Volume 23:
Three Carbon–Heteroatom Bonds:
Ketenes and Derivatives

Preface ... V

Table of Contents ... IX

Introduction
R. L. Danheiser ... 1

23.1 Product Class 1: Ketene
T. T. Tidwell ... 15

23.2 Product Class 2: Silylketenes
D. M. George and R. L. Danheiser 53

23.3 Product Class 3: Halogen-Substituted Ketenes
T. T. Tidwell ... 101

23.4 Product Class 4: Oxygen-Substituted Ketenes
C. Palomo, M. Oiarbide, and J. M. Aizpurua 169

23.5 Product Class 5: Sulfur- and Selenium-Substituted Ketenes
C. Palomo, J. M. Aizpurua, I. Ganboa, and E. Gómez-Bengoa 199

23.6 Product Class 6: Nitrogen- and Phosphorus-Substituted Ketenes
C. Palomo and J. M. Aizpurua 221

23.7 Product Class 7: Alkylideneketenes
W. F. Austin, J. J. Kowalczyk, G. B. Dudley, and R. L. Danheiser 245

23.8 Product Class 8: Cyanoketenes
H. W. Moore ... 259

23.9 Product Class 9: Acylketenes
G. Kollenz and S. Ebner ... 271

23.10 Product Class 10: Imidoylketenes
G. Kollenz .. 351

23.11 Product Class 11: Alk-1-ynylketenes
H. W. Moore ... 381

23.12 Product Class 12: Aryl- and Hetarylketenes
T. T. Tidwell ... 391

23.13 Product Class 13: Alkenylketenes
R. L. Danheiser, G. B. Dudley, and W. F. Austin 493

23.14 Product Class 14: Alkyl- and Cycloalkylketenes
T. T. Tidwell ... 569
<table>
<thead>
<tr>
<th>Product Class</th>
<th>Title</th>
<th>Author(s)</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>23.15</td>
<td>Product Class 15: Bisketenes</td>
<td>T. T. Tidwell</td>
<td>679</td>
</tr>
<tr>
<td>23.16</td>
<td>Product Class 16: Sulfur, Selenium, and Tellurium Analogues of Ketenes</td>
<td>C. Spanka and E. Schaumann</td>
<td>735</td>
</tr>
<tr>
<td>23.17</td>
<td>Product Class 17: Ketenimines</td>
<td>H. Perst</td>
<td>781</td>
</tr>
</tbody>
</table>

Keyword Index ... 899
Author Index ... 1013
Abbreviations .. 1049
Table of Contents

Introduction
R. L. Danheiser

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>23.1</td>
<td>Product Class 1: Ketene</td>
<td>15</td>
</tr>
<tr>
<td>23.1.1</td>
<td>Method 1: Ketene from Acetic Acid, Acid Anhydrides, and Esters</td>
<td>19</td>
</tr>
<tr>
<td>23.1.2</td>
<td>Method 2: Dehydrohalogenation of Acetyl Halides</td>
<td>19</td>
</tr>
<tr>
<td>23.1.2.1</td>
<td>Variation 1: Ionization of Acetyl Halides to Acylium Ions and Deprotonation</td>
<td>21</td>
</tr>
<tr>
<td>23.1.3</td>
<td>Method 3: Pyrolysis of Ketene Dimer</td>
<td>22</td>
</tr>
<tr>
<td>23.1.4</td>
<td>Method 4: Photolysis of Cyclobutanones and Thermolysis</td>
<td>22</td>
</tr>
<tr>
<td>23.1.5</td>
<td>Method 5: Dehalogenation of Haloacetyl Halides</td>
<td>23</td>
</tr>
<tr>
<td>23.1.6</td>
<td>Method 6: Pyrolysis of Acetone</td>
<td>24</td>
</tr>
<tr>
<td>23.1.7</td>
<td>Method 7: Wolff Rearrangement of Diazoacetaldehyde</td>
<td>24</td>
</tr>
<tr>
<td>23.1.8</td>
<td>Method 8: Elimination from Alkynyl Ethers</td>
<td>25</td>
</tr>
<tr>
<td>23.1.2</td>
<td>Applications of Product Class 1 in Organic Synthesis</td>
<td>26</td>
</tr>
<tr>
<td>23.1.2.1</td>
<td>Method 1: Nucleophilic Addition to Ketene</td>
<td>26</td>
</tr>
<tr>
<td>23.1.2.1.1</td>
<td>Variation 1: Enol Acetates from the Reaction of Ketene with Aldehydes and Ketones</td>
<td>28</td>
</tr>
<tr>
<td>23.1.2.2</td>
<td>Method 2: Electrophilic and Radical Additions to Ketene</td>
<td>29</td>
</tr>
<tr>
<td>23.1.2.3</td>
<td>Method 3: Dimerization by [2+2] Cycloaddition</td>
<td>32</td>
</tr>
<tr>
<td>23.1.2.4</td>
<td>Method 4: [2+2] Cycloaddition of Ketene with Alkenes and Dienes</td>
<td>32</td>
</tr>
<tr>
<td>23.1.2.5</td>
<td>Method 5: [2+2] Cycloaddition of Ketene with Alkynes</td>
<td>34</td>
</tr>
<tr>
<td>23.1.2.6</td>
<td>Method 6: [2+2] Cycloaddition of Ketene with Imines</td>
<td>35</td>
</tr>
<tr>
<td>23.1.2.7</td>
<td>Method 7: [2+2] and [4+2] Cycloaddition of Ketene with Carbonyl Groups</td>
<td>36</td>
</tr>
<tr>
<td>23.1.2.7.1</td>
<td>Variation 1: β-Hydroxy Esters by Titanium Alkoxide Induced Addition of Carbonyl Compounds to Ketene</td>
<td>42</td>
</tr>
<tr>
<td>23.1.2.8</td>
<td>Method 8: [2+2] Cycloaddition of Ketene with Azobenzenes</td>
<td>42</td>
</tr>
<tr>
<td>23.1.2.9</td>
<td>Method 9: [2+1] Cycloaddition of Ketene with Sulfur Dioxide</td>
<td>43</td>
</tr>
<tr>
<td>23.1.2.10</td>
<td>Method 10: [2+1] Cycloaddition of Ketene with Diazomethane</td>
<td>44</td>
</tr>
<tr>
<td>23.1.2.11</td>
<td>Method 11: [4+2] Cycloaddition of Ketene with Heterodiienes</td>
<td>44</td>
</tr>
<tr>
<td>23.1.2.12</td>
<td>Method 12: Wittig Reaction of Ketene with a Chiral Phosphorane</td>
<td>45</td>
</tr>
<tr>
<td>23.1.2.13</td>
<td>Method 13: Dimetal Ketenides from Ketene and Metal Salts</td>
<td>45</td>
</tr>
<tr>
<td>23.1.2.14</td>
<td>Method 14: Decarbonylation of Ketene</td>
<td>46</td>
</tr>
</tbody>
</table>
23.2 Product Class 2: Silylketenes

