4 Method 4: Base-Promoted Elimination of Substituted Alcohols 423
21.4.3.1.4.1 Variation 1: Thermal Elimination of Sulfoxides ... 423
21.4.3.1.4.2 Variation 2: Base-Promoted Elimination of Sulfones .. 424
21.4.3.1.4.3 Variation 3: Thermal Elimination of Hydrogen Chloride and Carbon Dioxide 425
21.4.3.1.4.4 Variation 4: Thermal Elimination of Amides .. 425
21.4.3.1.4.5 Variation 5: Oxidative Elimination of Selenides .. 425
21.4.3.1.4.6 Variation 6: Base-Promoted Elimination of a Benzylic Proton 426
21.4.3.1.5 Method 5: Acylation of Imines .. 426
21.4.3.1.5.1 Variation 1: Reductive Acylation of Nitroalkenes .. 427
21.4.3.1.5.2 Variation 2: Reductive Acylation of Oximes .. 428
21.4.3.1.5.3 Variation 3: Acylation of Enamines with Acid Chlorides 428
21.4.3.1.5.4 Variation 4: Thermal Elimination of Amides ... 428
21.4.3.1.6 Method 6: Alkenation Using Horner–Wadsworth–Emmons Conditions 429
21.4.3.1.6.1 Variation 1: Alkenation Using Wittig Conditions .. 429
21.4.3.1.6.2 Variation 2: Alkenation Using Thio-Wittig Conditions ... 430
21.4.3.1.6.3 Variation 3: Alkenation Using Aza-Wittig Conditions ... 430
21.4.3.1.6.4 Variation 4: Alkenation Using Peterson Conditions ... 431
21.4.3.1.6.5 Variation 5: Alkenation Using Tebbe Conditions .. 431
21.4.3.1.6.6 Variation 6: Alkenation by Ring-Closing Metathesis .. 432
21.4.3.1.6.7 Variation 7: Alkenation by Dithiocarboxylation .. 432
21.4.3.1.6.8 Variation 8: Tungsten(0)-Mediated Coupling of Thiocarbonyl and Thioacetal Groups .. 433
21.4.3.1.6.9 Variation 9: Schöllkopf Formylamino-Methylenation ... 433
21.4.3.1.7 Method 7: Tributyltin Hydride Mediated Radical Cyclization of Enamides 434
21.4.3.1.7.1 Variation 1: Palladium(0)-Catalyzed Cyclization of Amides Bearing a But-3-yn-1-yl Side Chain .. 435
21.4.3.1.7.2 Variation 2: Rhodium(I)-Catalyzed Cyclization of Ene-Allenes 435
21.4.3.1.7.3 Variation 3: Copper(I)-Catalyzed Cyclization of Prop-2-ynyl Carbamates 436
21.4.3.1.8 Method 8: Hetero [4 + 2] Cycloaddition ... 436
21.4.3.1.8.1 Variation 1: [3 + 2] Cycloaddition and Rearrangement .. 437
21.4.3.1.8.2 Variation 2: Aza-Annulation of Enaminones with Itaconic Anhydride 438
21.4.3.1.9 Method 9: Isomerization of N-Allyl Amides with Pentacarbonyliron 438
21.4.3.1.9.1 Variation 1: Isomerization of N-Allyl Amides with Carbonyl(hydrido)tris(triphenylphosphine)ruthenium(II) .. 439
21.4.3.1.9.2 Variation 2: Isomerization of N-Allyl Amides with Dichlorobis(cyclooctadiene)diiridium(I) .. 440
21.4.3.1.9.3 Variation 3: Isomerization of N-Allyl Amides with Hydridotetrakis(triphenylphosphine)rhodium .. 440
21.4.3.1.10 Method 10: Dyotropic Rearrangement ... 441
21.4.3.1.10.1 Variation 1: 1,2-Thio-Wittig-Type Rearrangement Reactions 441
21.4.3.1.10.2 Variation 2: Beckmann Rearrangement and α-Formylation 442
21.4.3.1.10.3 Variation 3: Imine/Enamide Rearrangement ... 442
21.4.3.1.11 Method 11: Condensation of Amides and Aldehydes .. 443
21.4.3.1.11.1 Variation 1: Amide Addition to Acetals ... 444
21.4.3.1.12 Method 12: Addition of Alcohols to Isocyanates .. 444
21.4.3.1.12.1 Variation 1: Addition of Vinyl Anions to Isocyanates ... 445
21.4.3.1.12.2 Variation 2: Addition of Alkyl Anions to Isocyanates ... 446
21.4.3.1.13 Method 13: Hydrohalogenation of Ynamides ... 446
21.4.3.1.13.1 Variation 1: Hydrostannylation of Ynamides ... 447
21.4.3.1.13.2 Variation 2: Hydroboration/Suzuki–Miyaura Cross-Coupling of Ynamides 447
21.4.3.13.3 Variation 3: Pauson–Khand Reactions of Ynamides .. 448
21.4.3.14 Method 14: Oxazole Ring Opening with Amines ... 448
21.4.3.14.1 Variation 1: Methanolysis of a 4-Methyleneoxazol-5(4H)-one under
Acid or Base Catalysis .. 449
21.4.3.14.2 Variation 2: Ring Opening of a 4-Methyleneoxazol-5(4H)-one by an
Alcohol/Lewis Acid ... 450
21.4.3.15 Method 15: Condensation of α-Acetamidobutenyl Boronates and
Aldehydes .. 450
21.4.3.16 Method 16: 1,4-Addition of Allyl Anions to Furanones 451
21.4.3.17 Method 17: Addition of Nitriles to Geminal Haloacylated Compounds 452
21.4.3.18 Method 18: Amide Additions to Alkynes ... 452
21.4.3.19 Method 19: Enol Ether Formation ... 453

21.4.4 Product Subclass 4: Dienamides .. 453

21.4.4.1 Synthesis of Product Subclass 4 ... 454
21.4.4.1.1 Method 1: Condensation of Amides and Aldehydes 455
21.4.4.1.1 Variation 1: Addition of Amides to Allyl Bromide and Elimination of
1H-Benzotriazole .. 455
21.4.4.1.2 Method 2: Acylation of Eneimines with Acid Chlorides 456
21.4.4.1.3 Method 3: From Vinylogous Amides by O-Silylation 456
21.4.4.1.4 Method 4: Thermal Rearrangement of Pent-2-yn-1-yl 2,2,2-
Trichloroethanimidoates .. 457
21.4.4.1.4.1 Variation 1: Thermal Rearrangement of Acyl Azides
(A Modified Curtius Rearrangement) 457
21.4.4.1.5 Method 5: Palladium(0)-Catalyzed Elimination of Allyl Acetate 458
21.4.4.1.6 Method 6: Ring-Closing Metathesis of Eneynamides 459
21.4.4.1.7 Method 7: Titanium(II)-Mediated Coupling of Ynamides and Alkynes 460
21.4.4.1.7.1 Variation 1: Chromium(0)-Mediated Coupling of Amino Alcohols and
Chromium Carbene Complexes ... 460
21.4.4.1.8 Method 8: Alkenation Using Wittig Conditions ... 461

