Volume 22: Three Carbon–Heteroatom Bonds: Thio-, Seleno-, and Tellurocarboxylic Acids and Derivatives; Imidic Acids and Derivatives; Ortho Acid Derivatives

Preface .. V

Table of Contents .. IX

22

Introduction
André B. Charette .. 1

22.1

Product Class 1: Thioacarboxylic Acids and Derivatives

22.1.1

Product Subclass 1: α-Substituted Sulfur Ylides
V. K. Aggarwal, J. Richardson, and C. L. Winn .. 11

22.1.2

Product Subclass 2: Thioacyl Halides
R. S. Glass .. 75

22.1.3

Product Subclass 3: Thioacarboxylic O-Acid Esters
R. S. Glass .. 85

22.1.4

Product Subclass 4: Dithioacarboxylic Acid Esters
R. S. Glass .. 109

22.1.5

Product Subclass 5: Selenothiocarboxylic Se-Acid Esters
R. S. Glass .. 133

22.1.6

Product Subclass 6: Tellurothiocarboxylic Te-Acid Esters
R. S. Glass .. 139

22.1.7

Product Subclass 7: Thioamides
H. Lebel .. 141

22.2

Product Class 2: Selenocarboxylic Acids and Derivatives
T. Wirth .. 181

22.3

Product Class 3: Tellurocarboxylic Acids and Derivatives
T. Murai .. 213

22.4

Product Class 4: Imidic Acids and Derivatives

22.4.1

Product Subclass 1: Carbon-Substituted Iminium Salts
S. Cicchi and F. M. Cordero .. 221

22.4.2

Product Subclass 2: C-Heteroatom-Substituted Nitrones, Other Dipoles
F. M. Cordero and S. Cicchi .. 267

22.4.3

Product Subclass 3: Imidoyl (Imino) Halides
N. Nakajima and M. Ubukata .. 331

22.4.4

Product Subclass 4: Imidates
N. Nakajima and M. Ubukata .. 343
<table>
<thead>
<tr>
<th>Section</th>
<th>Product Subclass</th>
<th>Title</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.4.5</td>
<td>Product Subclass 5: Thioimidates and Their Derivatives</td>
<td>N. Nakajima and M. Ubukata</td>
<td>361</td>
<td></td>
</tr>
<tr>
<td>22.4.6</td>
<td>Product Subclass 6: Selenoimidates (Imidoselenoates) and Derivatives</td>
<td>N. Nakajima and M. Ubukata</td>
<td>367</td>
<td></td>
</tr>
<tr>
<td>22.4.7</td>
<td>Product Subclass 7: Telluroimidates (Imidotelluroates) and Derivatives</td>
<td>N. Nakajima and M. Ubukata</td>
<td>375</td>
<td></td>
</tr>
<tr>
<td>22.4.8</td>
<td>Product Subclass 8: N-Alkyl-, N-Aryl-, and N-Hetaryl-Substituted Amidines (Imidamides)</td>
<td>K Ostrowska and A. Kolasanta</td>
<td>379</td>
<td></td>
</tr>
<tr>
<td>22.4.9</td>
<td>Product Subclass 9: Amidines (Imidamides) N-Substituted by Metals, Halogens, Oxygen, and Other Heteroatoms</td>
<td>K. Ostrowska and A. Kolasanta</td>
<td>489</td>
<td></td>
</tr>
<tr>
<td>22.5</td>
<td>Product Class 5: 2-Functionalized Alkylidenephosphines</td>
<td>R. A. Aitken</td>
<td>565</td>
<td></td>
</tr>
<tr>
<td>22.6</td>
<td>Product Class 6: 2-Functionalized Arsalkenes and (\alpha)-Functionalized Arsonium Ylides</td>
<td>R. A. Aitken</td>
<td>601</td>
<td></td>
</tr>
<tr>
<td>22.7</td>
<td>Product Class 7: Ortho Acid Derivatives</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22.7.1</td>
<td>Product Subclass 1: Trihalomethyl Compounds</td>
<td>G. K. S. Prakash and J. Hu</td>
<td>617</td>
<td></td>
</tr>
<tr>
<td>22.7.2</td>
<td>Product Subclass 2: Ortho Esters and Halogenated Derivatives</td>
<td>H. Lebel and M. Grenon</td>
<td>669</td>
<td></td>
</tr>
<tr>
<td>22.7.3</td>
<td>Product Subclass 3: Trithioortho Esters and Halogenated Derivatives</td>
<td>H. Lebel and M. Grenon</td>
<td>749</td>
<td></td>
</tr>
<tr>
<td>22.7.4</td>
<td>Product Subclass 4: Triselenoortho Esters and Halogenated Derivatives</td>
<td>H. Lebel and M. Grenon</td>
<td>775</td>
<td></td>
</tr>
<tr>
<td>22.7.5</td>
<td>Product Subclass 5: Tritelluroortho Esters and Halogenated Derivatives</td>
<td>H. Lebel and M. Grenon</td>
<td>789</td>
<td></td>
</tr>
<tr>
<td>22.7.6</td>
<td>Product Subclass 6: Ortho Amides (Alkane-1,1,1-triamines)</td>
<td>W. Kantlehner</td>
<td>795</td>
<td></td>
</tr>
<tr>
<td>22.7.7</td>
<td>Product Subclass 7: Tris(diorganophosphino)methanes and Derivatives</td>
<td>W. Kantlehner</td>
<td>843</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Keyword Index</td>
<td></td>
<td>851</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Author Index</td>
<td></td>
<td>887</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Abbreviations</td>
<td></td>
<td>945</td>
<td></td>
</tr>
</tbody>
</table>
Table of Contents

22 Introduction
André B. Charette

22 Introduction .. 1

22.1 Product Class 1: Thiocarboxylic Acids and Derivatives

22.1.1 Product Subclass 1: α-Substituted Sulfur Ylides
V. K. Aggarwal, J. Richardson, and C. L. Winn

<table>
<thead>
<tr>
<th>Subclass</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.1.1.1</td>
<td>Method 1: Deprotonation of Sulfonium and Sulfoxonium Salts</td>
<td>14</td>
</tr>
<tr>
<td>22.1.1.2</td>
<td>Method 2: Hydrogen Atom Substitution of Lesser Functionalized Sulfur Ylides</td>
<td>15</td>
</tr>
<tr>
<td>22.1.1.2.1</td>
<td>Variation 1: Hydrogen Atom Substitution Using Chloro(methyl)Si-silanes, -germanes, and -stannanes</td>
<td>15</td>
</tr>
<tr>
<td>22.1.1.3</td>
<td>Method 3: Synthesis from Carbenes</td>
<td>16</td>
</tr>
<tr>
<td>22.1.1.3.1</td>
<td>Variation 1: Transition-Metal-Catalyzed Decomposition of Diazocompounds</td>
<td>17</td>
</tr>
<tr>
<td>22.1.1.4</td>
<td>Method 4: 1,3-Elimination Reactions</td>
<td>18</td>
</tr>
<tr>
<td>22.1.1.4.1</td>
<td>Variation 1: Thermolysis of [Bromo(trimethylsilyl)methyl][(Trimethylsilyl)methyl] Sulfides</td>
<td>18</td>
</tr>
<tr>
<td>22.1.1.5</td>
<td>Method 5: Modification of Existing Ylides</td>
<td>18</td>
</tr>
<tr>
<td>22.1.1.2</td>
<td>Halogen-Substituted Sulfur Ylides</td>
<td>19</td>
</tr>
<tr>
<td>22.1.1.2.1</td>
<td>Method 1: Deprotonation of Sulfonium and Sulfoxonium Salts</td>
<td>19</td>
</tr>
<tr>
<td>22.1.1.2.2</td>
<td>Method 2: Hydrogen Atom Substitution of Lesser Functionalized Sulfur Ylides</td>
<td>21</td>
</tr>
<tr>
<td>22.1.1.2.2.1</td>
<td>Variation 1: Replacement with a Halogen Atom</td>
<td>21</td>
</tr>
<tr>
<td>22.1.1.2.2.2</td>
<td>Variation 2: Replacement with Other Functional Groups</td>
<td>22</td>
</tr>
<tr>
<td>22.1.1.2.3</td>
<td>Method 3: Synthesis from Carbenes</td>
<td>22</td>
</tr>
<tr>
<td>22.1.1.2.3.1</td>
<td>Variation 1: By Reaction with Dihalocarbenes</td>
<td>22</td>
</tr>
<tr>
<td>22.1.1.2.3.2</td>
<td>Variation 2: From Monohalocarbenes</td>
<td>25</td>
</tr>
<tr>
<td>22.1.1.3</td>
<td>Oxygen-Substituted Sulfur Ylides</td>
<td>25</td>
</tr>
<tr>
<td>22.1.1.4</td>
<td>Sulfur-Substituted Sulfur Ylides</td>
<td>26</td>
</tr>
<tr>
<td>22.1.1.4.1</td>
<td>Method 1: Deprotonation of Sulfonium and Sulfoxonium Salts</td>
<td>27</td>
</tr>
<tr>
<td>22.1.1.4.2</td>
<td>Method 2: Hydrogen Atom Substitution of Lesser Functionalized Sulfur Ylides</td>
<td>29</td>
</tr>
<tr>
<td>22.1.1.4.2.1</td>
<td>Variation 1: With Sulfur-Based Electrophiles</td>
<td>29</td>
</tr>
<tr>
<td>22.1.1.4.2.2</td>
<td>Variation 2: With Carbon-Based Electrophiles</td>
<td>31</td>
</tr>
<tr>
<td>22.1.1.4.3</td>
<td>Method 3: Synthesis from Carbenes</td>
<td>31</td>
</tr>
<tr>
<td>22.1.1.4.3.1</td>
<td>Variation 1: Photolytic Decomposition of Diazocompounds</td>
<td>31</td>
</tr>
</tbody>
</table>
22.1.1.4.3.2 Variation 2: Thermolysis of Diazo Compounds 32
22.1.1.4.3.3 Variation 3: Metal-Catalyzed Decomposition of Diazo Compounds 32
22.1.1.4.3.4 Variation 4: By Transylidation ... 32
22.1.1.4.3.5 Variation 5: From Other Carbene Sources 35
22.1.1.4.4 Method 4: Reaction of C—H Acidic Compounds with Sulfonium Salts Bearing a Leaving Group .. 35
22.1.1.4.5 Method 5: Addition of Sulfoxides to 1-[(Trifluoromethyl)sulfonyl]alkynes . 37
22.1.1.4.6 Method 6: Hydrolysis of Tetrathiafulvenium Salts 37
22.1.1.5 Selenium-Substituted Sulfur Ylides .. 38
22.1.1.5.1 Method 1: Reaction of “onium” Salts with Activated Sulfoxides or Selenoxides .. 38
22.1.1.5.1.1 Variation 1: From Sulfoxides .. 38
22.1.1.5.1.2 Variation 2: From Selenoxides ... 39
22.1.1.6 Nitrogen-Substituted Sulfur Ylides .. 39
22.1.1.6.1 Method 1: Deprotonation of Sulfonium and Sulfoxonium Salts 40
22.1.1.6.2 Method 2: Hydrogen Atom Substitution of Lesser Functionalized Sulfur Ylides .. 40
22.1.1.6.3 Method 3: Reaction of Sulfides with Dibromo(nitro)acetonitrile 41
22.1.1.6.4 Method 4: Synthesis from Carbenes 41
22.1.1.6.4.1 Variation 1: By Transylidation ... 41
22.1.1.6.5 Method 5: Reaction of Activated Sulfoxides with C—H Acidic Compounds 42
22.1.1.7 Phosphorus-Substituted Sulfur Ylides 44
22.1.1.7.1 Method 1: Deprotonation of Sulfonium and Sulfoxonium Salts 44
22.1.1.7.1.1 Variation 1: \(\alpha\)-Phosphorus(III)-Substituted Sulfonium Ylides 44
22.1.1.7.1.2 Variation 2: \(\alpha\)-Phosphorus(V)-Substituted Sulfonium Ylides 45
22.1.1.7.2 Method 2: Hydrogen Atom Substitution of Lesser Functionalized Sulfur Ylides .. 45
22.1.1.7.2.1 Variation 1: \(\alpha\)-Phosphorus(III)-Substituted Sulfur Ylides 46
22.1.1.7.2.2 Variation 2: \(\alpha\)-Phosphorus(V)-Substituted Ylides 46
22.1.1.7.3 Method 3: Synthesis from Carbenes 48
22.1.1.7.3.1 Variation 1: \(\alpha\)-Phosphorus(III)-Substituted Sulfur Ylides 48
22.1.1.7.3.2 Variation 2: \(\alpha\)-Phosphorus(V)-Substituted Sulfur Ylides 48
22.1.1.7.4 Method 4: Reaction of C—H Acidic Compounds with Sulfonium Salts Bearing a Leaving Group .. 49
22.1.1.7.4.1 Variation 1: Phosphorus(III)-Substituted Sulfonium Ylides 49
22.1.1.7.4.2 Variation 2: Phosphorus(V)-Substituted Sulfonium Ylides 50
22.1.1.7.5 Method 5: Alkylation of \(\alpha\)-(Alkylsulfanyl) Phosphorus Ylides 50
22.1.1.7.6 Method 6: Synthesis by Modification of a Heteroatom Once Attached 50
22.1.2 Applications of Product Subclass 1 in Organic Synthesis 51
22.1.2.1 Silicon-, Tin-, and Germanium-Substituted Sulfur Ylides 51
22.1.2.1.1 Method 1: Reactions with Carbonyl Compounds 52
22.1.2.1.2 Method 2: Reactions with Electron-Deficient Alkenes 52
22.1.2.1.3 Method 3: Rearrangement Reactions 52
22.1.2.1.4 Method 4: Cycloaddition Reactions 55
22.1.2.2 Halogen-Substituted Sulfur Ylides