D. M. George and R. L. Danheiser

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>23.2</td>
<td>Product Class 2: Silylketenes</td>
<td>53</td>
</tr>
<tr>
<td>23.2.1</td>
<td>Product Subclass 1: Silyl-Substituted Aldoketenes</td>
<td>54</td>
</tr>
<tr>
<td>23.2.1.1</td>
<td>Synthesis of Product Subclass 1</td>
<td>54</td>
</tr>
<tr>
<td>23.2.1.1.1</td>
<td>Method 1: Dehydrohalogenation of Acyl Halides</td>
<td>54</td>
</tr>
<tr>
<td>23.2.1.1.2</td>
<td>Method 2: Dehydration of Silylacetic Acids</td>
<td>55</td>
</tr>
<tr>
<td>23.2.1.1.3</td>
<td>Method 3: Thermolysis of 1-Alkoxy-2-silylacetylenes</td>
<td>55</td>
</tr>
<tr>
<td>23.2.1.1.4</td>
<td>Method 4: 1,3-Silyl Shift of (Trimethylsiloxy)acetylene</td>
<td>57</td>
</tr>
<tr>
<td>23.2.1.1.5</td>
<td>Method 5: Thermolysis of Silylacetic Anhydrides</td>
<td>57</td>
</tr>
<tr>
<td>23.2.1.2</td>
<td>Applications of Product Subclass 1 in Organic Synthesis</td>
<td>58</td>
</tr>
<tr>
<td>23.2.1.2.1</td>
<td>Method 1: [2 + 2] Cycloadditions Leading to (\beta)-Lactones</td>
<td>58</td>
</tr>
<tr>
<td>23.2.1.2.2</td>
<td>Method 2: [2 + 2] Cycloadditions Leading to (\beta)-Lactams</td>
<td>64</td>
</tr>
<tr>
<td>23.2.1.2.3</td>
<td>Method 3: [2 + 2] Cycloadditions Leading to Cyclobutanones</td>
<td>65</td>
</tr>
<tr>
<td>23.2.1.2.4</td>
<td>Method 4: Formation of Allenes via Wittig Reaction with Phosphorus Ylides</td>
<td>65</td>
</tr>
<tr>
<td>23.2.1.2.5</td>
<td>Method 5: Formation of Ketenimines via Reaction with Iminophosphoranes</td>
<td>66</td>
</tr>
<tr>
<td>23.2.1.2.6</td>
<td>Method 6: Formation of Cyclopropanones and Cyclobutanones via Reaction with Diazo Compounds</td>
<td>67</td>
</tr>
<tr>
<td>23.2.1.2.7</td>
<td>Method 7: Formation of (\alpha)-Silyl Ketones</td>
<td>68</td>
</tr>
<tr>
<td>23.2.1.2.8</td>
<td>Method 8: Formation of 2H-1-Benzopyran-2-ones from Phenols</td>
<td>70</td>
</tr>
<tr>
<td>23.2.1.2.9</td>
<td>Method 9: (Trimethylsilyl)acetylation of Alcohols and Amines</td>
<td>71</td>
</tr>
<tr>
<td>23.2.2</td>
<td>Product Subclass 2: (Silyl)(trialkylmetal)ketenes</td>
<td>72</td>
</tr>
<tr>
<td>23.2.2.1</td>
<td>Synthesis of Product Subclass 2</td>
<td>72</td>
</tr>
<tr>
<td>23.2.2.1.1</td>
<td>Method 1: Elimination from (Silyl)(trialkylmetal)acetates</td>
<td>72</td>
</tr>
<tr>
<td>23.2.2.1.2</td>
<td>Method 2: Trapping of Lithium 2-Lithioacetylen-1-olate Generated from 2-Phenyl-2,3-dihydrofurans or 3-Phenylisoxazoles</td>
<td>72</td>
</tr>
<tr>
<td>23.2.2.1.3</td>
<td>Method 3: Carbyonylation and Trapping of Lithiated Diazo(trimethylsilyl)methane</td>
<td>73</td>
</tr>
<tr>
<td>23.2.2.1.4</td>
<td>Method 4: Lithiation of (Trialkylsilyl)ketenes and Trapping with Chlorosilanes</td>
<td>74</td>
</tr>
<tr>
<td>23.2.2.1.5</td>
<td>Method 5: Synthesis of Bis(silyl)ketenes from Other Bis(silyl)ketenes via Potassium 2-Silylacetylen-1-olates</td>
<td>74</td>
</tr>
<tr>
<td>23.2.3</td>
<td>Product Subclass 3: (Aryl) and (Alkyl)silylketenes</td>
<td>76</td>
</tr>
<tr>
<td>23.2.3.1</td>
<td>Synthesis of Product Subclass 3</td>
<td>76</td>
</tr>
<tr>
<td>23.2.3.1.1</td>
<td>Method 1: 1,3-Silyl Shift of 1-(Siloxy)alk-1-ynes</td>
<td>76</td>
</tr>
<tr>
<td>23.2.3.1.2</td>
<td>Method 2: Wolff Rearrangement of (\alpha)-Diazo-(\alpha)-silyl Ketones</td>
<td>77</td>
</tr>
<tr>
<td>23.2.3.2.1</td>
<td>Variation 1: By Thermolysis</td>
<td>77</td>
</tr>
<tr>
<td>23.2.3.2.2</td>
<td>Variation 2: By Photolysis</td>
<td>77</td>
</tr>
<tr>
<td>23.2.3.2.3</td>
<td>Variation 3: By Metal Catalysis</td>
<td>78</td>
</tr>
<tr>
<td>23.2.3.2</td>
<td>Applications of Product Subclass 3 in Organic Synthesis</td>
<td>79</td>
</tr>
<tr>
<td>23.2.3.2.1</td>
<td>Method 1: [2 + 2] Cycloadditions Leading to (\beta)-Lactones</td>
<td>79</td>
</tr>
</tbody>
</table>
23.2.3.2.2 Method 2: [4 + 1] Annulation Leading to 1,3-Dihydro-2H-inden-2-ones 80

23.2.4 **Product Subclass 4: Silyl(vinyl)ketenes** .. 84

23.2.4.1 Synthesis of Product Subclass 4 .. 84

23.2.4.1.1 Method 1: Dehydrohalogenation of α-Silyl-α,β-unsaturated Acid Chlorides 84

23.2.4.1.2 Method 2: Wolff Rearrangement of α-Diazo-α-silyl α',β'-Unsaturated Ketones 85

23.2.4.1.3 Method 3: Electrocyclic Ring Opening of 2-Silylcyclobut-2-enones 86

23.2.4.1.4 Method 4: Reaction of Bis(silyl)acetylenes with Chromium–Carbene Complexes 87

23.2.4.2 Applications of Product Subclass 4 in Organic Synthesis .. 88

23.2.4.2.1 Method 1: Formation of Cyclohexenones and Phenols by [4 + 2] Cycloadditions 88

23.2.4.2.2 Method 2: Formation of 5,6-Dihydro-2H-pyran-2-ones and 5,6-Dihydropyridin-2(1H)-ones by [4 + 2] Cycloadditions .. 89