21.4.5 Product Subclass 5: Allenamides ... 462

21.4.5.1 Synthesis of Product Subclass 5 ... 463
21.4.5.1.1 Method 1: Base-Induced Isomerization of Cyclic Amides 463
21.4.5.1.1 Variation 1: Base-Induced Isomerization/Addition to Aldehydes 463
21.4.5.1.2 Method 2: Base-Induced Isomerization of Acyclic Amides 464
21.4.5.1.3 Method 3: Elimination of Vinyl Trifluoromethanesulfonates 465
21.4.5.1.4 Method 4: Palladium(0)-Catalyzed Cyclizations of Yne-Bis(carbonates) .. 466
21.4.5.1.5 Method 5: By a [3,3]-Sigmatropic Rearrangement of a Propynyl Imidate 467
21.4.5.1.5.1 Variation 1: [2,3]-Sigmatropic Rearrangement .. 468
21.4.5.1.6 Method 6: Copper(I)-Catalyzed Amide Additions to Alkynes 468
21.4.5.1.7 Method 7: Alkenation of Ketenes Using Wittig Conditions 468
21.4.5.1.8 Method 8: By the [2+2] Dimerization of a Ketene and the Subsequent
Elimination of Carbon Dioxide .. 469
21.5 Product Class 5: \(\alpha\)-Heteroatom-Substituted Alkanamides
M. Pätzel, S. Pritz, and J. Liebscher

21.5.1 Product Subclass 1: Alkanamides with One (or More) Group 17 Element in the \(\alpha\)-Position

21.5.1.1 Method 1: Substitution of One (or More) \(\alpha\)-Hydrogen Atom

21.5.1.1.1 Variation 1: Substitution by Fluorine Atoms

21.5.1.1.2 Variation 2: Substitution by Chlorine Atoms

21.5.1.1.3 Variation 3: Substitution by Bromine Atoms

21.5.1.1.4 Variation 4: Substitution by Iodine Atoms

21.5.1.2 Method 2: Substitution of Heteroatoms

21.5.1.2.1 Variation 1: Substitution by Fluorine Atoms

21.5.1.2.2 Variation 2: Substitution by Chlorine Atoms

21.5.1.2.3 Variation 3: Substitution by Bromine Atoms

21.5.1.2.4 Variation 4: Substitution by Iodine Atoms

21.5.1.3 Method 3: C—C Bond Formation between the Carbonyl Group and the \(\alpha\)-Carbon Atom

21.5.1.4 Method 4: Addition of Halogen Atoms to \(\alpha,\beta\)-Unsaturated Amides

21.5.1.5 Method 5: Addition to \(\alpha,\beta\)-Unsaturated \(\alpha\)-Halo Amides

21.5.1.6 Method 6: C—C Chain Elongation at the \(\alpha\)-Carbon Atom

21.5.2 Product Subclass 2: Alkanamides with One (or More) Group 16 Element in the \(\alpha\)-Position

21.5.2.1 Method 1: Substitution of One (or More) \(\alpha\)-Hydrogen Atom

21.5.2.1.1 Variation 1: Substitution by Oxygen Atoms

21.5.2.1.2 Variation 2: Substitution by Sulfur, Selenium, or Tellurium Atoms

21.5.2.1.3 Variation 3: Oxidation of \(\alpha\)-Hydroxy and \(\alpha\)-Sulfanyl Amides to \(\alpha\)-Oxo and \(\alpha\)-Thiaoxy Amides

21.5.2.2 Method 2: Substitution of Heteroatoms

21.5.2.2.1 Variation 1: Substitution by Oxygen Atoms

21.5.2.2.2 Variation 2: Substitution by Sulfur Atoms

21.5.2.2.3 Variation 3: Substitution by Selenium or Tellurium Atoms

21.5.2.3 Method 3: C—C Bond Formation between the Carbonyl Group and the \(\alpha\)-Carbon Atom

21.5.2.4 Method 4: Addition of a Heteroatom Functionality to \(\alpha,\beta\)-Unsaturated Amides

21.5.2.5 Method 5: Oxidation with C—C Bond Cleavage

21.5.2.6 Method 6: Reduction of \(\alpha\)-Oxo Amides

21.5.2.7 Method 7: C—C Chain Elongation at the \(\alpha\)-Carbon Atom

21.5.2.8 Methods 8: Miscellaneous Procedures

21.5.3 Product Subclass 3: Alkanamides with One (or More) Group 15 Element in the \(\alpha\)-Position

21.5.3.1 Synthesis of Product Subclass 3
21.5.3.1 Method 1: Substitution of One (or More) α-Hydrogen Atom
- **Variation 1:** Substitution by Nitrogen Atoms .. 506
- **Variation 2:** Substitution by Phosphorus Atoms 509
- **Variation 3:** Transformation of α-Amino Amides into α-Imino Amides and α-Diazo Amides ... 509

21.5.3.2 Method 2: Substitution of Heteroatoms
- **Variation 1:** Substitution of Sulfur Atoms by Nitrogen Atoms 510
- **Variation 2:** Substitution of Oxygen or Nitrogen Atoms by Nitrogen Atoms 510
- **Variation 3:** Substitution of Halogen Atoms by Nitrogen Atoms 512
- **Variation 4:** Substitution by Phosphorus Atoms 515