- **Method 1:** 1,3-Electrocyclization Reactions ... 56
- **Method 2:** Preparation of α-Hydroxy Aldehydes and Acetals 57
- **Method 3:** Rearrangement Reactions .. 58

22.1.2.3 Sulfur-Substituted Sulfur Ylides

- **Method 1:** Rearrangement Reactions ... 59
- **Method 2:** Reaction with Aldehydes ... 60
- **Method 3:** Reaction with Electron-Deficient Alkenes 61
- **Method 4:** Cycloreversion Reactions .. 62
- **Method 5:** Hydrolysis Reactions .. 63

22.1.2.4 Selenium-Substituted Sulfur Ylides

- **Method 1:** Miscellaneous Applications 64
- **Method 2:** Reaction with Electron-Deficient Alkenes 65
- **Method 3:** Rearrangement Reactions ... 66
- **Method 4:** Miscellaneous Applications 67

22.1.2.5 Nitrogen-Substituted Sulfur Ylides

- **Method 1:** Miscellaneous Applications 68

22.1.2.6 Phosphorus-Substituted Sulfur Ylides

- **Method 1:** Reaction with Aldehydes ... 69
- **Method 2:** Reaction with Electron-Deficient Alkenes 70
- **Method 3:** Rearrangement Reactions ... 71
- **Method 4:** Miscellaneous Applications 72

22.1.2.7 Product Subclass 2: Thioacyl Halides

R. S. Glass

- **Synthesis of Product Subclass 2** .. 75
- **Method 1:** Sulfuration .. 76
- **Method 2:** Dehalogenation of Haloalkanesulfenyl Chlorides 76
- **Method 3:** By Substitution of Dithiocarboxylic Acids 77
- **Method 4:** By Nucleophilic Substitution of Thiophosgene 77
- **Method 5:** By C—S Cleavage of α-Thioether Cations 78
- **Applications of Product Subclass 2 in Organic Synthesis** 79
- **Method 1:** Acyl Nucleophilic Substitution 79
- **Method 2:** Reductive Dimerization ... 79
- **Method 3:** Friedel–Crafts Thioacylation .. 80
- **Method 4:** Cycloaddition Reactions ... 81
- **Method 5:** Oxidation .. 81

22.1.3 Product Subclass 3: Thioarboxylic O-Acid Esters

R. S. Glass

- **Synthesis of Product Subclass 3** .. 85
- **Method 1:** Thioacylation of Alcohols ... 85
22.1.3.1.1 Variation 1: Thioacylation of Alcohols with Thioaroyl Chlorides 86
22.1.3.1.2 Variation 2: Thioacylation of Alcohols with Nitro(thioacyl)benzotriazoles .. 86
22.1.3.1.2 Method 2: Thionation of Esters .. 87
22.1.3.1.2.1 Variation 1: By Thionation of Esters with Lawesson’s Reagent 87
22.1.3.1.2.2 Variation 2: By Microwave Irradiation with Lawesson’s Reagent 88
22.1.3.1.2.3 Variation 3: With Phosphorus Pentasulfide and Hexamethyldisiloxane ... 89
22.1.3.1.3 Method 3: Thiolysis of Imino Ethers 90
22.1.3.1.3.1 Variation 1: From Carboxamides 90
22.1.3.1.3.2 Variation 2: From Nitriles ... 91
22.1.3.1.3.4 Method 4: Alkoxycarboxylation of Enolates 92
22.1.3.1.5 Method 5: Elimination of Monothioacetal Derivatives 93
22.1.3.1.5.1 Variation 1: Photochemical Elimination 93
22.1.3.1.5.2 Variation 2: Thermolysis of Thiosulfonates 94
22.1.3.2 Applications of Product Subclass 3 in Organic Synthesis 94
22.1.3.2.1 Method 1: Thioacylation ... 94
22.1.3.2.2 Method 2: Nucleophilic Addition 95
22.1.3.2.2.1 Variation 1: Redox Glycosidation 95
22.1.3.2.2.2 Variation 2: Organometallic Addition and Methylation 97
22.1.3.2.3 Method 3: Synthesis of Heterocycles 98
22.1.3.2.4 Method 4: Enolate Reactions .. 98
22.1.3.2.4.1 Variation 1: Claisen Rearrangement 98
22.1.3.2.4.2 Variation 2: Aldol Addition .. 99
22.1.3.2.4.3 Variation 3: Michael Addition 100
22.1.3.2.4.4 Variation 4: Horner–Emmons Reaction 100
22.1.3.2.5 Method 5: Cycloaddition Reactions 101
22.1.3.2.5.1 Variation 1: Diels–Alder 2π-Components 101
22.1.3.2.5.2 Variation 2: Diels–Alder 4π-Components 102
22.1.3.2.5.3 Variation 3: 1,3-Dipolar Cycloaddition Reactions 102
22.1.3.2.5.4 Variation 4: Photochemical [2 + 2] Cycloaddition 103
22.1.3.2.6 Method 6: Reductive Desulfurization 103
22.1.3.2.6.1 Variation 1: Reductive Desulfurization with Triphenyltin Hydride 103
22.1.3.2.6.2 Variation 2: Reductive Desulfurization with Tributyltin Hydride 104
22.1.3.2.7 Method 7: Reductive Dimerization 105
22.1.3.2.8 Method 8: Barton–McCombie Deoxygenation of Secondary Alcohols ... 105
22.1.3.2.9 Method 9: Fluorinative Desulfurization 106

22.1.4 Product Subclass 4: Dithiocarboxylic Acid Esters
R. S. Glass

22.1.4 Product Subclass 4: Dithiocarboxylic Acid Esters 109
22.1.4.1 Synthesis of Product Subclass 4 .. 109
22.1.4.1.1 Method 1: Thioacylation of Thiols 109
22.1.4.1.2 Method 2: Thionation of Carboxylic Acids 110
22.1.4.1.3 Method 3: Thiolysis of Imino Thiocarboxylic Acid Esters 111
22.1.4.1.4 Method 4: Dithiocarboxylation ... 112
22.1.4.1.4.1 Variation 1: Dithiocarboxylation of Grignard Reagents 112
22.1.4.1.4.2 Variation 2: Dithiocarboxylation of Sulfone α-Carbanions 113
22.1.4.3 Variation 3: Dithiocarboxyalkylation .. 114
22.1.4.5 Method 5: Friedel–Crafts Alkyldithiocarboxylation 115
22.1.4.6 Method 6: Bromination of Tin Dithiocarboxylates 116
22.1.4.7 Method 7: Reaction of Dithiocarboxylates with Halophosphines, Thiophosphinic Chloride, and Selenophosphinic Chloride 116
22.1.4.8 Method 8: Acylation of Dithiophosphoric Acids 117
22.1.4.9 Method 9: Amination of Arenedithiocarboxylates 118
22.1.4 Application of Product Subclass 4 in Organic Synthesis 118
22.1.4.21 Method 1: Thioacylation .. 118
22.1.4.2.1.1 Variation 1: Aminolysis of Dithioesters 118
22.1.4.2.1.2 Variation 2: Aminolysis of S-Thioacyl Dithiophosphates 119
22.1.4.2.1.3 Variation 3: Synthesis of Thiohydroxamic Acids 120
22.1.4.2.2 Method 2: Addition of Organometallic Reagents 120
22.1.4.2.2.1 Variation 1: Carbophilic Addition of Grignard Reagents 120
22.1.4.2.2.2 Variation 2: Thiophilic Addition of Grignard Reagents 121
22.1.4.2.3 Method 3: Synthesis of 5-Aryl-1,4,2-dithiazolium Salts 122
22.1.4.2.4 Method 4: Synthesis of Penems 123
22.1.4.2.5 Method 5: Enethiolates and Ketene Dithioacetals 123
22.1.4.2.5.1 Variation 1: S-Alkylation and S-Silylation of Enethiolates 124
22.1.4.2.5.2 Variation 2: Aldol Addition 125
22.1.4.2.5.3 Variation 3: Addition to Imines 125
22.1.4.2.5.4 Variation 4: Addition to Azodicarboxylates 126
22.1.4.2.5.5 Variation 5: Michael Addition 127
22.1.4.2.6 Method 6: Cycloaddition Reactions 128
22.1.4.2.6.1 Variation 1: Diels–Alder Cycloaddition Reactions 128
22.1.4.2.6.2 Variation 2: 1,3-Dipolar Cycloaddition with Diazomethane 129
22.1.4.2.6.3 Variation 3: 1,3-Dipolar Cycloaddition with Phenyl Azide ... 130
22.1.4.2.7 Method 7: Oxidation ... 130

22.1.5 Product Subclass 5: Selenothiocarboxylic Se-Acid Esters
R. S. Glass

22.1.5.1 Synthesis of Product Subclass 5 133
22.1.5.1.1 Method 1: Thioacylation of Areneselenolates 133
22.1.5.1.1.1 Variation 1: Thioacylation with Thioacyl Chlorides 133
22.1.5.1.1.2 Variation 2: Thioacylation with Bis(thioacyl) Sulfides 133
22.1.5.1.2 Method 2: Reaction of Thiocarboxylic O-Acid Esters with Dialkylaluminum Alkaneselenolates 134
22.1.5.1.3 Method 3: Se-Alkylation of Selenothioates 134
22.1.5.1.4 Method 4: Sulfuration of a Selanylnamine 135
22.1.5.2 Applications of Product Subclass 5 in Organic Synthesis 135
22.1.5.2.1 Method 1: Thioacylation ... 135
22.1.5.2.2 Method 2: Alkylation of Enethiolates 135
22.1.5.2.3 Method 3: Oxidation .. 136
22.1.6 Product Subclass 6: Tellurothiocarboxylic Te-Acid Esters
R. S. Glass

22.1.6 Product Subclass 6: Tellurothiocarboxylic Te-Acid Esters
22.1.6.1 Synthesis of Product Subclass 6
22.1.6.1.1 Method 1: Thionation of Telluroesters