23.2.4.2.3 Method 3: Formation of Cyclopent-2-ene-1-ones by [4+1] Annulation 91

23.2.5 **Product Subclass 5: Miscellaneous Silylketenes** ... 96

23.2.5.1 Synthesis of Product Subclass 5 .. 96

23.2.5.1.1 Method 1: Synthesis of Bromo(trialkylsilyl)ketenes by Dehydrohalogenation 96

23.2.5.1.2 Method 2: Synthesis of Alkoxy(triarylsilyl)ketenes from Pentacarbonyl Complexes 96

23.2.5.1.3 Methods 3: Miscellaneous Reactions ... 96

23.3 **Product Class 3: Halogen-Substituted Ketenes** ... 101

23.3.1 **Product Subclass 1: Fluoro- and Difluoroketenes** ... 104

23.3.1.1 Synthesis of Product Subclass 1 .. 105

23.3.1.1.1 Method 1: Fluoroketene by Pyrolysis of Fluoroacetic Anhydride .. 105

23.3.1.1.2 Method 2: Fluoroketene by Dehydrochlorination of Fluorooacetyl Chloride 105

23.3.1.1.3 Method 3: Difluoroketene from 1,1,2-Trifluoro-2-(trifluoromethoxy)ethene 107

23.3.1.1.4 Method 4: Difluoroketene by Photolysis of Perfluorocyclobutanone 107

23.3.1.1.5 Method 5: Difluoroketene by Dehalogenation of Bromo(trifluoro)acetyl Chloride with Zinc 108

23.3.1.1.6 Method 6: Acyl(fluro)ketenes by Thermolysis of α-Fluorodioxinones 108

23.3.1.1.7 Method 7: Fluoro(pentafluoroethyl)ketene by Fluoride-Induced Dephosphorylation 109

23.3.1.1.8 Method 8: Difluoroketene by Photoisomerization/Oxygenation of Difluoroacetylene 110

23.3.1.1.9 Method 9: Fluoro(1,2,3,4,4-pentafluorobuta-1,3-dienyl)ketene from Perfluorocyclohexa-2,4-dienone 110

23.3.1.2 Applications of Product Subclass 1 in Organic Synthesis .. 111
23.3.1.2.1 Method 1: Cyclobutanones by [2 + 2] Cycloaddition of Fluoroketenes with Alkenes .. 111

23.3.1.2.2 Method 2: β-Lactams by [2 + 2] Cycloaddition of Fluoroketenes with Imines .. 113

23.3.2 Product Class 2: Chloro- and Dichloroketenes .. 113

23.3.2.1 Synthesis of Product Subclass 2 .. 114

23.3.2.1.1 Method 1: Alkyl(chloro)ketenes by Dehydration of Carboxylic Acids .. 115

23.3.2.1.2 Method 2: Chloroketenes by Dehydrochlorination of Chloroalkanoyl Halides ... 116

23.3.2.1.2.1 Variation 1: Chloroketene by Pyrolytic Dehydrochlorination of Chloroacetyl Chloride 118

23.3.2.1.2.2 Variation 2: Substituted Chloroketenes by Dehydrochlorination of 2-Chloroacetyl Chlorides .. 119

23.3.2.1.3 Method 3: Dichloroketene by Photolysis of a Cyclic Carbonate .. 119

23.3.2.1.4 Method 4: Dichloroketene by Dehalogenation of Trichloroacetyl Halides with Zinc ... 119

23.3.2.1.4.1 Variation 1: Chloroketenes by Dechlorination of 2-Chloroacetyl Chlorides with Diphenyl(trimethylsilyl)phosphine 124

23.3.2.1.5 Method 5: Chloro(cyano)ketene by Thermolysis of 4-Azido-3-chloro-5-methoxyfuran-2(5H)-one .. 125

23.3.2.2 Applications of Product Subclass 2 in Organic Synthesis .. 126

23.3.2.2.1 Method 1: Cyclobutanones by [2 + 2] Cycloadditions of Chloroketenes with Alkenes and Dienes .. 126

23.3.2.2.2 Method 2: Methylene cyclobutanones by [2 + 2] Cycloaddition of Chloroketenes with Allenes .. 137

23.3.2.2.3 Method 3: Cyclobutenones by [2 + 2] Cycloaddition of Chloroketenes with Alkynes .. 138

23.3.2.2.4 Method 4: β-Lactams by [2 + 2] Cycloaddition of Chloroketenes with Imines .. 140

23.3.2.2.4.1 Variation 1: β- and δ-Lactams by [2 + 2]- and [4 + 2]-Cycloaddition Reactions of Chloroketenes with Vinylic Imines .. 141

23.3.2.2.4.2 Variation 2: γ-Lactams and γ-Lactones by [3 + 2] Cycloaddition of Dichloroketene with N-Vinylsulfinimides .. 143

23.3.2.2.5 Method 5: β-Lactones by [2 + 2] Cycloaddition of Chloroketenes with Carbonyl Compounds .. 146

23.3.2.2.6 Method 6: γ-Lactones from Dichloroketene with Vinyl Sulfoxides .. 148

23.3.2.2.6.1 Variation 1: γ-Lactones from Dichloroketene with Chiral Vinyl Sulfoxides .. 149

23.3.2.2.7 Method 7: Thioesters by Ketene-Claisen Reaction of Dichloroketene with Allyl Sulfoxides .. 150

23.3.2.2.8 Method 8: A Macrocyclic Lactone by the Ketene-Claisen Reaction of Dichloroketene with a Vinyltetrahydropyran .. 151