21.5.3.3 Method 3: C—C Bond Formation between the Carbonyl Group and the α-Carbon Atom ... 516

21.5.3.4 Method 4: Addition of a Nitrogen Functionality to α,β-Unsaturated Amides ... 518

21.5.3.5 Method 5: Addition to α,β-Unsaturated α-Amino Amides 519

21.5.3.6 Method 6: Addition to α-Imino Amides 520

21.5.3.7 Method 7: C—C Chain Elongation at the α-Carbon Atom 521

21.5.3.8 Method 8: Miscellaneous Procedures .. 524

21.6 Product Class 6: α,β-Unsaturated Amides: Alk-2-ynamides, Arenecarboxamides, and Alk-2-enamides

M. F. Lipton and M. A. Mauragis

21.6.1 Synthesis of Product Class 6 .. 537

21.6.2 Method 1: Coupling of Activated Acyl Units and Amines 537

21.6.3 Method 2: Connective Alkene Formation by Wittig Reaction 540

21.6.4 Method 3: Elimination Reactions .. 543

21.6.5 Method 4: Hydrolysis of Nitriles ... 547

21.6.6 Method 5: Transition-Metal-Catalyzed Couplings 548

21.6.7 Method 6: Reduction of Aroyl Azides ... 553

21.6.8 Method 7: Direct Amine Oxidations .. 554

21.6.9 Method 8: Stereoselective Isomerization of 2-Ynoic Amides 555

21.6.10 Method 9: Electrophilic Substitution 557

21.6.11 Method 10: Additional Methods .. 560

21.7 Product Class 7: β-Heteroatom-Substituted Alkanamides

S. Manyem and M. P. Sibi

21.7.1 Product Subclass 1: β-Halogen-Substituted Alkanamides 565

21.7.1.1 Synthesis of Product Subclass 1 .. 565

21.7.1.2 Method 1: Addition of Chloride to Alkenimides 565
21.7.2 Product Subclass 2: β-Oxygen-Substituted Alkanamides .. 566
 21.7.2.1 Synthesis of Product Subclass 2 ... 566
 21.7.2.1.1 Method 1: Diastereoselective Ene Reaction 566
 21.7.2.1.2 Method 2: Intramolecular Conjugate Addition 567
 21.7.2.1.3 Method 3: Tandem Acetalization–Conjugate Addition 568

21.7.3 Product Subclass 3: β-Sulfur-Substituted Alkanamides ... 568
 21.7.3.1 Synthesis of Product Subclass 3 ... 569
 21.7.3.1.1 Method 1: Addition of Metal Thiolates .. 569
 21.7.3.1.1.1 Variation 1: Addition of Aluminum Thiolates and Intramolecular Trapping with a Carbonyl Group .. 570
 21.7.3.1.2 Variation 2: Addition of a Thiolate Derived from an Odorless Thiol 571
 21.7.3.1.2 Method 2: Addition of Sulfur Nucleophiles Derived from Thioesters or Silyl Thioethers ... 571
 21.7.3.1.3 Method 3: Stereoselective Addition of Thiols 572
 21.7.3.1.4 Method 4: Intramolecular Transfer of Sulfur from a Thiocarbonyl Group 574

21.7.4 Product Subclass 4: β-Selenium-Substituted Alkanamides ... 575
 21.7.4.1 Synthesis of Product Subclass 4 ... 576
 21.7.4.1.1 Method 1: Addition of Lithium Selenolates 576

21.7.5 Product Subclass 5: β-Nitrogen-Substituted Alkanamides .. 576
 21.7.5.1 Synthesis of Product Subclass 5 ... 576
 21.7.5.1.1 Method 1: Addition of Phthalimide Salts to Alkenimides 576
 21.7.5.1.2 Method 2: Addition of Hydroxylamines to Alkenamides 577
 21.7.5.1.3 Method 3: Chiral Lewis Acid Catalyzed Addition of Hydrazoic Acid to Alkenimides ... 579
 21.7.5.1.3.1 Variation 1: Enantioselective Addition of Azidotrimethylsilane to Alkenimides Using a Peptide Catalyst 580
 21.7.5.1.3.2 Variation 2: Addition of Azide to Alkenimides Followed by Intramolecular Cycloaddition ... 580
 21.7.5.1.4 Method 4: Addition of Carbamates to Alkenamides 581
 21.7.5.1.5 Method 5: Addition of Lithium Amides ... 581
 21.7.5.1.6 Method 6: Addition of Amino Esters to Alkenamides 582
 21.7.5.1.6.1 Variation 1: Enantioselective Addition of Amines Using Dibenzo(furan-4,6-diyl-2,2’-bis(4-phenyl-4,5-dihydrooxazole)–Nickel Catalyst 583
 21.7.5.1.6.2 Variation 2: Aminohydroxylation Using a Solid-Supported Catalyst 584
 21.7.5.1.7 Method 7: Diels–Alder Reaction of Buta-1,3-dien-1-amines with Alkenimides ... 585

21.7.6 Product Subclass 6: β-Phosphorus-Substituted Alkanamides 585
 21.7.6.1 Synthesis of Product Subclass 6 ... 585
 21.7.6.1.1 Method 1: Addition of Secondary Phosphines 585
 21.7.6.1.2 Method 2: Addition of Phosphinates ... 586
 21.7.6.1.3 Method 3: Diastereoselective Addition of a Phosphite 587
21.8 **Product Class 8: α-Lactams**
R. V. Hoffman and V. Cesare

21.8.1 Synthesis of Product Class 8 .. 591
21.8.1.1 Method 1: Dehydrohalogenation of α-Halo Amides 593
21.8.1.2 Variation 1: Using the tert-Butoxide Ion 594
21.8.1.2 Variation 2: Using Potassium Hydroxide and 18-Crown-6 595
21.8.1.3 Variation 3: Using Sodium Hydride and 15-Crown-5 596
21.8.1.2 Method 2: Cycloelimination of N-Sulfonyloxy Amides 597
21.8.1.2.1 Variation 1: Using Amines as Bases 597
21.8.1.2.2 Variation 2: Using Sodium Hydride as Base 599
21.8.2 Applications of Product Class 8 in Organic Synthesis 600
21.8.2.1 Method 1: Incorporation of Nucleophiles 600
21.8.2.1.1 Variation 1: Synthesis of N-Aminohydantoins 604
21.8.2.1.2 Variation 2: Synthesis of 1,2,4-Triazine-3,6-diones 604
21.8.2.2 Method 2: Cycloaddition Reactions Involving α-Lactams 605

21.9 **Product Class 9: β-Lactams**
C. Coates, J. Kabir, and E. Turos

21.9.1 Synthesis of Product Class 9 .. 609
21.9.1.1 Method 1: Ketene–Imine Cycloadditions 609
21.9.1.2 Variation 1: Using Acid Chlorides 612
21.9.1.3 Variation 2: Using Carboxylic Acids or Their Salts 612
21.9.1.4 Variation 3: Using Amides via an Azetidin-2-ylideneammonium Salt 614
21.9.1.2.1 Variation 4: By Decomposition of α-Diazoketones 615
21.9.1.2.2 Method 2: Ester Enolate–Imine Cyclocondensations 616
21.9.1.2.2.1 Variation 1: From γ-Lactones 617
21.9.1.2.2.2 Variation 2: From 2-Pyridyl Thioesters 618
21.9.1.2.2.3 Variation 3: From 1,3-Dioxolan-4-ones 619
21.9.1.2.2.4 Variation 4: From Ethyl Bromodifluoroacetate 619
21.9.1.2.5 Variation 5: From Lithium Ynolates 620
21.9.1.3 Method 3: Cyclocondensation of β-Amino Acid Derivatives 621
21.9.1.3.1 Variation 1: Via Ugi Three-Component Reaction 623
21.9.1.3.2 Variation 2: From β-Lactones 623
21.9.1.4 Method 4: Ring Closure of 2-Aza-1,3-dienes 624
21.9.1.5 Method 5: Alkene–Isocyanate Cycloadditions 625
21.9.1.6 Method 6: Nitrone Cycloadditions Employing Alkynes 626
21.9.1.7 Method 7: Ring Closures by Nucleophilic S$_{N}$2 Displacement 627
21.9.1.7.1 Variation 1: Mitsunobu Reactions of β-Hydroxy Hydroxamates 629
21.9.1.8 Method 8: Radical Ring Closures 630
21.9.1.9 Method 9: Photochemical Ring Contractions 631
21.9.1.9.1 Variation 1: Photochemical Processes in the Solid State 633
21.9.1.10 Method 10: Ring Contraction of Isoxazolidines (Non-Photochemical Processes) .. 634