22.1.7 Product Subclass 7: Thioamides
H. Lebel

22.1.7 Product Subclass 7: Thioamides
22.1.7.1 Synthesis of Product Subclass 7
22.1.7.1.1 Method 1: Sulfurization of Amides by Tetraphosphorus Decasulfide
22.1.7.1.1.1 Variation 1: With Sodium Carbonate as an Activator
22.1.7.1.1.2 Variation 2: With Ultrasonic Irradiation
22.1.7.1.1.3 Variation 3: With Hexamethylcyclodisiloxane
22.1.7.1.2 Method 2: Sulfurization of Amides
22.1.7.1.2.1 Variation 1: With Lawesson’s Reagent
22.1.7.1.2.2 Variation 2: With Belleau’s Reagent
22.1.7.1.3 Method 3: Thioamidation of Carboxylic Acids
22.1.7.1.4 Method 4: Thiolysis of Imidoyl Chlorides
22.1.7.1.4.1 Variation 1: With Hexamethyltrisilathiane
22.1.7.1.4.2 Variation 2: With Benzyltriethylammonium Tetrathiomolybdate
22.1.7.1.5 Method 5: Thiolysis of Pyridinium Imidates
22.1.7.1.6 Method 6: Thiolysis of Dihydrooxazoles
22.1.7.1.7 Method 7: Thiolysis of Amidines
22.1.7.1.8 Method 8: Thiolysis of Nitriles
22.1.7.1.8.1 Variation 1: With Hydrogen Sulfide
22.1.7.1.8.2 Variation 2: With Ammonium Sulfide
22.1.7.1.8.3 Variation 3: With Sodium Trimethylsilanethiolate
22.1.7.1.8.4 Variation 4: With Thioacetic Acid
22.1.7.1.8.5 Variation 5: With Phosphorus Decasulfide
22.1.7.1.8.6 Variation 6: With Diethyl Dithiophosphate
22.1.7.1.9 Method 9: Addition of Nucleophiles to Isothiocyanates
22.1.7.1.9.1 Variation 1: Addition of Enamines
22.1.7.1.9.2 Variation 2: Addition of Ketene Acetals
22.1.7.1.9.3 Variation 3: Addition of Enolates
22.1.7.1.9.4 Variation 4: Addition of Grignard Reagents
22.1.7.1.9.5 Variation 5: Addition of Organolithium Reagents
22.1.7.1.9.6 Variation 6: Addition of Trichloromethyl(trifluoromethyl)silane
22.1.7.1.9.7 Variation 7: Via Friedel–Crafts Procedures
22.1.7.1.9.8 Variation 8: Via Organosamarium Complexes
22.1.7.1.9.9 Variation 9: Via Radical Cyclization
22.1.7.1.10 Method 10: Addition of Nucleophiles to Thiocarbamoyl Chlorides
22.1.7.1.11 Method 11: Addition of Nucleophiles to Thiuram Monosulfides
22.1.7.1.12 Method 12: Thioacylation of Amines
22.1.7.1.12.1 Variation 1: With O-Alkyl Thiocarboxylates

Science of Synthesis Original Edition Volume 22
© Georg Thieme Verlag KG
22.1.7.12.2 Variation 2: With Dithiocarboxylates .. 168
22.1.7.12.3 Variation 3: With Carbon Disulfide ... 169
22.1.7.13 Method 13: Transamidation of Thioamides 169
22.1.7.13.1 Variation 1: With Thioacylated Benzotriazoles 170
22.1.7.13.2 Variation 2: With Thioacylated Benzimidazolones 171
22.1.7.13.3 Variation 3: With Thioacylated N-Phthalimides 171
22.1.7.14 Method 14: Synthesis from Ketones by the Willgerodt–Kindler Reaction .. 172

22.2 Product Class 2: Selenocarboxylic Acids and Derivatives
T. Wirth

22.2 Product Class 2: Selenocarboxylic Acids and Derivatives 181
22.2.1 Product Subclass 1: Selenocarboxylic Acids with Selenium in Higher Oxidation States ... 181
22.2.2 Product Subclass 2: Selenocarbonyl Halides .. 181
22.2.2.1 Synthesis of Product Subclass 2 ... 182
22.2.2.1.1 Method 1: Reaction of Bis(perfluoroalkylselenyl)mercury(II) Compounds with Lewis Acids ... 182
22.2.2.1.2 Method 2: Synthesis by Flash-Vacuum Pyrolysis 183
22.2.3 Product Subclass 3: Chalcocelenocarboxylic Acids 183
22.2.3.1 Synthesis of Product Subclass 3 ... 183
22.2.3.1.1 Method 1: Reaction of Imidates ... 183
22.2.3.1.1.1 Variation 1: With Hydrogen Selenide 183
22.2.3.1.1.2 Variation 2: With Sodium Hydrogen Selenide 184
22.2.3.1.2 Method 2: Reaction of Ketene Acetals with Hydrogen Selenide 185
22.2.3.1.3 Method 3: Reaction of Alkyneselenolates and Alkyneselenols 186
22.2.3.1.4 Method 4: Reaction of Chromium–Carbene Complexes with Selenium 187
22.2.3.1.5 Method 5: Reaction of Esters and Ortho Esters 188
22.2.3.1.6 Method 6: Reactions with Carbon Diselenide 188
22.2.3.1.7 Method 7: Synthesis by Transesterification or Isomerization 189
22.2.3.2 Applications of Product Subclass 3 in Organic Synthesis 190
22.2.3.2.1 Method 1: Reaction with Nucleophiles 190
22.2.3.2.2 Method 2: Reaction with Electrophiles 191
22.2.4 Product Subclass 4: Selenoamides .. 191
22.2.4.1 Synthesis of Product Subclass 4 ... 191
22.2.4.1.1 Method 1: Reaction of Amides ... 191
22.2.4.1.1.1 Variation 1: With Phosphorus Pentaselenide 191
22.2.4.1.1.2 Variation 2: With Hexamethyltriselenane 192
22.2.4.1.1.3 Variation 3: With Selenium and Diisobutylaluminum Hydride 193
22.2.4.1.1.4 Variation 4: With Cyclic Phosphorus-Containing Reagents 193
22.2.4.1.2 Method 2: Reaction of Nitriles .. 194
22.2.4.1.2.1 Variation 1: With Elemental Selenium and Carbon Monoxide 194
22.2.4.1.2.2 Variation 2: With Elemental Selenium and Sodium Borohydride 195
22.2.4.1.2.3 Variation 3: With Aluminum Selenide 195
22.2.4.1.2.4 Variation 4: With Hexamethyldisilaselenane ... 196
22.2.4.1.3 Method 3: Reaction of Amidines or Amidinium Salts ... 197
22.2.4.1.3.1 Variation 1: Reaction of Imines .. 197
22.2.4.1.3.2 Variation 2: Reaction via Chloroiminium Salts .. 197
22.2.4.1.3.3 Variation 3: Reaction via Imidothiocarbamates .. 199
22.2.4.1.4 Method 4: Reaction of Alkyneselenolates or Alkyneselenols 199
22.2.4.1.4.1 Variation 1: Reaction of Alkyneselenolates Synthesized from Alkynes 200
22.2.4.1.4.2 Variation 2: Reaction of Alkyneselenolates Synthesized from 1,2,3-Selenadiazoles ... 200
22.2.4.1.5 Method 5: Reaction of Isoselenocyanates .. 201
22.2.4.1.5.1 Variation 1: With Alcohols .. 201
22.2.4.1.5.2 Variation 2: With Amines .. 202
22.2.4.1.6 Method 6: Synthesis by Transesterification .. 203
22.2.4.1.6.1 Variation 1: From O-Alkyl Selenoates or S-Alkyl Selenothioates 203
22.2.4.1.6.2 Variation 2: From Triselenocarbonates ... 204
22.2.4.1.7 Method 7: Synthesis via α-Amino-Substituted Diphenylphosphine Oxide Anions ... 204
22.2.4.1.8 Method 8: Synthesis via Cycloreversion of Oxaselenazines 205
22.2.4.1.9 Method 9: Reaction of 1,1-Dihaloalkanes with Elemental Selenium 206
22.2.4.1.10 Method 10: Synthesis from Ynamines .. 207
22.2.4.1.10.1 Variation 1: Using Elemental Selenium ... 207
22.2.4.1.10.2 Variation 2: Using Metal Complexes of Selenocarbonyl Compounds 207
22.2.4.2 Applications of Product Subclass 4 in Organic Synthesis ... 208
22.2.4.2.1 Method 1: Reaction with Nucleophiles ... 208
22.2.4.2.2 Method 2: Reaction with Electrophiles ... 208

22.3 Product Class 3: Tellurocarboxylic Acids and Derivatives
T. Murai

22.3.1 Product Subclass 1: Tellurocarbonyl Halides ... 213
22.3.1.1 Synthesis of Product Subclass 1 .. 213
22.3.1.1.1 Method 1: Elimination of a Fluorostannane from a Tellanylstannane 213
22.3.2 Product Subclass 2: Tellurocarboxylic O-Acids and O-Esters 214
22.3.2.1 Synthesis of Product Subclass 2 .. 214
22.3.2.1.1 Method 1: Addition of Sodium Telluride to Oxoiminium Salts 214
22.3.3 Product Subclass 3: Telluroformamides .. 215
22.3.3.1 Synthesis of Product Subclass 3 .. 216
22.3.3.1.1 Method 1: Reaction of a Dialuminum Telluride with Formamides 216
22.3.3.1.1.1 Variation 1: Reaction of Tellurium and Diisobutylaluminum Hydride with Formamides .. 216
22.3.3.2 Applications of Product Subclass 3 in Organic Synthesis ... 217
22.3.3.2.1 Method 1: Reaction of a Telluroformamide with Pentacarbonylchromium–Pyridine Complex .. 217
22.3.4 Product Subclass 4: Telluroamides .. 217
22.3.4.1 Synthesis of Product Subclass 4 .. 217
 22.3.4.1.1 Method 1: Reaction of a Sulfanyliminium Salt with Hydrogen Telluride · 217
 22.3.4.1.2 Method 2: Reaction of a Dialuminum Telluride with a Cyclic Amide · 218
 22.3.4.1.3 Method 3: Reaction of Selanyliminium Salt with Lithium Aluminum Hydride and Elemental Tellurium · 218

22.4 Product Class 4: Imidic Acids and Derivatives

22.4.1 Product Subclass 1: Carbon-Substituted Iminium Salts
S. Cicchi and F. M. Cordero

22.4.1 Product Subclass 1: Carbon-Substituted Iminium Salts 221
22.4.1.1 Synthesis of Product Subclass 1 .. 221
 22.4.1.1.1 Halomethaniminium Salts .. 221
 22.4.1.1.1.1 Method 1: Halogenation of Amides 222
 22.4.1.1.1.2 Method 2: Reaction of (Dichloromethylene)dimethylammonium Chloride 224
 22.4.1.1.1.3 Methods 3: Additional Methods .. 226
 22.4.1.1.2 Alkoxymethaniminium Salts ... 227
 22.4.1.1.2.1 Method 1: Reaction of Other Methaniminium Salts 227
 22.4.1.1.2.1.1 Variation 1: Reaction of Alcohols with Trifluoromethanesulfonic Anhydride–Amide Adducts · 227
 22.4.1.1.2.1.2 Variation 2: Reaction of Alcohols with the Benzoyl Chloride–Dimethylformamide Adduct · 228
 22.4.1.1.2.2 Method 2: Reaction of Nitrilium Salts 230
 22.4.1.1.2.2.1 Variation 1: With Aromatic Aldehydes 230
 22.4.1.1.2.2.2 Variation 2: With α,β-Unsaturated Carbonyl Compounds · 231
 22.4.1.1.2.3 Method 3: O-Alkylation of Amides and Lactams 232
 22.4.1.1.2.3.1 Variation 1: With Methyl Sulfonates 232
 22.4.1.1.2.3.2 Variation 2: With Dimethyl Sulfate 233
 22.4.1.1.2.4 Variation 3: With Sulfonium Salts 233
 22.4.1.1.2.5 Variation 4: With Oxonium Salts 234
 22.4.1.1.2.6 Variation 5: With Haloalkanes .. 236
 22.4.1.1.2.7 Variation 6: Ring Expansion of Cyclic Ketones by Reaction with β- and γ-Hydroxy Azides · 240
 22.4.1.1.2.8 Variation 7: Reaction of Alkoxymethaniminium Salts 241
 22.4.1.1.3 (Alkylsulfanyl)methaniminium Salts 242
 22.4.1.1.3.1 Method 1: Reaction of (Sulfonyloxy)methaniminium Salts with Thiols · 242
 22.4.1.1.3.2 Method 2: S-Alkylation of N,N-Disubstituted Thioamides · 243

Table of Contents

22.4.1.3.2.1 Variation 1: With (Alk-1-enyl)-λ^3-iodanes .. 243
22.4.1.3.2.2 Variation 2: With Alkyl Sulfonates and Dialkyl Sulfates 244
22.4.1.3.2.3 Variation 3: With Oxonium Salts .. 245
22.4.1.3.2.4 Variation 4: With Haloalkanes .. 246
22.4.1.3.2.5 Variation 5: Reaction of N-Unsubstituted Thioamides with Aziridines 247
22.4.1.3.3 Method 3: N-Alkylation of Thioimidates with Haloalkanes 248