23.3.2.2.9 Method 9: γ-Lactones and Lactams by the Reactions of Dichloroketene with Three-Membered Heterocycles .. 152

23.3.2.2.9.1 Variation 1: A Lactam by the Reaction of Dichloroketene with a Vinylaziridine .. 153
23.3.2.9.2 Variation 2: Ketene Acetals from Cycloaddition of Chloro(cyano)ketene with 2-Phenylloxirane ... 154

23.3 Product Subclass 3: Bromo- and Iodoketenes ... 154

23.3.1 Synthesis of Product Subclass 3 .. 154

23.3.1.1 Method 1: Bromo- and Iodoketenes by Dehydrochlorination of Haloacetyl Chlorides ... 154

23.3.1.1.1 Variation 1: Bromoketene by Dehydrochlorination of Bromoacetyl Chloride with a Strong Stoichiometric Base and a Shuttle Base 156

23.3.1.2 Method 2: Bromoketene by Pyrolysis of 2-Bromocyclobutanone 157

23.3.1.3 Method 3: Bromoketenes by Dehalogenation of Haloacyl Halides 157

23.3.1.3.1 Variation 1: Dibromoketene by Triphenylphosphine-Induced Elimination from Trimethylsilyl Tribromoacetate ... 158

23.3.1.4 Method 4: An Aryl(bromo)ketene from a 3-Aryloxirane-2,2-dicarbonitrile 158

23.3.2 Applications of Product Subclass 3 in Organic Synthesis 159

23.3.2.1 Method 1: Cyclobutanones by [2+2] Cycloaddition of Bromoketenes with Alkenes or Dienes .. 159

23.3.2.1.1 Variation 1: Cyclohex-2-en-1-ones by [4+2] Cycloaddition of Bromo(vinyl)ketenes with Enamines ... 160

23.3.2.2 Method 2: β- and δ-Lactams by Cycloaddition of Bromoketenes with Imines ... 161

23.3.2.3 Method 3: [3 + 2] Cycloaddition of Aryl(bromo)ketenes with Pyridiniumolate Betaines ... 161

23.3.2.4 Method 4: Chiral Aryl(halo)acetates by Stereoselective Addition of Chiral Alcohols to Bromo- and Iodoketenes ... 162

23.3.2.5 Method 5: A Chiral Bromo(chloro)acetate by Stereoselective Chlorination of Bromoketene ... 163

23.3.2.6 Method 6: Mixed Dimerization of Bromo(tert-butyl)ketenes with tert-Butylketene .. 163

23.4 Product Class 4: Oxygen-Substituted Ketenes
C. Palomo, M. Oiarbide, and J. M. Aizpurua

23.4 Product Class 4: Oxygen-Substituted Ketenes ... 169

23.4.1 Synthesis of Product Class 4 .. 170

23.4.1.1 Method 1: Elimination Reactions of Carboxylic Acids or Their Derivatives 170

23.4.1.1.1 Variation 1: Dehydration of Carboxylic Acids by Activating Reagents 170

23.4.1.1.2 Variation 2: Dehydrohalogenation of Carboxylic Acid Chlorides with Tertiary Amines in Solution .. 172

23.4.1.1.3 Variation 3: Dehydrohalogenation of Carboxylic Acid Chlorides with Solid-Supported Bases ... 174

23.4.1.2 Method 2: Photolysis of Metal–Carbene Complexes .. 177

23.4.1.3 Method 3: Dirhodium Tetraacetate Catalyzed Decomposition of α-Diazo Anhydrides ... 179

23.4.1.4 Methods 4: Miscellaneous Methods .. 181

23.4.2 Applications of Product Class 4 in Organic Synthesis .. 181
23.4.2.1 Method 1: [2+2]-Cycloaddition Reactions Leading to Cyclobutanones, \(\beta \)-Lactones, and \(\beta \)-Lactams 181
23.4.2.1.1 Variation 1: With Alkenes, Enol Ethers, or Enecarbamates 181
23.4.2.1.2 Variation 2: With Aldehydes or Ketones 187
23.4.2.1.3 Variation 3: With Imines ... 189
23.4.2.2 Method 2: Lewis Acid Catalyzed [3,3]-Sigmatropic Bellus–Claisen Rearrangements ... 194