21.9.1.11 Method 11: Ring Expansion of Cyclopropanones ... 635

21.9.1.12 Method 12: Transition-Metal-Catalyzed Processes ... 636

21.9.1.12.1 Variation 1: Carbonylation of Aziridines ... 637

21.9.1.12.2 Variation 2: Use of Organoiron–Alkene Complexes ... 638

21.9.1.12.3 Variation 3: Additions of Fischer Carbenes to Imines ... 639

21.9.1.12.4 Variation 4: Rhodium-Catalyzed C—H Bond Insertion .. 640

21.9.1.12.5 Variation 5: Reductive Coupling of Imines with Acrylates ... 641

21.9.1.13 Method 13: 1,4-Addition of Amines to 3-Phenylpropenoyl Chloride 642

21.10 Product Class 10: γ-Lactams and Larger Ring Lactams

M. B. Smith

21.10 Product Class 10: γ-Lactams and Larger Ring Lactams 647

21.10.1 Product Subclass 1: Saturated Lactams ... 647

21.10.1.1 Synthesis of Product Subclass 1 .. 647

21.10.1.1.1 Synthesis by Ring-Closure Reactions .. 647

21.10.1.1.1 Method 1: Direct Cyclization of Amino Acids ... 647

21.10.1.1.1.1 Variation 1: By Heating an Amino Acid on Alumina or Silica Gel 648

21.10.1.1.1.2 Variation 2: By Heating with Titanium(IV) Isopropoxide .. 649

21.10.1.1.1.3 Variation 3: By Dibutyltin Oxide Cyclization of Amino Acids 649

21.10.1.1.1.2 Method 2: Alkoxy and Alkylsulfanyl Lactams by Cyclization of Functionalized Amino Acids .. 650

21.10.1.1.1.3 Method 3: Direct Cyclization of Amino Esters .. 650

21.10.1.1.1.4 Method 4: Formation of an α-Alkoxy Lactam by Cyclization of an Alkoxy Amino Ester ... 652

21.10.1.1.1.5 Method 5: Cyclization of Amino Esters via Cyano Esters .. 653

21.10.1.1.1.5.1 Variation 1: Nitrile Surrogates by Nitrile–Enolate Alkylation 654

21.10.1.1.1.5.2 Variation 2: 1,4-Addition to Conjugated Nitriles .. 655

21.10.1.1.1.5.3 Variation 3: Enolate Alkylation of α-Halo Nitriles .. 656

21.10.1.1.1.6 Method 6: Cyclization of Amino Esters via Azido Esters 657

21.10.1.1.1.7 Method 7: Cyclization of Amino Esters via Nitro Esters 658

21.10.1.1.1.7.1 Variation 1: By Conjugate Addition of Nitro Enolates to Conjugated Esters .. 658

21.10.1.1.1.7.2 Variation 2: By Conjugate Addition of Enolate Anions to Nitroalkenes 659

21.10.1.1.1.7.3 Variation 3: By Lewis Acid Catalyzed Addition of Silyl Ketene Acetals to Nitroalkenes .. 660

21.10.1.1.1.8 Method 8: Oxo Lactams by Cyclization with Oxalates .. 661

21.10.1.1.1.9 Method 9: Oxo Lactams by Cyclization of Amido Diesters 662

21.10.1.1.1.10 Method 10: Cyclization of Functionalized Acid Derivatives 662

21.10.1.1.1.10.1 Variation 1: Reduction of Nitro Nitriles .. 663

21.10.1.1.1.10.2 Variation 2: 1-Aryl Lactams by Cyclization of Aromatic Amides 664

21.10.1.1.1.11 Method 11: Iodolactamization ... 664

21.10.1.1.1.12 Method 12: Radical Cyclization .. 665

21.10.1.1.1.12.1 Variation 1: Tin Hydride Mediated Radical Cyclization of N-Monosubstituted Amides .. 665
21.10.1.1.12.2 Variation 2: Radical Cyclization of Unsymmetrical Dienes Containing an Amide Unit ... 666
21.10.1.1.12.3 Variation 3: Borane-Mediated Radical Cyclization 667
21.10.1.1.12.4 Variation 4: Cyclization of Amidyl Radicals ... 667
21.10.1.1.12.5 Variation 5: Metal-Mediated Radical Cyclization Reactions 668
21.10.1.1.12.6 Variation 6: Photocyclization .. 669
21.10.1.1.13 Method 13: Metal-Catalyzed Cyclization ... 669
21.10.1.1.14 Method 14: \([3+2]\) Annulation .. 670
21.10.1.1.13 Method 13: Metal-Catalyzed Cyclization ... 669
21.10.1.1.14 Method 14: \([3+2]\) Annulation .. 670
21.10.1.1.2 Synthesis by Ring Transformation .. 671
21.10.1.1.2.1 Method 1: Beckmann Rearrangement .. 671
21.10.1.1.2.1.1 Variation 1: From Ketoxime O-Sulfonic Acids 672
21.10.1.1.2.1.2 Variation 2: Reaction with Ketoxime O-Carbonates 673
21.10.1.1.2.1.2 Method 2: Schmidt Reaction .. 674
21.10.1.1.2.1.2.1 Variation 1: By Reaction of Cyclic Ketones with Metal Azides and Acids 675
21.10.1.1.2.1.2.2 Variation 2: By Reaction with Alkyl Azides and Acids 676
21.10.1.1.2.1.2.3 Variation 3: By Photocyclization of Siloxy Azides 676
21.10.1.1.2.1.4 Method 4: Carboxylation of Cyclic Amines .. 677
21.10.1.1.2.1.4.1 Method 5: Condensation of \(\beta\)-Lactones and Imines 678
21.10.1.1.2.1.4.2 Method 6: Aza-Claisen Ring Expansion ... 679
21.10.1.1.2.2 Formal Exchange of Ring Members with Retention of the Ring Size 679
21.10.1.1.2.2.1 Method 1: Conversion of Lactones into Lactams by Reaction with Amines 679
21.10.1.1.2.2.2 Method 2: Reduction or Selective Alkylation of Imides 680
21.10.1.1.2.2.2.1 Variation 1: Reduction of Cyclic Imides ... 681
21.10.1.1.2.2.2.2 Variation 2: Reaction of Imides with Grignard Reagents 681
21.10.1.1.2.2.2.3 Variation 3: 5-Hydroxy Lactams by Reduction of Imides 682
21.10.1.1.2.2.2.4 Variation 4: 5-Alkyl-5-hydroxy Lactams .. 683
21.10.1.1.2.2.3 Method 3: \(N\)-Amino-Substituted Lactams ... 683
21.10.1.1.2.2.3 Oxidation of Cyclic Amines .. 684
21.10.1.1.2.2.3.1 Method 1: Direct Oxidation of Cyclic Amines by Ruthenium(IV) Oxide ... 684
21.10.1.1.2.2.3.2 Method 2: Sequential Hydroxylation and Oxidation of Cyclic Amines 684
21.10.1.1.3 Synthesis by Substituent Modification ... 685
21.10.1.1.3.1 Substitution of Existing Substituents ... 685
21.10.1.1.3.1.1 Method 1: Direct N-Acylation .. 685
21.10.1.1.3.1.2 Method 2: \(N\)-Carbamate Protection of Lactams 686
21.10.1.1.3.1.3 Method 3: Acylation of Lactam Anions with Pentafluorophenyl Esters 686
21.10.1.1.3.1.4 Method 4: \(N\)-Alkylation ... 687
21.10.1.1.3.1.4.1 Variation 1: By Base-Mediated N-Alkylation 687
21.10.1.1.3.1.4.2 Variation 2: By Reductive Alkylation of Lactams with Aldehydes 688
21.10.1.1.3.1.4.3 Variation 3: Functionalization of an \(N\)-Alkyl Group: Chloromethylation ... 689
21.10.1.1.3.1.5 Method 5: \(N\)-Arylation ... 689
21.10.1.1.3.1.5.1 Variation 1: By Base-Mediated N-Alkylation 687
21.10.1.1.3.1.5.2 Variation 2: By Reductive Alkylation of Lactams with Aldehydes 688
21.10.1.1.3.1.6 Method 6: N-Alkenylation ... 690