22.4.1.4 Amidinium Salts .. 249
22.4.1.4.1 Method 1: Reaction of Carboxylic Acid Derivatives with Secondary Amines 249
22.4.1.4.1.1 Variation 1: Reaction of Ortho Esters with Secondary Amines 249
22.4.1.4.1.2 Variation 2: Reaction of Oxonium Salts with Secondary Amines 251
22.4.1.4.2 Method 2: Reaction of Other Methaniminium Salts with Secondary Amines 251
22.4.1.4.2.1 Variation 1: Reaction of Chloromethaniminium Salts 252
22.4.1.4.2.2 Variation 2: Reaction of Alkoxymethaniminium Salts 254
22.4.1.4.3 Method 3: Reaction of Acyl Chlorides with Carbon Monoxide and Imines 255
22.4.1.4.4 Method 4: CycloadDITION of Keteniminium Trifluoromethanesulfonates with Imines ... 255
22.4.1.4.5 Method 5: Reaction of Nitrium Salts with Amides and Aminolysis of the Adducts 256
22.4.1.4.6 Method 6: Electrophilic Addition to 1,1-Bis(dialkylamino)alk-1-enes 257
22.4.1.4.7 Method 7: Electrophilic Addition to N'-Thioacyl- and N'-Selenoacylamidines ... 258
22.4.1.4.8 Method 8: S-Alkylation of Alkyl 3,3-Diaminoprop-2-ene(dithioates) 259
22.4.1.4.9 Method 9: N-Alkylation of Amides ... 259
22.4.1.4.10 Method 10: Oxidation of Ethylenetetramines .. 261
22.4.1.4.11 Methods 11: Additional Methods ... 262

22.4.2 Product Subclass 2: C-Heteroatom-Substituted Nitrones, Other Dipoles
F. M. Cordero and S. Cicchi

22.4.2.1 Synthesis of Product Subclass 2 .. 267
22.4.2.1.1 C-Chloro-Substituted Nitrones .. 267
22.4.2.1.1.1 Method 1: Substitution of Aldonitrones ... 267
22.4.2.1.1.2 Method 2: Alkylation of 2-Chloroquinoline 1-Oxide 268
22.4.2.1.1.3 Method 3: Rearrangement of α-Chloro Nitroso Compounds 268
22.4.2.1.2 C-Oxygen-Substituted Nitrones .. 269
22.4.2.1.2.1 Method 1: Substitution of C-Chloronitrones 270
22.4.2.1.2.2 Method 2: Oxidation of N,N-Disubstituted Hydroxylamines 270
22.4.2.1.2.3 Method 3: Oxidation of Aldonitrones .. 271
22.4.2.1.2.4 Method 4: Hydrolysis of 2,2-Dimethoxy-1-phenylethanone Oxime 272
22.4.2.1.2.5 Method 5: Condensation of Hydroxylamine 273
22.4.2.1.2.5.1 Variation 1: Condensation of β-Hydroxyaminos Alcohol with Ortho Esters 273
22.4.2.1.2.5.2 Variation 2: Condensation with Amide Acetals 275
22.4.2.1.2.6 Method 6: Alkylation of Hydroxamic Acids 275
22.4.2.1.7 Method 7: Isomerization of Oxaziridines .. 277
22.4.2.1.8 Method 8: Acid-Promoted Rearrangement of Nitroso Acetals 279
22.4.2.1.3 C-Sulfanyl- or C-Sulfonyl-Substituted Nitrones 280
22.4.2.1.3.1 Method 1: Substitution of C-Cyanonitrones 280
22.4.2.1.3.2 Method 2: Substitution of C-Alkoxy nitrones 280
22.4.2.1.3.3 Method 3: Demethylation of 1-Methoxypyrrolidine-2-thiones 282
22.4.2.1.3.4 Method 4: N-Alkylation of Oximes 282
22.4.2.1.3.5 Method 5: Reaction of Thiazolidin-4-ones with Nitrosobenzene 283
22.4.2.1.3.6 Method 6: Reaction of Nitroalkenes with Ynamines 284
22.4.2.1.3.7 Method 7: Intramolecular Condensation of an S-Alkyl
4-(Hydroxyamino)butanethioate ... 285
22.4.2.1.3.8 Method 8: Alkylation of Thiohydroxamic Acid Derivatives 286
22.4.2.1.3.8.1 Variation 1: Alkylation of Thiohydroxamic Acid with Alkyl Iodides 286
22.4.2.1.3.8.2 Variation 2: Reaction of 1-Methoxypyrrolidine-2-thiones with
Iodotrimethylsilane ... 288
22.4.2.1.3.9 Method 9: Isomerization of a Four-Membered Cyclic Nitrone 289
22.4.2.1.4 C-Nitrogen-Substituted Nitrones ... 289
22.4.2.1.4.1 Method 1: Substitution of Aldonitrones 289
22.4.2.1.4.2 Method 2: Substitution of C-Methoxynitrones 291
22.4.2.1.4.3 Method 3: Oxidation of N,N-Disubstituted Hydroxylamines 292
22.4.2.1.4.4 Method 4: Dehydrogenation of 2-Amino-\(N^2\)-hydroxybenzimidamides 298
22.4.2.1.4.5 Method 5: Oxidation of Imidamides 299
22.4.2.1.4.6 Method 6: Oxidation of Imidazolidines 303
22.4.2.1.4.7 Method 7: Condensation of N-(2-Aminoethyl)hydroxylamines with
Ortho Esters ... 304
22.4.2.1.4.8 Method 8: Condensation of N-Substituted Hydroxylamines with
N-Aryl-Substituted Imidates ... 305
22.4.2.1.4.9 Method 9: Condensation of Amino-Substituted \(N^2\)-Hydroxyimidamides with Aldehydes ... 306
22.4.2.1.4.9.1 Variation 1: Condensation of 2-Amino-\(N^2\)-hydrobenzimidamides with Aldehydes ... 306
22.4.2.1.4.9.2 Variation 2: Condensation of 3-Amino-\(N^2\)-hydroxypropanimidamide and Aldehydes ... 308
22.4.2.1.4.10 Method 10: Condensation of 2-(Hydroxyamino)propan-1-one Oximes with Glyoxal Derivatives .. 310
22.4.2.1.4.11 Method 11: Reaction of N-Substituted Hydroxylamines with Alkyl Cyaniformates .. 311
22.4.2.1.4.12 Method 12: Reactions with Nitroso Compounds 312
22.4.2.1.4.12.1 Variation 1: Reaction of Nitroso Compounds with N-Methyleneamines ...
22.4.2.1.4.12.2 Variation 2: Reaction of Nitroso Compounds with (Aryl)(aryl amino)acetanitrile .. 313
22.4.2.1.4.12.3 Variation 3: Reaction of Nitroso Compounds with Nitrile Oxides or Nitrile Imides .. 313
22.4.2.1.4.13 Method 13: Reductive Cyclization of Nitroalkyl Cyanides 315
22.4.2.1.4.13.1 Variation 1: Reductive Cyclization of 3-, 4-, and 5-Nitroalkyl Cyanides ...
22.4.2.1.4.13.2 Variation 2: Electrochemical Reduction of 4- and 5-Nitroalkyl Cyanides ...
Product Subclass 3: Imidoyl (Imino) Halides

N. Nakajima and M. Ubukata
Product Subclass 4: Imidates
N. Nakajima and M. Ubukata

Synthesis of Product Subclass 4

Method 1: Reaction of Imidoyl Chlorides by Base-Catalyzed Coupling
Method 2: Conversion of Amides
Variation 1: By Alkylation
Variation 2: By Acylation
Method 3: Reaction of Ortho Esters with Amines
Method 4: Coupling of Nitriles and Isocyanides with Alcohols
Variation 1: Acid-Catalyzed Coupling (Pinner Synthesis)
Variation 2: Base-Catalyzed Coupling
Variation 3: Palladium-Catalyzed Reaction
Method 5: Synthesis from Metal Complexes and Organometallics

Applications of Product Subclass 4 in Organic Synthesis

Method 1: Introduction of Nitrogen Functionality by [3,3]-Sigmatropic Rearrangement
Variation 1: Thermal Conditions
Variation 2: Metal-Catalyzed Conditions and Asymmetric [3,3]-Sigmatropic Rearrangement
Method 2: Glycosylation
Method 3: Protection Reaction
Method 4: Cyclization
Method 5: Synthesis of Heterocyclic Compounds

Product Subclass 5: Thioimidates and Their Derivatives
N. Nakajima and M. Ubukata

Synthesis of Product Subclass 5

Method 1: Coupling of Imidoyl Halides
Method 2: Conversion of Thioamides
Variation 1: By Alkylation
Variation 2: By Acylation
Method 3: Coupling of Nitriles and Isocyanides with Thiols
Variation 1: Acid-Catalyzed Coupling
Variation 2: Base-Catalyzed Coupling
Method 4: Beckmann Rearrangement

Applications of Product Subclass 5 in Organic Synthesis

Method 1: Metalation
Method 2: Synthesis of Heterocyclic Compounds
22.4.6 Product Subclass 6: Selenoimidates (Imidoselenoates) and Derivatives
N. Nakajima and M. Ubukata

22.4.6 Synthesis of Product Subclass 6 ... 367
22.4.6.1 Method 1: Conversion of Selenoamides 367
22.4.6.1.2 Method 2: Coupling of Lithiated Hydrocarbons with Selenium and Isocyanate .. 368
22.4.6.1.3 Method 3: Reactions of Organometallic Compounds 369
22.4.6.2 Applications of Product Subclass 6 in Organic Synthesis 370
22.4.6.2.1 Method 1: Cyclization of Ene Radicals 370
22.4.6.2.2 Method 2: Use as Acyl Radical Synthons 371

22.4.7 Product Subclass 7: Telluroimidates (Imidotelluroates) and Derivatives
N. Nakajima and M. Ubukata

22.4.7 Synthesis of Product Subclass 7 ... 375
22.4.7.1 Method 1: Displacement of Chloride from Imidoyl Chlorides 375
22.4.7.2 Applications of Product Subclass 7 in Organic Synthesis 376
22.4.7.2.1 Method 1: Photolysis and Indole Derivatives Synthesis 376

22.4.8 Product Subclass 8: N-Alkyl-, N-Aryl-, and N-Hetaryl-Substituted Amidines (Imidamides)
K. Ostrowska and A. Kolasa

22.4.8 Synthesis of Product Subclass 8 ... 379
22.4.8.1 From Nitriles and Isocyanides .. 379
22.4.8.1.1 Method 1: Addition of Nitrogen Bases to Nitriles 379
22.4.8.1.1.1 Variation 1: Addition of Stoichiometric Amounts of Alkali Metal Amides .. 381
22.4.8.1.1.2 Variation 2: Addition of Amines in the Presence of Alkyllithium or Grignard Reagents 383
22.4.8.1.1.3 Variation 3: Addition of Silylimines 385
22.4.8.1.1.4 Variation 4: Addition of Ammonia or Amines to Nitriles Substituted with Electron-Withdrawing Groups 386
22.4.8.1.2 Method 2: Addition of Ammonia and Its Derivatives to Nitriles via Heterosubstituted Imines (The Pinner Method) 386
22.4.8.1.2.1 Variation 1: Modifications of the Classical Pinner Method (via Imidates) 392
22.4.8.1.2.2 Variation 2: Modifications of the Classical Pinner Method (via Thioimidates) ... 395
22.4.8.1.3 Method 3: N-Substituted and N\(^1\),N\(^1\)-Disubstituted Amidines by Addition of an Amine to a Nitrile Activated by a Lewis Acid ... 396

22.4.8.1.4 Method 4: Variously Substituted Amidines via Nitrilium Salts 400

22.4.8.1.5 Method 5: Reaction of Nitriles with Azides in the Presence of Samarium(II) Iodide .. 402

22.4.8.1.6 Method 6: Reaction of Nitriles with Nitroarenes in the Presence of Metals or Metal Salts ... 403

22.4.8.1.7 Method 7: Cyclic Amidines by Treatment with Catalytic Hydrogen Sulfide, Sulfur, Phosphorus Pentasulfide, or Carbon Disulfide 404

22.4.8.1.8 Method 8: Synthesis from Isocyanides ... 405

22.4.8.1.2 From Cumulenes ... 411

22.4.8.1.2.1 Method 1: Synthesis from Isoselenocyanates, Isothiocyanates, or Isocyanates .. 411

22.4.8.1.2.1.1 Variation 1: Addition of Amines to Benzimidoyl Isoselenocyanates, Isothiocyanates, or Isocyanates 411

22.4.8.1.2.1.2 Variation 2: 1,3-Dipolar Cycloaddition of Isothiocyanates or Isocyanates .. 412

22.4.8.1.2.1.3 Variation 3: Semicyclic Amidines Starting from Isothiocyanates or Isocyanates and α- or β-Amino Cyanides 413

22.4.8.1.2.1.4 Variation 4: Cycloaddition of Isothiocyanates with α- or β-Hydroxy Cyanides ... 415

22.4.8.1.2.1.5 Variation 5: Addition of N,N-Disubstituted Amides to Isocyanates 416

22.4.8.1.2.2 Method 2: Synthesis from Carbodiimides ... 418

22.4.8.1.2.2.1 Variation 1: Addition of Various Carbon Nucleophiles to Carbodiimides 418

22.4.8.1.2.2.2 Variation 2: Reduction of Carbodiimides .. 419

22.4.8.1.2.3 Method 3: Addition of Amines to Ketenimines 419

22.4.8.1.3 From Carboxylic Acids and Carboxylic Acid Esters ... 422

22.4.8.1.3.1 Method 1: Synthesis from Carboxylic Acids .. 422

22.4.8.1.3.1.1 Variation 1: Reaction of Carboxylic Acids with Amines Promoted by Polyporphosphoric Acid Trimethylsilyl Ester 422