23.5 Product Class 5: Sulfur- and Selenium-Substituted Ketenes
C. Palomo, J. M. Aizpurua, I. Ganboa, and E. Gómez-Bengoa

23.5.1 Product Subclass 1: Sulfur-Substituted Ketenes 199
23.5.1.1 Synthesis of Product Subclass 1 .. 200
23.5.1.1.1 Method 1: Elimination Reactions of Carboxylic Acids and Their Derivatives .. 200
23.5.1.1.1.1 Variation 1: Dehydration of Carboxylic Acids 200
23.5.1.1.1.2 Variation 2: Dehydrohalogenation of Acyl Halides 201
23.5.1.1.2 Method 2: Wolff Rearrangement of Diazo Compounds 203
23.5.1.1.2.1 Variation 1: Photochemical Wolff Rearrangement 203
23.5.1.1.2.2 Variation 2: Thermal Wolff Rearrangement 204
23.5.1.1.2.3 Variation 3: Metal-Catalyzed Wolff Rearrangement 205
23.5.1.1.3 Method 3: Photolysis of Metal–Carbene Complexes 205
23.5.1.1.4 Method 4: Fragmentation of Cyclobutene-1,2-diones 206
23.5.1.1.5 Methods 5: Miscellaneous Preparations 207
23.5.1.2 Applications of Product Subclass 1 in Organic Synthesis 208
23.5.1.2.1 Method 1: [2+2]-Cycloaddition Reactions 208
23.5.1.2.1.1 Variation 1: Reaction with Alkenes and Alkynes Leading to Cyclobutanones and Cyclobutenones 208
23.5.1.2.1.2 Variation 2: Reaction with Imines Leading to \(\beta \)-Lactams 212
23.5.1.2.2 Method 2: Formation of Allenes by Wittig Alkenation 214
23.5.2 Product Subclass 2: Selenium-Substituted Ketenes 215
23.5.2.1 Synthesis of Product Subclass 2 ... 215
23.5.2.1.1 Method 1: Dehydrohalogenation of Acyl Chlorides 215
23.5.2.1.2 Method 2: Reactions of Silver Ketenide 217
23.5.2.2 Applications of Product Subclass 2 in Organic Synthesis 217
23.5.2.2.1 Method 1: [2+2]-Cycloaddition Reactions Leading to \(\beta \)-Lactams 217

23.6 Product Class 6: Nitrogen- and Phosphorus-Substituted Ketenes
C. Palomo and J. M. Aizpurua

23.6.1 Product Subclass 1: Nitrogen-Substituted Ketenes 221
23.6.1.1 Synthesis of Product Subclass 1 ... 222
23.6.1 Method 1: Elimination Reactions of α-Amino Acids or Their Derivatives

- Page 222

23.6.2 Method 2: Photolysis of Metal–Carbene Complexes

- Page 224

23.6.3 Applications of Product Subclass 1 in Organic Synthesis

- Page 227

23.6.3.1 Method 1: Addition of Nitrogen- or Oxygen-Nucleophiles

- Page 227

23.6.3.2 Method 2: Cycloaddition Reactions with Alkenes Leading to Cyclobutanones

- Page 229

23.6.3.3 Method 3: Cycloaddition Reactions with Imines or Hydrazones Leading to β-Lactams

- Page 230

23.6.3.4 Method 4: Lewis Acid Catalyzed Bellus–Claisen Rearrangement

- Page 233

23.6.2 Product Subclass 2: Phosphorus-Substituted Ketenes

- Page 234

23.6.2.1 Synthesis of Product Subclass 2

- Page 235