21.10.1.3.1.7 Method 7: \(\alpha\)-Alkyl Lactams by Enolate Alkylation 690
21.10.1.3.1.7.1 Variation 1: Via the \(N,\alpha\)-Dianion 691
21.10.1.3.1.8 Method 8: Direct \(\alpha\)-Arylation 692
21.10.1.3.1.9 Method 9: \(\alpha\)-Alkylidene Lactams by Addition to Aldehydes or Ketones .. 692
21.10.1.3.1.10 Method 10: Alkylation with Allylsilanes via \(N\)-Acyliminium Ion Intermediates 693
21.10.1.3.1.11 Method 11: Alkylation at \(\beta\)- and More Remote Positions 694
21.10.1.3.1.11.1 Variation 1: By Conjugate Addition to \(\alpha,\beta\)-Unsaturated Lactams 694
21.10.1.3.1.11.2 Variation 2: Addition of Organocuprates to Conjugated Lactams 695
21.10.1.3.1.12 Method 12: \(\alpha\)-Halogenation 696
21.10.1.3.1.13 Method 13: \(\alpha\)-Hydroxylation 697
21.10.1.3.1.14 Method 14: Alkoxy Lactams by Electrochemical Oxidation of Lactams 698
21.10.1.3.1.15 Method 15: \(\alpha\)-Sulfides and \(\alpha\)-Selenides 698

21.10.2 Product Subclass 2: Unsaturated Lactams 699
21.10.2.1 Synthesis of Product Subclass 2 ... 699
21.10.2.1.1 Method 1: Ring-Closing Metathesis 699
21.10.2.1.2 Method 2: Metal-Mediated Coupling Reactions of Carbonyl Compounds 700
21.10.2.1.3 Method 3: Carbonylative \([4+1]\) Cycloaddition 701
21.10.2.1.4 Method 4: Conjugate Addition–Cyclization 702
21.10.2.1.5 Method 5: Hetero \([4+2]\) Cycloadditions of (Trialkylsilyl)vinylketenes 702
21.10.2.1.6 Method 6: Aza-Claisen Rearrangement of Acylaziridines 703
21.10.2.1.7 Method 7: Via Azametallocyclopentene Complexes 704
21.10.2.1.8 Method 8: Oxidation of Pyrroles 704