22.4.8.1.3.1.2 Variation 2: Cyclic Amidines from Carboxylic Acids and Diamines 423

22.4.8.1.3.2 Method 2: Synthesis from Carboxylic or Dithiocarboxylic Acid Esters 424

22.4.8.1.4 Method 1: Synthesis from Ortho Esters, Dialkyl(diakovymethyl)amines, and tert-Butoxybis(dimethylamino)methane ... 425

22.4.8.1.4.1 Method 1: Synthesis from Ortho Esters by Condensation with Amines 425

22.4.8.1.4.2 Method 2: Synthesis from Dialkyl(diakovymethyl)amines and tert-Butoxybis(dimethylamino)methane ... 427

22.4.8.1.4.2.1 Variation 1: Condensation of Dialkyl(diakovymethyl)amines and tert-Butoxybis(dimethylamino)methane ... 427

22.4.8.1.4.2.2 Variation 2: Cyclic Amidines by the Reaction of Dialkyl(diakovymethyl)amines with Diamines ... 429

22.4.8.1.5 From Thioamides and Amides ... 429

22.4.8.1.5.1 Method 1: Synthesis from Thioamides ... 429

22.4.8.1.5.1.1 Variation 1: Reaction of Thioamides with Ammonia or Amines in the Presence of Mercury(II) Oxide or Mercury(II) Salts 431
22.4.8.1.5.2.2 Variation 2: Amination of Amides via O-Sulfonylated Imidates

22.4.8.1.5.2.3 Variation 3: Amination of Amides via O-Phosphorylated Imidates

22.4.8.1.5.2.4 Variation 4: Reaction of Amides with Activated Amines

22.4.8.1.5.2.5 Variation 5: Reaction of Amides with Azides Using Trisubstituted Phosphines as Activating Agent

22.4.8.1.6 From Imidoyl Chlorides

22.4.8.1.6.1 Method 1: Synthesis from Imidoyl Chlorides and Ammonia or Amines

22.4.8.1.6.2 Method 2: Synthesis from The Vilsmeier Reagent and Amines or Amides

22.4.8.1.7 From Thioimidates and Imidates

22.4.8.1.7.1 Method 1: Synthesis from Amines and Thioimidates or Their Salts

22.4.8.1.7.2 Method 2: Synthesis from Imidates

22.4.8.1.7.3 Method 3: Synthesis from Alkoxyiminium Salts Obtained from Imidates

22.4.8.1.8 From Amidines

22.4.8.1.8.1 Method 1: Transamination of Amidines

22.4.8.1.8.2 Method 2: Alkylation of Amidines

22.4.8.1.8.3 Method 3: Acylation of Amidines

22.4.8.1.8.4 Method 4: Urea and Thiourea Derivatives of Amidines from Isocyanates or Isothiocyanates

22.4.8.1.9 Miscellaneous Syntheses

22.4.8.1.9.1 Method 1: Oxidation of Aminals

22.4.8.1.9.2 Method 2: Reduction of Amidoximes

22.4.8.1.9.3 Method 3: Reduction of Various Compounds with the 1,3-Diaza Skeleton

22.4.8.1.9.4 Method 4: Synthesis from Reagents with a Good Leaving Group

22.4.8.1.9.5 Method 5: Decomposition of Various Nitrogen Heterocyclic Rings

22.4.8.1.9.6 Method 6: Other Methods

22.4.9 Product Subclass 9: Amidines (Imidamides) N-Substituted by Metals, Halogens, Oxygen, and Other Heteroatoms

K. Ostrowska and A. Kolasa

22.4.9.1 Synthesis of Product Subclass 9

22.4.9.1.1 N-Silylated, N,N-Disilylated, N,N’-Disilylated, and N,N,N’-Trisilylated Amidines

22.4.9.1.1.1 Method 1: Silylation of Amidines

22.4.9.1.1.2 Method 2: Synthesis from Silylated Nitrogen Compounds

22.4.9.1.1.3 Method 3: Synthesis from Non-Silylated or Silylated Carbodimides

22.4.9.1.2 N-Germanylyl, N-Stannyl, N-Plumbyl, N-Arsenyl, and N-Antimonyl Amidines

22.4.9.1.2.1 Method 1: Synthesis from Amidines
22.4.9.1.3 Boron-Substituted Amidines ... 492

22.4.9.1.3.1 Method 1: Synthesis from Amidines and Various Boron Compounds 492

22.4.9.1.4 N-Haloamidines ... 493

22.4.9.1.4.1 Method 1: \(N_1, N_1, N_2 \)-Trifluoroimidamides from Amidines and Fluorine with Sodium Fluoride as Catalyst 493

22.4.9.1.4.2 Method 2: Dehydrofluorination of \(N,N', N', N'- \)-Tetrafluoroalkane-1,1-diamines 493

22.4.9.1.4.3 Method 3: \(N \)-Fluoroamidines from Imidoyl Fluorides and Amines 494

22.4.9.1.4.4 Method 4: \(N \)-Chloroamidines from Amidines and Hypochlorites or Chlorine in the Presence of Aqueous Sodium Hydrogen Carbonate 495

22.4.9.1.4.5 Method 5: Synthesis from Amidines and \(N \)-Chlorosuccinimide 496

22.4.9.1.4.6 Method 6: Synthesis from Amidines by the Action of Fluorine in Aqueous Potassium Chloride 496

22.4.9.1.4.7 Method 7: \(N \)-Bromoamidines from Amidines and Bromine in Acetic Acid or Sodium Hypobromite 496

22.4.9.1.4.8 Method 8: \(N \)-Iodoamidines from Amidines and Iodine in the Presence of Sodium Hydroxide, Potassium Iodide, or Nitrogen Iodide 497

22.4.9.1.5 Amidoximes (N-Hydroxylated Amidines) 497

22.4.9.1.5.1 Method 1: Addition of Hydroxylamine to Nitriles 497

22.4.9.1.5.2 Method 2: Addition of Ammonia or Amines to Nitrile Oxides 498

22.4.9.1.5.3 Method 3: Cycloaddition of Nitrile Oxides to Imines, Cyanates, Isocyanates, and Related Compounds 499

22.4.9.1.5.4 Method 4: Reactions of \(N \)-Hydroxylimidoyl Chlorides with Ammonia or Amines 500

22.4.9.1.5.5 Method 5: Reactions of Imidoyl Chlorides with Hydroxylamine, O-Substituted, or \(N \)-Substituted Hydroxylamines 501

22.4.9.1.5.6 Method 6: Hydroxylamination of Amidines 502

22.4.9.1.5.7 Method 7: Reactions of Amides or Thioamides with Hydroxylamine 502

22.4.9.1.5.8 Methods 8: Other Procedures 504

22.4.9.1.6 Carbohydroximinohydrazides .. 504

22.4.9.1.6.1 Method 1: Synthesis from Nitrile Oxides and Hydrazine Derivatives 504

22.4.9.1.6.2 Method 2: Synthesis from \(N \)-Hydroxy or \(N \)-Amino Imidoyl Chlorides 505

22.4.9.1.6.3 Method 3: Transaminations with Hydroxylamine or Hydrazine Derivatives 506

22.4.9.1.6.4 Methods 4: Other Procedures 506

22.4.9.1.7 \(N \)-Sulfanylamidines .. 507

22.4.9.1.7.1 Method 1: Direct Sulfanylation of Amidines 507

22.4.9.1.7.2 Methods 2: Other Procedures 508

22.4.9.1.8 \(N \)-Sulfonylamidines .. 509

22.4.9.1.8.1 Method 1: Cycloaddition Reactions of Arylsulfonyl Isocyanates, Sulfuryl Chloride Isocyanate, or \(N \)-Sulfinylsulfonamides 509

22.4.9.1.8.2 Method 2: Cycloaddition of Arylsulfonyl Azides and Thioamides, Enamines, or Enaminones 510

22.4.9.1.8.3 Method 3: Synthesis from Ortho Esters or (Dialkoxyethyl)dialkylamines 511
22.4.9.18 Method 4: Synthesis from N-Thioacylated or N-Acylated Sulfonamides or Amides ... 512
22.4.9.18.5 Method 5: Synthesis from Sulfonylimidoyl Chlorides and Amines or from Imidoyl Chlorides and Sulfonamides 513
22.4.9.18.6 Method 6: Synthesis from Imidates or N-Sulfonylated Imidates 514
22.4.9.18.7 Method 7: Synthesis from Amidines and Sulfonyl Chlorides 515
22.4.9.18.8 Methods 8: Other Procedures .. 516
22.4.9.19 N"-Sulfanyl, N"-Sulfinyl, N"-Sulfonyl, or N"-Selanyl Carboximidohydrazides 517
22.4.9.19.1 Method 1: General Procedures for the Synthesis of N"-Sulfanyl, N"-Sulfinyl, or N"-Selanyl Carboximidohydrazides 518
22.4.9.19.2 Method 2: Synthesis of N"-Sulfonyl Carboximidohydrazides 519
22.4.9.10 Carboximidohydrazides and Carbohydrazonamides 520
22.4.9.10.1 Method 1: Addition of Hydrazine to Nitriles 520
22.4.9.10.2 Method 2: 1,2- or 1,3-Addition Reactions of Nitrilimines 522
22.4.9.10.3 Method 3: Synthesis from Isocyanates or Isothiocyanates and Hydrazine Derivatives 523
22.4.9.10.4 Method 4: Synthesis from 4-Phenyl-1,2,4-triazole-3,5-dione or Dialkyl Azodicarboxylate 525
22.4.9.10.5 Method 5: Synthesis from Carboxylic Acid Thioamides and Amides 526
22.4.9.10.6 Method 6: Synthesis from Imidoyl or Hydrazonoyl Chlorides by Nucleophilic Substitution 527
22.4.9.10.7 Method 7: Synthesis from Thiimidates and Hydrazines or Hydrazones 528
22.4.9.10.8 Method 8: Synthesis from Imidates and Various Hydrazine Derivatives 529
22.4.9.10.9 Methods 9: Other Procedures .. 530
22.4.9.11 Carbohydrazonohydrazides .. 531
22.4.9.11.1 Method 1: Synthesis from Carboxylic, Thiocarboxylic, Dithiocarboxylic Acids, Carboxylates, or Ortho Esters 531
22.4.9.11.2 Method 2: Synthesis from Carboxylic Acid Hydrazides 533
22.4.9.11.3 Method 3: Synthesis from Hydrazonoyl Halides 533
22.4.9.11.4 Method 4: Synthesis from Imidates, N-Amino Imidates, or Their Salts and Hydrazine Derivatives 535
22.4.9.11.5 Methods 5: Other Procedures .. 536
22.4.9.12 Formazans ... 536
22.4.9.12.1 Method 1: Synthesis from Aryldiazonium Salts by Azo Coupling with Aryl Hydrazones 536
22.4.9.12.2 Method 2: Synthesis from Aryldiazonium Salts by Azo Coupling with Active Methylene Compounds 538
22.4.9.12.3 Method 3: Synthesis from Hydrazonoyl Halides 539
22.4.9.12.4 Method 4: Synthesis from Various Heterocycles by Their Decomposition or Transformation 540
22.4.9.12.5 Methods 5: Other Procedures .. 541
22.4.9.13 Amidines Substituted with a Group Containing a Trivalent Phosphorus Atom 541
22.4.9.13.1 Method 1: Synthesis from Amidines and Chloro Derivatives of Phospholanes 541
22.4.9.13.2 Method 2: Synthesis from Silylated or Lithiated Amidines and Phosphorus(III) Chlorides .. 542