23.6.2.1.1 Method 1: Elimination Reactions of α-Phosphorylcarboxylic Acid Derivatives

- Page 235

23.6.2.1.2 Method 2: Wolff Rearrangement of α-Diazo-β-oxophosphonates

- Page 238

23.6.2.1.3 Method 3: Dehydroalkoxylation of α-Triarylphosphoranylidene Esters

- Page 239

23.6.2.1.4 Method 4: Thermolysis of Phosphinoethynyl Ethers

- Page 240

23.7 Product Class 7: Alkylideneketenes

W. F. Austin, J. J. Kowalczyk, G. B. Dudley, and R. L. Danheiser

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>23.7.1</td>
<td>Product Subclass 1: Substituted Methyleneketenes</td>
<td>245</td>
</tr>
<tr>
<td>23.7.1.1</td>
<td>Synthesis of Product Subclass 1</td>
<td>245</td>
</tr>
<tr>
<td>23.7.1.1.1</td>
<td>Method 1: Elimination from Carboxylic Acid Derivatives</td>
<td>245</td>
</tr>
<tr>
<td>23.7.1.1.2</td>
<td>Method 2: Cycloreversion Reactions</td>
<td>246</td>
</tr>
<tr>
<td>23.7.1.1.3</td>
<td>Method 3: Thermolysis of Alkylidene Derivatives of Meldrum’s Acid</td>
<td>247</td>
</tr>
<tr>
<td>23.7.1.1.4</td>
<td>Method 4: Dehalogenation of 2-Bromoacryloyl Chlorides</td>
<td>248</td>
</tr>
<tr>
<td>23.7.1.1.5</td>
<td>Method 5: Alkenation of Carbonyl Compounds with Phosphorylideneketenes</td>
<td>248</td>
</tr>
<tr>
<td>23.7.1.2</td>
<td>Applications of Product Subclass 1 in Organic Synthesis</td>
<td>249</td>
</tr>
<tr>
<td>23.7.1.2.1</td>
<td>Method 1: [2 + 2] Cycloadditions Leading to Cyclobutane-1,3-diones or α-Alkylidene-Substituted β-Lactones</td>
<td>249</td>
</tr>
<tr>
<td>23.7.1.2.2</td>
<td>Method 2: Generation of Vinylidenes by Thermolysis or Photolysis</td>
<td>251</td>
</tr>
<tr>
<td>23.7.1.2.3</td>
<td>Method 3: Rearrangements Triggering Cyclization Reactions</td>
<td>252</td>
</tr>
<tr>
<td>23.7.2</td>
<td>Product Subclass 2: Carbon Suboxide</td>
<td>253</td>
</tr>
<tr>
<td>23.7.2.1</td>
<td>Synthesis of Product Subclass 2</td>
<td>253</td>
</tr>
<tr>
<td>23.7.2.1.1</td>
<td>Method 1: Elimination from Malonic Acid Derivatives</td>
<td>253</td>
</tr>
<tr>
<td>23.7.2.1.2</td>
<td>Method 2: Thermolysis of O,O-Diacetyltartaric Anhydride</td>
<td>254</td>
</tr>
<tr>
<td>23.7.2.1.3</td>
<td>Method 3: Dehalogenation of Dibromomalonyl Chloride</td>
<td>254</td>
</tr>
<tr>
<td>23.7.2.2</td>
<td>Applications of Product Subclass 2 in Organic Synthesis</td>
<td>255</td>
</tr>
<tr>
<td>23.7.2.2.1</td>
<td>Method 1: Reaction with Nucleophiles Leading to Malonic Acid Derivatives</td>
<td>255</td>
</tr>
<tr>
<td>23.7.2.2.2</td>
<td>Method 2: Generation of Oxovinylidene by Photolysis</td>
<td>256</td>
</tr>
</tbody>
</table>
23.8 Product Class 8: Cyanoketenes