21.11 Product Class 11: Peptides
W. D. Lubell, J. W. Blankenship, G. Fridkin, and R. Kaul

21.11.1 Amino Acid Protection–Deprotection .. 713
21.11.1.1 Method 1: \(\alpha\)-Amino Protection .. 715
21.11.1.1.1 Variation 1: tert-Butyloxycarbonyl Group 716
21.11.1.1.2 Variation 2: 9-Fluorenylethoxycarbonyl Group 717
21.11.1.1.3 Variation 3: Benzoyloxycarbonyl Group 720
21.11.1.1.4 Variation 4: Allyloxycarbonyl Group 721
21.11.1.1.5 Variation 5: 2-[(4-Nitrophenyl)sulfonyl]ethoxycarbonyl Group 721
21.11.1.1.6 Method 2: \(\alpha\)-Carboxylic Acid Protection 722
21.11.1.1.7 Variation 1: Methyl Ester 723
21.11.1.1.8 Variation 2: Benzyl Ester 724
21.11.1.1.9 Variation 3: tert-Butyl Ester 724
21.11.1.1.10 Variation 4: Phenacyl Ester 725
21.11.1.3 Method 3: Acidic Side-Chain Protection 725
21.11.1.1.11 Variation 1: Benzyl Ester 726
21.11.1.1.12 Variation 2: Cyclohexyl Ester 727
21.11.1.1.13 Variation 3: tert-Butyl Ester 728
21.11.1.1.14 Method 4: Basic Side-Chain Protection 729
21.11.1.1.15 Variation 1: Benzoxycarbonyl Group and Derivatives 730
21.11.4.2 Variation 2: 2,4-Dinitrophenyl Group ... 731
21.11.4.3 Variation 3: Benzylxoyymethyl Group ... 732
21.11.4.4 Variation 4: Arylsulfonyl Derivatives ... 732
21.11.4.5 Variation 5: Formyl Group ... 733
21.11.4.6 Variation 6: tert-Butyloxycarbonyl Group ... 733
21.11.4.7 Variation 7: Trityl Group and Derivatives ... 733
21.11.4.8 Method 5: Alcoholic Side-Chain Protection ... 734
21.11.4.9 Variation 1: Benzyl Group ... 735
21.11.4.10 Variation 2: 2-Bromobenzyloxycarbonyl Group ... 736
21.11.4.11 Variation 3: tert-Butyl Group ... 736
21.11.4.12 Variation 4: Trityl Group and Derivatives ... 736
21.11.4.13 Method 6: Amide Side-Chain Protection ... 739
21.11.4.14 Variation 1: 9H-Xanthen-9-yl Group ... 740
21.11.4.15 Variation 2: 2,4,6-Trimethoxybenzyl Group ... 740
21.11.4.16 Variation 3: Trityl Group ... 740
21.11.4.17 Method 7: Thiol Side-Chain Protection ... 741
21.11.4.18 Variation 1: 4-Methylbenzyl Group ... 742
21.11.4.19 Variation 2: Acetamidomethyl Group ... 742
21.11.4.20 Variation 3: Trityl Group ... 742
21.11.4.21 Method 8: Anilide Side-Chain Protection ... 743
21.11.4.22 Variation 1: tert-Butyl Group ... 743
21.11.4.23 Variation 2: tert-Butylsulfanyl Group ... 744
21.11.4.24 Variation 3: 2,4,6-Trimethoxybenzyl Group ... 744
21.11.2 Amino Acid Activation ... 744
21.11.2.1 Method 1: α-Amino Acid Halides ... 744
21.11.2.2 Variation 1: Nα-9-Fluorenylmethoxycarbonyl Amino Acid Chlorides 745
21.11.2.3 Variation 2: Nα-9-Fluorenylmethoxycarbonyl Amino Acid Fluorides 746
21.11.2.4 Method 2: α-Amino Acid Anhydrides ... 747
21.11.2.5 Variation 1: Symmetrical Anhydrides ... 747
21.11.2.6 Variation 2: Urethane-Protected Amino Acid N-Carboxyanhydrides 748
21.11.2.7 Variation 3: Mixed Anhydrides ... 750
21.11.2.8 Method 3: Active Esters ... 750
21.11.2.9 Variation 1: Halogenated Phenyl Esters ... 752
21.11.2.10 Variation 2: Hydroxylamine-Derived Esters ... 753
21.11.2.11 Variation 3: 4-Nitrophenyl Esters ... 754
21.11.2.12 Method 4: Carboximidates ... 754
21.11.2.14 Variation 2: Solid-Phase Peptide Synthesis Using Carboximidates 756
21.11.2.15 Method 5: Phosphonium and Uronium/Guanidinium Salts 757
21.11.2.16 Variation 1: Phosphonium Salts ... 759
21.11.2.17 Variation 2: Uronium/Guanidinium Salts ... 761
21.11.3 Racemization ... 762
21.11.4 Supports for Solid-Phase Peptide Synthesis ... 766
21.11.4.1 Method 1: Polystyrene-Based Resins ... 767
21.11.4.2 Method 2: Polyacrylamide-Based Resins ... 768
21.11.4.3 Method 3: Poly(ethylene glycol)-Based Resins ... 768
21.11.4.4 Method 4: TentaGel ... 768
21.11.4.3.2 Variation 2: Poly(ethylene glycol)-Dimethylacrylamide Copolymer

21.11.4.3.3 Variation 3: Cross-Linked Ethoxylate Acrylate Resin

21.11.4.3.4 Variation 4: Polyethylene–Polystyrene and Polyethylene–Polyoxopropylene Resins

21.11.4.3.5 Variation 5: Super Permeable Organic Combinatorial Chemistry Resin

21.11.5 Handles and Linkers for Solid-Phase Peptide Synthesis

21.11.5.1 Method 1: Generation of C-Terminal Peptide Carboxylic Acids

21.11.5.1.1 Variation 1: Merrifield Resin (Chloromethyl Cross-Linked Polystyrene Resin)

21.11.5.1.2 Variation 2: Wang Resin (4-Benzylxoybenzyl Alcohol Cross-Linked Polystyrene)

21.11.5.1.3 Variation 3: Super Acid Sensitive Resin

21.11.5.1.4 Variation 4: PAM Resin

21.11.5.1.5 Variation 5: Trityl Resin

21.11.5.1.6 Variation 6: Rink Acid Resin

21.11.5.1.7 Variation 7: HYCRAM Resin

21.11.5.1.8 Variation 8: Photolabile Linkers

21.11.5.2 Method 2: Generation of C-Terminal Peptide Amides

21.11.5.2.1 Variation 1: Benzhydrylamine and 4-Methylbenzhydrylamine Resins

21.11.5.2.2 Variation 2: Rink Amide Resin

21.11.5.2.3 Variation 3: Sieber Amide Resin

21.11.5.2.4 Variation 4: Oxime-Based (Kaiser–DeGrado) Resin

21.11.5.2.5 Variation 5: 4-Hydroxymethylbenzoic Acid Resin

21.11.5.3 Method 3: Generation of Peptides with Other C-Terminal Modifications

21.11.5.4 Method 4: Safety-Catch Linker Resins

21.11.5.5 Method 5: Analytical Procedures for Determining Loading on the Solid Support

21.11.5.5.1 Variation 1: Fmoc Monitoring

21.11.5.5.2 Variation 2: Picric Acid Test

21.11.5.6 Method 6: Qualitative Tests for Determination of Free Amino Groups on the Solid Support

21.11.5.6.1 Variation 1: Ninhydrin (Kaiser) Test

21.11.5.6.2 Variation 2: 2,4,6-Trinitrobenzenesulfonic Acid Test

21.11.5.6.3 Variation 3: Chloranil Test

21.11.6 Interpeptide Amide Bond Formation

21.11.6.1 Method 1: Protected Segment Condensation

21.11.6.2 Method 2: Chemoselective Ligation

21.11.6.2.1 Variation 1: Native Chemical Ligation

21.11.6.2.2 Variation 2: Auxiliary-Mediated Chemical Ligation
21.12 Product Class 12: Metal Amides and Imides
T. R. Bailey