22.4.9.13.3 Methods 3: Other Procedures .. 542

22.4.9.14 Amidines Substituted with a Group Containing a Pentavalent Phosphorus Atom .. 542

22.4.9.14.1 Method 1: Synthesis from Amides, Imidoyl Chlorides, Imidates, or Thioimidates .. 542

22.4.9.14.2 Method 2: Synthesis from Amidines or N-Chloroamidines 544

22.4.9.14.3 Methods 3: Other Procedures ... 545

22.4.9.15 Highly Substituted Amidines ... 546

22.5 Product Class 5: 2-Functionalized Alkylidenephosphines

R. A. Aitken

22.5 Product Class 5: 2-Functionalized Alkylidenephosphines 565

22.5.1 Product Subclass 1: 2-Halophosphaalkenes [(2-Halomethylene)phos- phines] ... 565

22.5.1.1 Synthesis of Product Subclass 1 .. 565

22.5.1.1.1 Method 1: Synthesis from (2,4,6-Tri-tert-butylphenyl)phosphine with a Haloform and Potassium Hydroxide 565

22.5.1.1.2 Method 2: Synthesis from Dichloro(2,4,6-tri-tert-butylphenyl)phosphine with a Haloform and Butyllithium 566

22.5.1.1.3 Method 3: Lithiation of (Chloromethylene)(2,4,6-tri-tert-butyl- phenyl)phosphine Followed by Alkylation 567

22.5.1.1.4 Method 4: Lithium–Halogen Exchange of a (Dihalomethylene)(2,4,6-tri-tert-butylphenyl)phosphine Followed by Protonation 568

22.5.1.1.5 Method 5: Lithium–Halogen Exchange of a (Dihalomethylene)(2,4,6-tri-tert-butylphenyl)phosphine Followed by Alkylation 568

22.5.1.1.6 Method 6: Synthesis from [Bis(trimethylsilyl)methylene](2,4,6-tri-tert-butylphenyl)phosphine with Bromine and Sodium Methoxide 569

22.5.1.1.7 Method 7: Synthesis from a Dihalo(halomethyl)phosphine with Sodium Hexamethyldisilazanide 570

22.5.1.1.8 Method 8: Thermolysis of (Pentafluoroethyl)(trimethylstannyl)phos- phines .. 570

22.5.1.1.9 Method 9: Photolytic Ring Opening of a Diphosphirane 571

22.5.1.1.10 Method 10: Synthesis from Alkylidyne phosphines with Benzeneselenenyl Chloride .. 572

22.5.2 Product Subclass 2: 2-Alkoxy-, 2-(Alkylsulfanyl)-, and 2-(Alkylselanyl)phosphaalkenes (2-Substituted Methylene phosphines) 573

22.5.2.1 Synthesis of Product Subclass 2 ... 573

22.5.2.1.1 Method 1: Synthesis from Potassium Phosphide with an Alkyl or Aryl Benzoate .. 573

22.5.2.1.2 Method 2: Reaction of Lithium Phosphide with an Alkyl Formate ... 574

22.5.2.1.3 Method 3: Synthesis from Lithium Phosphide and an Acid Chloride Followed by Protonation with Tetrafluoroboric Acid 574
22.5.2.1.4 Method 4: Synthesis from Bis(trimethylsilyl)phosphine and Pivaloyl Chloride .. 575
22.5.2.1.5 Method 5: Synthesis from Bis(trimethylsilyl)phosphine and Pivaloyl Chloride Followed by Treatment with Methyl lithium and Chlorotrimethylsilane .. 576
22.5.2.1.6 Method 6: Synthesis from Bis(trimethylsilyl)phosphine with Two Equivalents of Pivaloyl Chloride 576
22.5.2.1.7 Method 7: Synthesis from (2,4,6-Tri-tert-butylphenyl)phosphine and Oxalyl Chloride ... 577
22.5.2.1.8 Method 8: Synthesis from (1,2-Dioxoethane-1,2-diyl)bis[(2,4,6-tri-tert-butylphenyl)phosphine] and Methyl lithium with Pivaloyl Chloride .. 578
22.5.2.1.9 Method 9: Synthesis from tert-Butyl(2,2-dimethylpropanoyl)phosphine with Triethylamine and an Electrophile 578
22.5.2.1.10 Method 10: Synthesis from a Metalated Acylphosphine and an Electrophile .. 579
22.5.2.1.11 Method 11: Synthesis from Tris(trimethylsilyl)phosphine and an Acid Chloride .. 580
22.5.2.1.12 Method 12: Reaction of Lithium Bis(trimethylsilyl)phosphide with an Acid Chloride .. 581
22.5.2.1.13 Method 13: Reaction of an Alkylbis(trimethylsilyl)phosphine with an Acid Chloride .. 581
22.5.2.1.14 Method 14: Synthesis from Lithium (tert-Butyldimethylsilyl)(2,4,6-tri-tert-butylphenyl)phosphide and Benzoyl Chloride 583
22.5.2.1.15 Method 15: Synthesis from [2,2-Dimethyl-1-(trimethylsiloxy)propylidene]-[(trimethylsilyl)phosphine and Hexachloroethane 583
22.5.2.1.16 Method 16: Synthesis from [2,2-Dimethyl-1-(trimethylsiloxy)propylidene]-[(trimethylsilyl)phosphine and a Diazo Compound 584
22.5.2.1.17 Method 17: Thermolysis of 4,5-Dihydro-3H-1,2,4-diazaphospholes .. 585
22.5.2.1.18 Method 18: Reaction of a (Hydroxyalkyl)phosphine with (1Z)-2,2-Dimethyl-N-(4-tolyl)propanimidoxy Chloride 586
22.5.2.1.19 Method 19: Isomerization of (1-Ethoxyvinyl)phosphines .. 586
22.5.2.1.20 Method 20: Lithium–Halogen Exchange of (E)-[Bromo(phenylsulfanyl)methylene](2,4,6-tri-tert-butylphenyl)phosphine Followed by Reaction with Methanol .. 587
22.5.2.1.21 Method 21: Lithium–Halogen Exchange of (E)-[Bromo(phenylsulfanyl)methylene](2,4,6-tri-tert-butylphenyl)phosphine Followed by Oxidative Coupling .. 588
22.5.2.1.22 Method 22: Reaction of an Alkylidyne phosphine with Benzeneseleneny Fluoride .. 588
22.5.3 Product Subclass 3: 2-Aminophosphaalkenes [(2-Aminomethylene)phosphines] .. 588
22.5.3.1 Synthesis of Product Subclass 3 .. 589
22.5.3.1.1 Method 1: Reaction of an Arylphosphine with an Amide Dimethyl Acetal .. 589
22.5.3.1.2 Method 2: Reaction of Potassium Phosphide with an Ethoxyiminium Tetrafluoroborate .. 589
22.5.3.1.3 Method 3: Reaction of a Bis(trimethylsilyl)phosphine with Dimethylformamide .. 590
Method 4: Reaction of a Lithium (Trimethylsilyl)phosphide with Dimethylformamide .. 591
Method 5: Reaction of (Phenyl)[bis(trimethylsilyl)]phosphine with an Imidoyl Chloride .. 591
Method 6: Reaction of a Chloroiminium Chloride with Tris(trimethylsilyl)phosphate .. 592
Method 7: Reaction of a Chloroiminium Chloride with Lithium Phenyl(triphenylstanny1)phosphide .. 592
Method 8: Synthesis from a Lithium Phosphide and a Nitrile Followed by Protonation .. 593
Method 9: Synthesis from a Lithium Phosphide with Acetonitrile Followed by Silylation .. 594
Method 10: Synthesis from (2,2-Dimethylpropylidyne)phosphine and a Thioketone S-Imide .. 594
Method 11: Reaction of a 2-Chloro-1-ethylquinolinium Tetrafluoroborate with Tris(hydroxymethyl)phosphine 594
Method 12: Reaction of a 1-Alkyl-2-chloroquinolinium Salt with Tris(trimethylsilyl)phosphate .. 595
Method 13: Reaction of 2-Chloro-1-methylquinolinium Tetrafluoroborate with Sodium Dicyanophosphide Followed by Sodium Diethyl Phosphite .. 595
Method 14: Reaction of Phosphamethinecyanine Tetrafluoroborates with Sodium Dicyanophosphide .. 596
Method 15: [2+2] Cycloaddition of Tri-tert-butylazete and a Phosphaalkyne .. 596
Method 16: Diels–Alder Reaction of [(Diisopropylamino)methylidyne]phosphine .. 597
Method 17: Synthesis from [2,2-Dimethyl-1-[phenyl(trimethylsilyl)amino]propylidene]phenylphosphine and Benzoyl Chloride .. 598
Method 18: Synthesis from (2,3-Di-tert-butycycloprop-2-en-1-yldene)-(mesityl)phosphine and an Ynamine 598

Product Class 6: 2-Functionalized Arsaalkenes and α-Functionalized Arsonium Ylides
R. A. Aitken

Product Class 6: 2-Functionalized Arsaalkenes and α-Functionalized Arsonium Ylides .. 601
Product Subclass 1: 2-Haloarsaalkenes 601
Synthesis of Product Subclass 1 .. 601
Method 1: Lithium–Halogen Exchange of a [(2,2-Dibromo)methylene]arsine Followed by Methanolysis 601
Product Subclass 2: 2-Alkoxyarsaalkenes 602
Synthesis of Product Subclass 2 .. 602
22.6.2.1.1 Method 1: Reaction of Bis(trimethylsilyl)arsines and Pivaloyl Chloride Followed by Thermal Rearrangement .. 602

22.6.2.1.2 Method 2: Reaction of 2,4,6-Trimethylbenzoyl Chloride and Lithium Arsenide–1,2-Dimethoxyethane Complex in a 1:2 Ratio 603

22.6.2.1.3 Method 3: Reaction of 2,4,6-Trimethylbenzoyl Chloride and Lithium Arsenide–Tetrahydrofuran Complex in a 2:3 Ratio 604

22.6.3 Product Subclass 3: 2-Aminoarsaalkenes .. 605

22.6.3.1 Synthesis of Product Subclass 3 .. 605

22.6.3.1.1 Method 1: Reaction of Phenylbis(trimethylsilyl)arsine and an Imidoyl Chloride ... 605

22.6.3.1.2 Method 2: Reaction of Phenylbis(trimethylsilyl)arsine and Dimethylformamide ... 605

22.6.3.1.3 Method 3: Reaction of a Lithium Trimethylsilylarsenide and Dimethylformamide ... 606

22.6.3.1.4 Method 4: Reaction of (2,4-Di-tert-butyl-6-methylphenyl)arsine and an Amide Dimethyl Acetal ... 606

22.6.3.1.5 Method 5: Reaction of Tris(trimethylsilyl)arsine and a 1-Alkyl-2-chloroquinolinium Tetrafluoroborate ... 607

22.6.4 Product Subclass 4: α-Sulfur- and Selenium-Substituted Arsonium Ylides 607

22.6.4.1 Synthesis of Product Subclass 4 .. 607

22.6.4.1.1 Method 1: Reaction of a Stabilized Arsonium Ylide and Benzenesulfenyl Chloride ... 607

22.6.4.1.2 Method 2: Reaction of Triphenyl(phenylsulfanylmethyl)arsonium Iodide with Triethylamine and Acetyl Chloride .. 608

22.6.4.1.3 Method 3: Reaction of Triphenylarsine Oxide with Dimethyl(2-oxo-2-phenylethyl)sulfonium Tetraphenylborate and Acetic Anhydride .. 608

22.6.4.1.4 Method 4: Reaction of [2-(4-Bromophenyl)-2-oxoethylidene]triphenylarsorane and Phenylsulfine .. 609

22.6.4.1.5 Method 5: Reaction of [(Ethoxy carbonyl)methylene]triphenylarsorane and Phenylsulfonyl Chloride .. 610

22.6.4.1.6 Method 6: Reaction of a Stabilized Arsonium Ylide with Benzeneselenenyl Iodide .. 610

22.6.4.1.6.1 Variation 1: With No Added Base .. 610

22.6.4.1.6.2 Variation 2: In the Presence of Triethylamine .. 611

22.6.4.1.7 Method 7: Reaction of Triphenyl[(phenylselanyl)methyl]arsonium Iodide with Triethylamine and Acetyl Chloride .. 611

22.6.4.1.8 Method 8: Reaction of (2-Oxo-2-phenylethyl)triphenylarsonium Tetrafluoroborate and Diphenyl Selenoxide in the Presence of Dicyclohexylcarbodiimide .. 612

22.6.4.2 Applications of Product Subclass 4 in Organic Synthesis .. 613

22.6.4.2.1 Method 1: Reaction of Triphenyl[(phenylsulfanyl)methyl]arsonium Iodide with Butyllithium .. 613
22.6.5 Product Subclass 5: α-Nitroarsonium Ylides .. 614
22.6.5.1 Synthesis of Product Subclass 5 .. 614
22.6.5.1.1 Method 1: Reaction of Dichloro(triphenyl)arsorane with (Nitromethyl)benzene and Triethylamine .. 614
22.6.5.1.2 Method 2: Reaction of Triphenylarsine Oxide with Nitromethane and Phosphorus Pentoxide 614
22.6.5.1.3 Method 3: Reaction of Triphenylarsine Oxide with Nitromethane and Acetic Anhydride .. 615