H. W. Moore

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synthesis of Product Class 8</td>
<td>259</td>
</tr>
<tr>
<td>Method 1: Synthesis from 3-Azidocyclobut-3-ene-1,2-diones</td>
<td>260</td>
</tr>
<tr>
<td>Method 2: Synthesis from 2,5- and 2,6-Diazidobenzo-1,4-quinones</td>
<td>261</td>
</tr>
<tr>
<td>Method 3: Synthesis from 4-Azido-3-halo-5-methoxyfuran-2(5H)-ones</td>
<td>263</td>
</tr>
<tr>
<td>Method 4: Synthesis of Cyano(trimethylsiloxy)ketene via a Retro-Diels–Alder Reaction</td>
<td>266</td>
</tr>
<tr>
<td>Method 5: Synthesis of the Parent Cyanoketene</td>
<td>267</td>
</tr>
</tbody>
</table>

23.9 Product Class 9: Acylketenes

G. Kollenz and S. Ebner

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synthesis of Product Subclass 1</td>
<td>272</td>
</tr>
<tr>
<td>Method 1: Ruthenium(VIII) Oxide Oxidation of an Acyllallene</td>
<td>272</td>
</tr>
<tr>
<td>Method 2: Dehydrochlorination of Acid Chlorides</td>
<td>272</td>
</tr>
<tr>
<td>Method 3: Flash-Vacuum Pyrolysis</td>
<td>273</td>
</tr>
<tr>
<td>Variation 1: Of β-Oxo Esters</td>
<td>273</td>
</tr>
<tr>
<td>Variation 2: Of 4H-1,3-Dioxin-4-ones and a 4H-1,3-Oxazin-4-one</td>
<td>273</td>
</tr>
<tr>
<td>Variation 3: Of Furan-2,3-diones</td>
<td>275</td>
</tr>
<tr>
<td>Method 4: Thermolysis Reactions</td>
<td>276</td>
</tr>
<tr>
<td>Variation 1: Of β-Oxo Esters</td>
<td>276</td>
</tr>
<tr>
<td>Variation 2: Of 4H-1,3-Dioxin-4-ones</td>
<td>276</td>
</tr>
<tr>
<td>Variation 3: Of 5-Acyl-2,2-dimethyl-1,3-dioxane-4,6-diones</td>
<td>280</td>
</tr>
<tr>
<td>Variation 4: Of 4-Ethoxybut-3-yn-2-one</td>
<td>281</td>
</tr>
<tr>
<td>Variation 5: Of 2-Diazo-1,3-dicarbonyl Compounds</td>
<td>281</td>
</tr>
<tr>
<td>Method 5: Photolysis of 2-Diazo-1,3-dicarbonyl Compounds</td>
<td>281</td>
</tr>
<tr>
<td>Method 6: [4 + 2] Dimerization of Dipivaloylketene</td>
<td>282</td>
</tr>
<tr>
<td>Applications of Product Subclass 1 in Organic Synthesis</td>
<td>283</td>
</tr>
<tr>
<td>Method 1: CycloadDITION Reactions</td>
<td>283</td>
</tr>
<tr>
<td>Method 2: Addition of Nucleophiles</td>
<td>284</td>
</tr>
<tr>
<td>Synthesis of Product Subclass 2</td>
<td>285</td>
</tr>
<tr>
<td>Method 1: Dehydrochlorination of Acid Chlorides</td>
<td>285</td>
</tr>
<tr>
<td>Method 2: Flash-Vacuum Pyrolysis of Cyclic β-Oxo Esters</td>
<td>286</td>
</tr>
<tr>
<td>Method 3: Thermolysis Reactions</td>
<td>286</td>
</tr>
<tr>
<td>Variation 1: Of a Fused 4H-1,3-Dioxin-4-one</td>
<td>287</td>
</tr>
<tr>
<td>Variation 2: Of Cyclic 2-Diazo-1,3-diketones</td>
<td>288</td>
</tr>
<tr>
<td>Method 4: Photolysis of Cyclic 2-Diazo-1,3-diketones</td>
<td>290</td>
</tr>
<tr>
<td>Section</td>
<td>Product Subclass</td>
</tr>
<tr>
<td>---------</td>
<td>-----------------</td>
</tr>
<tr>
<td>23.9.3</td>
<td>Product Subclass 3: α-(Oxomethylene)cycloalkenones</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>23.9.4</td>
<td>Product Subclass 4: α-(Oxomethylene)heterocycloalkanones</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>23.9.5</td>
<td>Product Subclass 5: Dialkanoylketenes</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>23.9.6</td>
<td>Product Subclass 6: Monoaroylketenes</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>23.9.7</td>
<td>Product Subclass 7: Diaroylketenes</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>23.9.8</td>
<td>Product Subclass 8: Carboxyketenes</td>
</tr>
</tbody>
</table>
23.9.8.1.1 Method 1: Flash-Vacuum Pyrolysis of 5-Alkylidene-2,2-dimethyl-1,3-dioxane-4,6-diones 314