21.12 Product Class 12: Metal Amides and Imides ... 811
21.12.1 Product Subclass 1: Group 15 (Arsenic, Antimony, and Bismuth) Amides
and Imides ... 811
21.12.1.1 Synthesis of Product Subclass 1 ... 812
21.12.1.1.1 Method 1: Synthesis from Arsenic, Antimony, and Bismuth Halides .. 812
21.12.1.1.2 Method 2: Generation by Ligand Displacement 813
21.12.2 Product Subclass 2: Silicon Amides and Imides 813
21.12.2.1 Synthesis of Product Subclass 2 .. 814
21.12.2.1.1 Method 1: Synthesis from Trialkylhalosilanes 814
21.12.2.1.1.1 Variation 1: Anion Formation on Amide .. 814
21.12.2.1.1.2 Variation 2: Using Nitrogenous Bases .. 815
21.12.2.1.2 Method 2: Exchange with Silylated Nitrogen Compounds 815
21.12.2.1.2.1 Variation 1: With Hexamethyldisilazane 815
21.12.2.1.2.2 Variation 2: With N-Silylated Amides ... 816
21.12.2.1.3 Method 3: Exchange with N,O-Bis(trimethylsilyl)acetamide 816
21.12.2.1.4 Method 4: Synthesis from Acid Chlorides and Hexamethyldisilazane 817
21.12.2.1.5 Method 5: Oxidative Addition of Trialkylsilanes 817
21.12.3 Product Subclass 3: Group 14 (Germanium, Tin, and Lead) Amides and
Imides .. 818
21.12.3.1 Synthesis of Product Subclass 3 .. 818
21.12.3.1.1 Method 1: Synthesis from Trialkylmetal Halides 818
21.12.3.1.2 Method 2: Synthesis from Metal Oxides .. 819
21.12.4 Product Subclass 4: Boron Amides and Imides 819
21.12.4.1 Synthesis of Product Subclass 4 .. 820
21.12.4.1.1 Method 1: Synthesis from Boron Halides ... 820
21.12.4.1.1.1 Variation 1: Via Transmetalation .. 820
21.12.4.1.1.2 Variation 2: By Addition of Dialkylbromoboranes 820
21.12.4.1.2 Method 2: Exchange with N-Silylated Amides 821
21.12.4.1.3 Method 3: Synthesis from Boron Imidates 822
21.12.5 Product Subclass 5: Groups 3–13 Transition Metal Amides 822
21.12.5.1 Synthesis of Product Subclass 5 .. 822
21.12.5.1.1 Method 1: Synthesis from Metal Halides ... 822
21.12.5.1.2 Method 2: Synthesis from Diphenylmercury 823
21.12.6 Product Subclass 6: Group 2 (Beryllium, Magnesium, Calcium,
and Barium) Amides and Imides .. 824
21.12.6.1 Synthesis of Product Subclass 6 .. 824
21.12.6.1.1 Method 1: Metalation with Grignard Reagents 824
21.12.6.1.2 Method 2: Metalation with Metal Carbonates and Metal Hydroxides 825
21.12.7 Product Subclass 7: Group 1 (Lithium, Sodium, Potassium, Rubidium, and Cesium) Amides and Imides .. 825

21.12.7.1 Synthesis of Product Subclass 7 ... 826

21.12.7.1.1 Method 1: Metalation with Potassium Fluoride on Alumina 826
21.12.7.1.2 Method 2: Metalation by Metal Hydrides 826
21.12.7.1.3 Method 3: Metalation with Metal Carbonates 827
21.12.7.1.4 Method 4: Metalation with Metal Hydrides and Metal Alkoxides ... 827
21.12.7.1.4.1 Variation 1: With Sodium Hydroxide 827
21.12.7.1.4.2 Variation 2: With Potassium tert-Butoxide 828
21.12.7.1.5 Method 5: Metalation with Metal Amides 828

21.13 Product Class 13: N-Heteroatom-Substituted Alkanamides
P. R. Blakemore

21.13.1 Product Subclass 1: Acyl Nitro Compounds 833
21.13.2 Product Subclass 2: Acyl Nitroso Compounds 834
21.13.3 Product Subclass 3: N-Acyl Sulfoximides and N-Acyl Sulfimides 835
21.13.3.1 Synthesis of Product Subclass 3 .. 835
21.13.3.1.1 Method 1: Oxidative Imination of Sulfoxides and Sulfides 836
21.13.3.1.2 Method 2: N-Acylation of Sulfoximides and Sulfimides 837
21.13.4 Product Subclass 4: Acyl Azides ... 838
21.13.4.1 Synthesis of Product Subclass 4 .. 838
21.13.4.1.1 Method 1: Oxidative Azidonation of Aldehydes 838
21.13.4.1.2 Method 2: Acyl Substitution with an Azide Nucleophile 840
21.13.4.1.2.1 Variation 1: From Activated Carboxylic Acid Derivatives 840
21.13.4.1.2.2 Variation 2: From Carboxylic Acids Using Diphenylphosphoryl Azide ... 841
21.13.4.1.2.3 Variation 3: From Esters Using Diethylaluminum Azide 843
21.13.4.1.3 Method 3: Nitrosation of Hydrazides 844
21.13.5 Product Subclass 5: Acyl Diazenes .. 845
21.13.5.1 Synthesis of Product Subclass 5 .. 846
21.13.5.1.1 Method 1: Oxidation of Hydrazides 846
21.13.6 Product Subclass 6: (Acylimino)phosphoranes 847
21.13.6.1 Synthesis of Product Subclass 6 .. 847
21.13.6.1.1 Method 1: N-Acylation of Iminophosphoranes 847
21.13.6.1.2 Method 2: Staudinger Reaction of Acyl Azides 848
21.13.7 Product Subclass 7: N,N-Diheteroatom-Substituted Amides (Anomeric Amides) .. 849
21.13.8 Product Subclass 8: N-Halo Amides 850
21.13.8.1 Synthesis of Product Subclass 8 .. 850
21.13.8.1.1 Method 1: Oxidative Halogenation of Amides 850
21.13.8.1.1.1 Variation 1: Fluorination of Amides 851
21.13.8.1.1.2 Variation 2: Chlorination of Amides 851
21.13.8.1.1.3 Variation 3: Bromination of Amides 853
21.13.8.1.1.4 Variation 4: Iodination of Amides 854

21.13.9 Product Subclass 9: N-Hydroxy Amides .. 855
21.13.9.1 Synthesis of Product Subclass 9 ... 856
21.13.9.1.1 Method 1: Oxidation of Amides, Hydroxylamines, and Amines 856
21.13.9.1.2 Method 2: N-Acylation of Hydroxylamines 857
21.13.9.1.3 Method 3: Deprotection of N-Silox, N-Alkoxy, or N-Alkoxo Amides 860
21.13.9.1.4 Method 4: Ene Reactions of Acyl Nitroso Compounds 862
21.13.9.1.5 Method 5: Synthesis from Nitro Compounds 864

21.13.10 Product Subclass 10: N-Acyloxy Amides 865
21.13.10.1 Synthesis of Product Subclass 10 .. 865
21.13.10.1.1 Method 1: O- or N-Acylation ... 865
21.13.10.1.1.1 Variation 1: By O-Acylation of N-Hydroxy Amides 865
21.13.10.1.1.2 Variation 2: N-Acylation of O-Acyl Hydroxylamines 867