22.7 Product Class 7: Ortho Acid Derivatives

22.7.1 Product Subclass 1: Trihalomethyl Compounds
G. K. S. Prakash and J. Hu

22.7.1 Product Subclass 1: Trihalomethyl Compounds .. 617
22.7.1.1 Synthesis of Product Subclass 1 .. 617
22.7.1.1 Compounds Containing a Trifluoromethyl Group .. 617
22.7.1.1.1 Nucleophilic Trifluoromethylation and Perfluoroalkylation .. 618
22.7.1.1.1.1 Method 1: Reaction of Trimethyl(trifluoromethyl)silane and Other Organosilicon Reagents .. 618
22.7.1.1.1.1.1 Variation 1: Fluoride-Induced Chemoselective Nucleophilic Trifluoromethylation and Perfluoroalkylation 619
22.7.1.1.1.1.2 Variation 2: Stereoselective Nucleophilic Trifluoromethylation with Trimethyl(trifluoromethyl) silane .. 621
22.7.1.1.1.1.3 Variation 3: Trifluoromethylation and Perfluoroalkylation by Copper(I)-Mediated Oxidative Addition .. 622
22.7.1.1.1.2 Method 2: Reaction of Trifluoromethane and Other Polyfluoroalkanes .. 623
22.7.1.1.1.3 Method 3: Reaction of Hemiaminals of Trifluoroacetalddehyde .. 624
22.7.1.1.1.3.1 Variation 1: Using the Silylated Morpholino Hemiaminal of Trifluoroacetalddehyde .. 625
22.7.1.1.1.3.2 Variation 2: Using Silylated and Non-Silylated Piperazino Hemiaminals of Trifluoroacetalddehyde .. 625
22.7.1.1.1.4 Method 4: Reaction of 2,2,2-Trifluoro-1-phenylethanone and Its Adduct .. 626
22.7.1.1.1.5 Method 5: Reaction of Trifluorohalomethanes and Perfluorohaloalkanes .. 627
22.7.1.1.1.6 Method 6: Reaction of Trifluoroacetic Acid and Trifluoromethanesulfinic Acid Derivatives .. 628
22.7.1.1.1.7 Method 7: Reaction of Phenyl Trifluoromethyl Sulfide, Sulfoxide, or Sulfone .. 629
22.7.1.1.1.8 Method 8: Reaction of Fluorinated Organometallic Reagents .. 630
22.7.1.1.2 Electrophilic Trifluoromethylation or Perfluoroalkylation .. 631
22.7.1.1.2.1 Method 1: Reaction of Aryl(perfluoroalkyl)iodonium Salts .. 631
22.7.1.1.2.2 Method 2: Reaction of Aryl(polyfluoroalkyl)iodonium Salts .. 632
22.7.1.1.2.3 Method 3: Reaction of 5-(Perfluoroalkyl)dibenzo thiophenium, 5-(Perfluoroalkyl)dibenzoselenophenium, and 5-(Perfluoroalkyl)dibenzotellurophenium Salts .. 632
<table>
<thead>
<tr>
<th>Section</th>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.7.1.1.3</td>
<td>Method 1:</td>
<td>Addition to Unsaturated Systems</td>
</tr>
<tr>
<td>22.7.1.1.3</td>
<td>Method 2:</td>
<td>Substitution Reactions</td>
</tr>
<tr>
<td>22.7.1.1.4</td>
<td>Method 1:</td>
<td>Halogen-Exchange Reactions</td>
</tr>
<tr>
<td>22.7.1.1.4</td>
<td>Method 2:</td>
<td>Reaction of Trifluoroacetic Acid Derivatives with Organometallic Compounds</td>
</tr>
<tr>
<td>22.7.1.1.4</td>
<td>Method 3:</td>
<td>Reaction of Sulfur Tetrafluoride and Related Reagents</td>
</tr>
<tr>
<td>22.7.1.1.4</td>
<td>Method 4:</td>
<td>Reaction of Hydrogen Fluoride and Amine Complexes</td>
</tr>
<tr>
<td>22.7.1.1.4</td>
<td>Method 5:</td>
<td>Electrochemical Fluorination</td>
</tr>
<tr>
<td>22.7.1.1.4</td>
<td>Method 6:</td>
<td>Perfluorination Reactions with Elemental Fluorine</td>
</tr>
<tr>
<td>22.7.1.1.4</td>
<td>Method 7:</td>
<td>Electrophilic Fluorination of (2,2-Difluorovinyl)oxy)silanes</td>
</tr>
<tr>
<td>22.7.1.2</td>
<td>Method 1:</td>
<td>Reaction of Trimethyl(trichloromethyl)silane</td>
</tr>
<tr>
<td>22.7.1.2</td>
<td>Method 2:</td>
<td>Reaction of Chloroform with Base</td>
</tr>
<tr>
<td>22.7.1.2</td>
<td>Method 3:</td>
<td>Reaction of Carbon Tetrachloride with a Lewis Acid</td>
</tr>
<tr>
<td>22.7.1.2</td>
<td>Method 4:</td>
<td>Reaction of Carbon Tetrachloride with a Reducing Agent</td>
</tr>
<tr>
<td>22.7.1.2</td>
<td>Method 5:</td>
<td>Halogen-Exchange Reactions Using Metal Chlorides</td>
</tr>
<tr>
<td>22.7.1.2</td>
<td>Method 6:</td>
<td>Use of Phosphorus Pentachloride as the Chlorinating Agent</td>
</tr>
<tr>
<td>22.7.1.2</td>
<td>Method 7:</td>
<td>Reaction of Elemental Chlorine</td>
</tr>
<tr>
<td>22.7.1.2</td>
<td>Method 8:</td>
<td>Reaction of Trichloroacetic Acid and Its Derivatives</td>
</tr>
<tr>
<td>22.7.1.2</td>
<td>Method 9:</td>
<td>Reaction of Chlortal</td>
</tr>
<tr>
<td>22.7.1.3</td>
<td>Method 1:</td>
<td>Reaction of Elemental Bromine or Iodine</td>
</tr>
<tr>
<td>22.7.1.3</td>
<td>Method 2:</td>
<td>Reaction of Tribromomethane with Base</td>
</tr>
<tr>
<td>22.7.1.3</td>
<td>Method 3:</td>
<td>Reaction of Tribromoacetic Acid and Its Derivatives</td>
</tr>
<tr>
<td>22.7.1.3</td>
<td>Method 4:</td>
<td>Reaction of Carbon Tetrabromide with a Reducing Agent</td>
</tr>
<tr>
<td>22.7.1.3</td>
<td>Method 5:</td>
<td>Reaction of N-Bromosuccinimide</td>
</tr>
<tr>
<td>22.7.1.3</td>
<td>Method 6:</td>
<td>Halogen-Exchange Reactions</td>
</tr>
<tr>
<td>22.7.1.3</td>
<td>Method 7:</td>
<td>Reaction of (Chlorodifluoromethyl)trimethylsilane and Related Compounds</td>
</tr>
<tr>
<td>22.7.1.3</td>
<td>Method 8:</td>
<td>Radical Reactions with Elemental Halogens</td>
</tr>
<tr>
<td>22.7.1.3</td>
<td>Method 9:</td>
<td>Reaction of an N-Halosuccinimide</td>
</tr>
<tr>
<td>22.7.1.3</td>
<td>Method 10:</td>
<td>Halogen-Exchange Reactions</td>
</tr>
<tr>
<td>22.7.1.3</td>
<td>Method 11:</td>
<td>Electrophilic Halogenation of (2,2-Difluorovinylkoxy)silanes</td>
</tr>
<tr>
<td>22.7.1.3</td>
<td>Method 12:</td>
<td>Reaction of Difluorohaloacetic Acid Derivatives</td>
</tr>
<tr>
<td>22.7.1.5</td>
<td>Method 1:</td>
<td>Halogen-Exchange Reactions</td>
</tr>
<tr>
<td>22.7.1.5</td>
<td>Method 2:</td>
<td>Reaction of Dichlorofluoromethane with a Base</td>
</tr>
<tr>
<td>22.7.1.5</td>
<td>Method 3:</td>
<td>Reaction of Trichlorofluoromethane</td>
</tr>
<tr>
<td>22.7.1.5</td>
<td>Method 4:</td>
<td>Reaction of Dichlorofluoromethanesulfonyl Acetate and Trifluoroacetate</td>
</tr>
</tbody>
</table>
22.7.1.5.5 Method 5: Reaction of (2,2-Dichlorocyclopropyl)methanol or 2,2-(Dibromocyclopentyl)methanol with Pyridinium Poly(hydrogen fluoride) 654
22.7.1.5.6 Method 6: Reaction of the Lithium or Zinc Carbenoid Generated from Tribromofluoromethane ... 655
22.7.1.5.7 Method 7: Electrochemical Fluorination 656
22.7.1.6 Compounds Containing a Bromochlorofluoromethyl, Bromofluoroiodomethyl, or Chlorofluoroiodomethyl Group .. 656
22.7.1.6.1 Method 1: Halogen-Exchange Reactions 656
22.7.1.6.2 Method 2: Reaction of Elemental Halogens 657
22.7.1.6.3 Method 3: Reaction of Dibromochlorofluoromethane and Sodium Dithionite 657
22.7.1.6.4 Method 4: Electrophilic Halogenation or Halofluorination 658
22.7.1.6.5 Method 5: Halogenation of Enolates Generated In Situ 658
22.7.1.7 Compounds Containing a Bromodichloromethyl, Dichloroiodomethyl, Dibromochloromethyl, Dibromoiodomethyl, Chlorodiiodomethyl, or Bromodiiodomethyl Group .. 658
22.7.1.7.1 Method 1: Electrophilic Halogenation of Alkenes with Halogens 659
22.7.1.7.2 Method 2: 1,2-Addition of Alkenes to Alkyl Hypohalites 659
22.7.1.7.3 Method 3: Reaction of Bromodichloromethane or Dibromochloromethane with a Base 659
22.7.1.7.4 Method 4: Halogen-Exchange Reactions 660
22.7.1.7.5 Method 5: Halogenation of Enolates Generated In Situ 661
22.7.1.8 Compounds Containing the Bromochloroiodomethyl Group 662
22.7.1.8.1 Method 1: Reaction of Bromochloroiodomethane and Base 662
22.7.1.8.2 Method 2: Halogen-Exchange Reactions 662

22.7.2 Product Subclass 2: Ortho Esters and Halogenated Derivatives
H. Lebel and M. Grenon

22.7.2.1 Synthesis of Product Subclass 1 ... 669
22.7.2.1.1 \(\alpha,\alpha\)-Dihalogenated Ethers and \(\alpha\)-Halogenated Acetals 670
22.7.2.1.1.1 Method 1: Halogenation of Ethers 670
22.7.2.1.1.2 Method 2: Halogen Substitution Reactions 671
22.7.2.1.1.2.1 Variation 1: Preparation of \(\alpha,\alpha\)-Difluoro Ethers from \(\alpha,\alpha\)-Difluoro-\(\alpha\)-haloalkanes 671
22.7.2.1.1.2.2 Variation 2: Preparation of Ortho Esters from Trihaloalkanes 672
22.7.2.1.1.3 Method 3: Alcohols of \(\alpha,\alpha\)-Difluorinated Alkenes 673
22.7.2.1.1.4 Method 4: Oxidative Fluorodesulfurization of Thiocarboxylic O-Acid Esters .. 674
22.7.2.1.1.4.1 Variation 1: Fluorination with (Diethylamino)sulfur Trifluoride 676
22.7.2.1.1.4.2 Variation 2: Fluorination with Bromine Trifluoride 677
22.7.2.1.1.5 Method 5: Halogenation of Esters and Anhydrides 678
22.7.2.1.1.6 Method 6: Oxidative Fluorodesulfurization of 5,6-Dihydro-4H-1,3-dithiin-1-ium Salts 679
22.7.2.1.7 Method 7: Halogenation of Acetals .. 680
22.7.2.1.8 Method 8: Electrochemical Oxidation of 2-Chloro-5,6-dihydro-1,4-dioxin 682
22.7.2.1.9 Method 9: Reactions of 3,4,5,6-Tetrachlorobenzo-1,2-quinone with Benzyl Halides .. 682
22.7.2.1.2 Ortho Esters ... 683
22.7.2.1.2.1 Method 1: Electrochemical Oxidation of Acetals to Ortho Esters 683
22.7.2.1.2.2 Method 2: Photoinduced Electron Transfer between Tetrachlorobenzo-1,4-quinone and Benzodioxoles 685
22.7.2.1.2.3 Method 3: Alcoholysis of Cyclopropenone Ketals 685
22.7.2.1.2.4 Method 4: Elimination/Intramolecular Cyclization of Selenoglycosides 687
22.7.2.1.2.5 Method 5: Nucleophilic Substitution Reactions on Orthocarbonates 688
22.7.2.1.2.6 Method 6: Nucleophilic Substitution Reactions on Cyano Ortho Esters 689
22.7.2.1.2.7 Method 7: Alcoholysis of Amide Acetals 690
22.7.2.1.2.8 Method 8: Alcoholysis of Activated Amides 691
22.7.2.1.2.9 Method 9: Nucleophilic Addition to Trialkoxycarbenium Salts 693
22.7.2.1.2.10 Method 10: Alcoholysis of Dialkoxybenzenes 693
22.7.2.1.2.11 Method 11: Alcoholysis of Nitriles 695
22.7.2.1.2.12 Method 12: Alcoholysis of Imidic Esters 696
22.7.2.1.2.13 Method 13: Alcoholysis of Ketene Acetals 696
22.7.2.1.2.14 Method 14: Transition-Metal-Catalyzed Reactions of Ketene Acetals with α-Diazo Ketones 698
22.7.2.1.2.15 Method 15: [4 + 2] Cycloadditions of Ketene Acetals with α,β-Unsaturated Carbonyl Compounds 700
22.7.2.1.2.16 Method 16: [4 + 2] Cycloadditions of Ketene Acetals with Acetylketene or Formylketene 702
22.7.2.1.2.17 Method 17: [2 + 2] Cycloadditions of Ketene Acetals with Carbonyl Compounds 703
22.7.2.1.2.18 Method 18: Transition-Metal-Catalyzed Reactions of 1,1-Diethoxyethane with α-Dicarbonyl Compounds 705
22.7.2.1.2.19 Method 19: Alcoholysis of Alkoxylkynes 706
22.7.2.1.2.20 Method 20: Reactions of Lactones with Alkylating Reagents and Alcohols 707
22.7.2.1.2.21 Method 21: Acid-Catalyzed Reactions of Lactones with Diols 708
22.7.2.1.2.22 Method 22: Trimethylsilyl Trifluoromethanesulfonate Catalyzed Reactions of Lactones with Diols and Methoxytrimethylsilane 709
22.7.2.1.2.23 Method 23: Reactions of Esters with Epoxides 711
22.7.2.1.2.24 Method 24: Lewis Acid Mediated Rearrangements of Epoxy Esters 712
22.7.2.1.2.25 Method 25: Transition-Metal-Catalyzed Rearrangements of Epoxy Esters 713
22.7.2.1.2.26 Method 26: Lewis Acid Catalyzed Rearrangements of Oxetane Esters 714
22.7.2.1.2.27 Method 27: Synthesis from Dithioesters and Dialkoxydibutylstannanes 715
22.7.2.1.2.28 Method 28: Preparation of Carbohydrate Ortho Esters from O-Acylglycosyl Derivatives 716
22.7.2.1.2.28.1 Variation 1: From O-Acylglycosyl Halides 717
22.7.2.1.2.28.2 Variation 2: From O-Acylglycosyl Trichloroimidates 719
22.7.2.1.2.29 Method 29: [2 + 2] Electroyclic Ring Opening of 2,2-Dimethoxycyclobutenones 720
22.7.2.1.2.30 Method 30: [3 + 2] Cycloadditions of Carbonyl Ylides with Carbonyl Compounds 721
22.7.2.1.31 Method 31: Cycloadditions of Methylene cyclopropanone Ketals with Carbonyl Compounds .. 723
22.7.2.1.32 Method 32: Claisen Rearrangement of Phenols with 3,3,3-Triethoxypropene .. 726
22.7.2.1.33 Method 33: Alcoholysis of α,α-Dialkoxy cyclopropyl Esters .. 727
22.7.2.1.34 Method 34: Alcoholysis of α,α-Dihalocyclopropyl Ketones .. 728
22.7.2.1.35 Method 35: Exchange of Alkoxy Groups by the Reactions of Ortho Esters with Alcohols (Transorthoesterification) .. 728
22.7.2.1.35.1 Variation 1: Reactions with Diols ... 729
22.7.2.1.35.2 Variation 2: Reactions with Triols ... 730
22.7.2.1.35.3 Variation 3: Alcoholysis of Trithioortho Esters ... 732
22.7.2.1.35.4 Variation 4: Alcoholysis of Ortho Esters with Alcohols (Transorthoesterification) 732
22.7.2.1.36 Method 36: The Wittig Reaction .. 733
22.7.2.1.37 Method 37: Addition of Anions Containing an Ortho Ester Fragment 733
22.7.2.1.37.1 Variation 1: Addition of the Anion of 1-Ethynyl-4-methyl-2,6,7-trioxabicyclo[2.2.2]octane to Various Electrophiles .. 735
22.7.2.1.37.2 Variation 2: Addition of the Anion of (E)-1-(2-Iodovinyl)-4-methyl-2,6,7-trioxabicyclo[2.2.2]octane to Various Electrophiles .. 736
22.7.2.1.38 Method 38: Transition-Metal-Catalyzed Coupling Reactions ... 737
22.7.2.1.39 Method 39: Preparation of 3,3,3-Triethoxypropene and 3,3,3-Triethoxypropyne .. 738
22.7.2.1.39.1 Variation 1: Preparation of 3,3,3-Triethoxypropyne .. 739
22.7.2.1.39.2 Variation 2: Preparation of 3,3,3-Triethoxypropyne .. 740

22.7.3 Product Subclass 3: Trithioortho Esters and Halogenated Derivatives
H. Lebel and M. Grenon

22.7.3 Synthesis of Product Subclass 3 ... 749
22.7.3.1 α-Halogenated Dithioacetals and α,α-Dihalogenated Sulfides .. 749
22.7.3.1.1 Method 1: Halogenation of Sulfides .. 749
22.7.3.1.1.1 Variation 1: Fluorination of Sulfides .. 749
22.7.3.1.1.2 Variation 2: Electrolytic Fluorination of Sulfides .. 751
22.7.3.1.1.3 Variation 3: Chlorination of Sulfides .. 752
22.7.3.1.1.4 Variation 4: Bromination of Sulfides .. 753
22.7.3.1.1.5 Method 2: Halogen Substitution Reactions of α,α-Difluoro-α-haloalkanes .. 754
22.7.3.1.1.5.1 Variation 1: Substitution by Thiolates .. 754
22.7.3.1.1.5.2 Variation 2: Substitution by Thiocyanates .. 755
22.7.3.1.1.6 Method 3: Oxidative Desulfurization–Fluorination of Trithioortho Esters To Give α,α-Difluoro Sulfides .. 756
22.7.3.1.1.7 Method 4: Oxidative Desulfurization–Fluorination of Dithioesters To Give α,α-Difluoro Sulfides .. 757
22.7.3.1.1.8 Method 5: Halogenation of Dithioacetals .. 758
22.7.3.1.1.8.1 Variation 1: Chlorination of Dithioacetals with N-Chlorosuccinimide .. 759
22.7.3.1.1.8.2 Variation 2: Chlorination of Dithioacetals with Sulfuryl Chloride .. 759
22.7.3.1.1.9 Method 6: Halogenation of Ketene Dithioketals .. 760
22.7.3.1.1 Trithioortho Esters .. 761
22.7.3.1.2.1 Method 1: Thionation of Dithioacetals with Disulfides 761
22.7.3.1.2.2 Method 2: Transorthoesterification of Ortho Esters with Thiols 762
22.7.3.1.2.3 Method 3: Sulfur–Metal Exchange of Thioorthocarbonates 762
22.7.3.1.2.4 Method 4: From Disubstituted Trithiocarbonates by Nucleophilic Addition at the Sulfur Atom of the Thione Group 763
22.7.3.1.2.4.1 Variation 1: Addition of Organolithium Reagents to Trithiocarbonates 763
22.7.3.1.2.4.2 Variation 2: Addition of Allylsilanes to Trithiocarbonates 765
22.7.3.1.2.5 Method 5: From Disubstituted Trithiocarbonates by Reaction with Thiocarbonyl Ylides 765
22.7.3.1.2.6 Method 6: From Tris(methylsulfanyl)carbenium Salts 766
22.7.3.1.2.7 Method 7: Thiolysis of Ketene Dithioacetals 768
22.7.3.1.2.8 Method 8: Addition of Tris(alkylsulfanyl)methanes and Tris(aryl sulfanyl)methanes 769
22.7.3.1.2.8.1 Variation 1: Additions to Alkyl Halides 770
22.7.3.1.2.8.2 Variation 2: 1,2-Addition to Aldehydes and Ketones 771
22.7.3.1.2.8.3 Variation 3: 1,4-Addition to α,β-Unsaturated Carbonyl Compounds 771

22.7.4 Product Subclass 4: Triselenoortho Esters and Halogenated Derivatives
H. Lebel and M. Grenon

22.7.4.1 Synthesis of Product Subclass 4 775
22.7.4.1.1 Method 1: Dimerization of Selenocarbonyl Fluorides 776
22.7.4.1.2 Method 2: Halogen Exchange of 2,4-Difluoro-2,4-bis(perfluoroalkyl)-1,3-diselenetanes 778
22.7.4.1.3 Method 3: Alkylation of Aldehydes with Benzeneselenenyl Bromide 778
22.7.4.1.4 Method 4: Selenation of Diselenanes with Diselenides 779
22.7.4.1.5 Method 5: Halogen Substitution Reactions 780
22.7.4.1.5.1 Variation 1: From Bromoform and Carbon Tetrabromide 780
22.7.4.1.5.2 Variation 2: From Dichloromethyl Methyl Ether 781
22.7.4.1.6 Method 6: Transorthoesterification of Ortho Esters 782
22.7.4.1.6.1 Variation 1: Lewis Acid Catalyzed Transorthoesterification of Ortho Esters with Tris(methylselenyl)borane 783
22.7.4.1.6.2 Variation 2: Transorthoesterification of Ortho Esters with Tris(aryl selenyl)methanes 786
22.7.4.1.7 Method 7: Metalation of Selenooorthocarbonates 784
22.7.4.1.8 Method 8: Reduction of Tris(alkylselenyl)carbenium Salts 785
22.7.4.1.9 Method 9: Acid-Mediated Condensation of Benzeneselenol 785
22.7.4.1.10 Method 10: Addition of Tris(alkylselenyl)methanes and Tris(aryl selenyl)methanes 786
22.7.5 **Product Subclass 5: Tritelluroortho Esters and Halogenated Derivatives**

H. Lebel and M. Grenon

22.7.5.1 Synthesis of Product Subclass 5

- Method 1: Dimerization of Tellurocarbonyl Fluorides
- Method 2: Halogen Exchange of 2,4-Difluoro-2,4-bis(perfluoroalkyl)-1,3-ditelluretanes
- Method 3: Preparation of Tris(aryltellanyl)carbenium Ions

22.7.6 **Product Subclass 6: Ortho Amides (Alkane-1,1,1-triamines)**

W. Kantlehner

22.7.6.1 Synthesis of Product Subclass 6

- Method 1: Substitution of Cyano Groups
- Method 2: Substitution of Halogens
- Method 3: Substitution of Amine Derivatives
- Method 4: Substitution of Alkoxy Groups
- Method 5: Substitution of Alkylsulfanyl Groups
- Method 6: Reaction of Guanidinium Salts
- Method 7: Reaction of Pyrimidinium Salts with Amines
- Method 8: Reaction of Tetrazolium Salts with Ammonia
- Method 9: Reaction of Isocyranates
- Method 10: Reaction of Tetraaminoethenes with NH-Acidic Compounds
- Method 11: Reaction of Azoalkenes with CH₂-Acidic Compounds
- Method 12: Modification of Existing Ortho Amides
- Method 13: Cycloaddition Reactions
- Method 14: Other Methods
22.7.7 Product Subclass 7: Tris(diorganophosphino)methanes and Derivatives

W. Kantlehner

22.7.7 Synthesis of Product Subclass 7

22.7.7.1 Method 1: Alklation of Lithium Tris(dimethylphosphino)methanides

22.7.7.2 Method 2: Phosphorylation of Lithium Bis(diorganophosphino)methanides

22.7.7.3 Method 3: Phosphorylation of [Diphenyl(thiophosphoryl)]methyllithium

22.7.7.4 Method 4: Synthesis of Phosphorylated Methanes by Addition of Oxygen, Sulfur, Selenium, and Azides

22.7.7.5 Method 5: Synthesis of Phosphonium Iodides

Keyword Index

Author Index

Abbreviations