21.13.11 Product Subclass 11: N-Alkoxy Amides and O-Silox Amides 867
21.13.11.1 Synthesis of Product Subclass 11 .. 868
21.13.11.1.1 Method 1: O-Alkylation or O-Silylation of N-Hydroxy Amides 868
21.13.11.1.1.1 Variation 1: O-Silylation of N-Hydroxy Amides 868
21.13.11.1.1.2 Variation 2: O-Alkylation of N-Hydroxy Amides 869
21.13.11.1.2 Method 2: N-Acylation of O-Alkyl or O-Silyl Hydroxylamine Derivatives 871
21.13.11.1.2.1 Variation 1: With Activated Carboxylic Acid Derivatives 871
21.13.11.1.2.2 Variation 2: Reactions of Esters and Imides with O-Alkyl N-Metalated Hydroxylamine Reagents 873
21.13.11.1.3 Method 3: Hetero-Diels–Alder Reaction of Acyl Nitroso Compounds 874

21.13.12 Product Subclass 12: N-Sulfonyl and N-Sulfinyl Amides 876
21.13.12.1 Synthesis of Product Subclass 12 .. 876
21.13.12.1.1 Method 1: Oxidation of N-Sulfanyl and N-Sulfanyl Amides 876
21.13.12.1.2 Method 2: N-Acylation of Sulfonamides and Sulfinamides 877
21.13.12.1.3 Method 3: N-Sulfonylation of Amides 879
21.13.12.1.4 Method 4: Synthesis from N-Sulfonyl Isocyanates 880

21.13.13.1 Synthesis of Product Subclass 13 .. 882
21.13.13.1.1 Method 1: N-Sulfanylation of Amides 882
21.13.13.1.2 Method 2: N-Acylation of Sulfinamides 883

21.13.14.1.2 Method 2: Synthesis from Imidoyl Chlorides 886

21.13.15 Product Subclass 15: Acyl Hydrazones 887
21.13.15.1 Synthesis of Product Subclass 15 .. 887
21.13.15.1.1 Method 1: Acylation of Hydrazones 887
21.13.15.1.2 Method 2: Synthesis from Hydrazides and Carbonyl Compounds 888

21.13.16 **Product Subclass 16: Hydrazides** .. 889
21.13.16.1 Synthesis of Product Subclass 16 .. 890
21.13.16.1.1 Method 1: Electrophilic Amination of Amides 890
21.13.16.1.2 Method 2: Acylation of Hydrazine Derivatives 891
21.13.16.1.3 Method 3: Reductive Processes 892
21.13.16.1.4 Method 4: Addition of Carbon-Centered Nucleophiles to \(N \)-Acyl Hydrazones ... 894

21.14 **Product Class 14: Acylphosphorus Compounds**
A. Whitehead, S. R. Sieck, S. Mukherjee, and P. R. Hanson

21.14 **Product Class 14: Acylphosphorus Compounds** 907
21.14.1 **Product Subclass 1: Tetracoordinate Acylphosphorus Compounds** 907
21.14.1.1 Synthesis of Product Subclass 1 .. 907
21.14.1.1.2 Method 2: Dithiane Alkylation, Followed by Hydrolysis 908
21.14.1.1.3 Method 3: Metal-Mediated Oxidations of \(\alpha \)-Hydroxy Phosphonates 909
21.14.1.1.3.1 Variation 1: Heterogeneous Reactions 910
21.14.1.1.3.2 Variation 2: Solvent-Free Reactions 910
21.14.1.2 Applications of Product Subclass 1 in Organic Synthesis 911
21.14.1.2.1 Method 1: Halogenation Reactions of Acylphosphonates 911
21.14.1.2.1.1 Variation 1: Formation of \(\alpha \)-Chloro Carboxylic Acids 911
21.14.1.2.1.2 Variation 2: Selective Chlorination of \(\alpha \)-Phosphorylated Aldehydes 913
21.14.1.2.1.3 Variation 3: Fluorination of Acylphosphonates 913
21.14.1.2.2 Method 2: Condensation of Acylphosphonates with Amines and Hydrazines, and Subsequent Reactions .. 914
21.14.1.2.2.1 Variation 1: Reductive Amination 914
21.14.1.2.2.2 Variation 2: Pyrazoles via the Vilsmeier–Haack Reaction 915
21.14.1.2.2.3 Variation 3: Synthesis of Bis(acylphosphonates) 916
21.14.1.2.3 Method 3: Reduction of Acylphosphonates 917
21.14.1.2.3.1 Variation 1: Diastereoselective Reductions 917
21.14.1.2.3.2 Variation 2: Enantioselective Reductions 918
21.14.1.2.4 Method 4: Organometallic Additions to Acylphosphonates 918
21.14.1.2.4.1 Variation 1: Grignard Additions 918
21.14.1.2.4.2 Variation 2: Indium-Mediated Additions 919
21.14.1.2.5 Method 5: Diels–Alder Reactions of Acylphosphonates 920
21.14.1.2.6 Method 6: Mukaiyama–Michael Reactions of \(\beta,\gamma \)-Unsaturated Acylphosphonates .. 921
21.14.1.2.7 Method 7: Enolization and Subsequent Reactions of Acylphosphonates 922
21.14.1.2.7.1 Variation 1: C-Alkylation of Acylphosphonates 922
21.14.1.2.7.2 Variation 2: Asymmetric Hydrogenation 923
21.14.1.2.7.3 Variation 3: Cross-Coupling Reactions 924
21.14.1.2.8 Method 8: Reaction of Acylphosphonates with Phosphorus(III) Compounds ... 925
21.14.1.2.8.1 Variation 1: Reaction with Trialkyl Phosphites 925
21.14.1.2.8.2 Variation 2: Reaction with 2-Isocyanato-4H-1,3,2-benzodioxaphosphin-4-one ... 926
21.14.1.2.8.3 Variation 3: Coupling Reactions of Aryl Acylphosphonates with Aryl Phosphonates ... 927
21.14.1.2.9 Method 9: Metal-Mediated Reactions of Acylphosphonates 928
21.14.1.2.9.1 Variation 1: Ytterbium-Promoted Rearrangements 928
21.14.1.2.9.2 Variation 2: Samarium(II) Iodide Promoted Three-Component Couplings 929
21.14.1.2.9.3 Variation 3: Tin-Catalyzed Intramolecular Acylations 930
21.14.1.2.10 Method 10: Deprotection of Acylphosphonates 931

21.14.2.1 Synthesis of Product Subclass 2 ... 932
21.14.2.1.1 Method 1: Alkylation of Secondary Acylphosphines 932
21.14.2.1.2 Method 2: Acylation of Di- and Tricoordinate Phosphines 933
21.14.2.1.2.1 Variation 1: Under Basic Conditions 933
21.14.2.1.2.2 Variation 2: Under Nonbasic Conditions 934
21.14.2.2 Applications of Product Subclass 2 in Organic Synthesis 935
21.14.2.2.1 Method 1: Enolization and Aldol Reactions of Acylphosphines 935
21.14.2.2.2 Method 2: Reactions of Formylphosphines 936

Keyword Index .. 941
Author Index .. 979
Abbreviations ... 1031