23.9
Product Subclass 9: (Alkoxycarbonyl)ketenes .. 315

23.9.1
Synthesis of Product Subclass 9 ... 315

23.9.1.1 Method 1: Dehydrochlorination of Acid Chlorides 315

23.9.1.2 Method 2: Thermolysis Reactions ... 316

23.9.1.2.1 Variation 1: Of Acid Derivatives ... 316

23.9.1.2.2 Variation 2: Of 6-Methoxy-4H-1,3-dioxin-4-ones 317

23.9.1.2.3 Variation 3: Of a Pyrrolo[1,2-a]quinoxalinetrione 317

23.9.1.2.4 Variation 4: Of Dimethyl Diazomalonate 317

23.9.1.3 Method 3: Photolysis of 2-Diazo-1,3-dicarbonyl Compounds 318

23.9.2
Applications of Product Subclass 9 in Organic Synthesis .. 318

23.9.2.1 Method 1: Cycloaddition Reactions ... 318

23.9.2.2 Method 2: Addition of Nucleophiles 319

23.9.10
Product Subclass 10: Acyl(alkoxycarbonyl)ketenes 319

23.9.10.1
Synthesis of Product Subclass 10 ... 319

23.9.10.1.1 Method 1: Flash-Vacuum Pyrolysis of Methyl 2-tert-Butyl-4,5-dioxo-4,5-
dihydrofuran-3-carboxylate .. 319

23.9.10.1.2 Method 2: Thermolysis Reactions ... 320

23.9.10.1.2.1 Variation 1: Of 4H-1,3-Dioxin-4-ones 320

23.9.10.1.2.2 Variation 2: Of Ethyl 4,5-Dioxo-2-phenyl-4,5-dihydrofuran-3-carboxylate 321

23.9.10.2
Applications of Product Subclass 10 in Organic Synthesis .. 322

23.9.10.2.1 Method 1: Cycloaddition Reactions ... 322

23.9.10.2.2 Method 2: Addition of Amines .. 323

23.9.11
Product Subclass 11: Bis(alkoxycarbonyl)ketenes 324

23.9.11.1
Synthesis of Product Subclass 11 ... 324

23.9.11.1.1 Method 1: Thermolysis of 2-Diazo-3-oxosuccinates 324

23.9.11.1.2 Method 2: Photolysis of 2-Diazo-1,3-dicarbonyl Compounds 324

23.9.11.1.3 Method 3: Reaction of Tetraethoxyallen with Phosgene 325

23.9.11.2
Applications of Product Subclass 11 in Organic Synthesis .. 325

23.9.11.2.1 Method 1: Preparation of Allenetetrcarboxylates 325

23.9.11.2.2 Method 2: Cycloaddition Reactions ... 326

23.9.11.2.3 Method 3: Ring Transformations of Five-Membered Heterocycles 326

23.9.12
Product Subclass 12: (Chlorocarbonyl)ketenes ... 327

23.9.12.1
Synthesis of Product Subclass 12 ... 327

23.9.12.1.1 Method 1: Dehydrochlorination of Malonyl Chlorides 327

23.9.12.2
Applications of Product Subclass 12 in Organic Synthesis .. 329

23.9.12.2.1 Method 1: Cycloaddition Reactions ... 329

23.9.12.2.2 Method 2: Condensation Reactions ... 330

23.9.13
Product Subclass 13: Fluorinated Acylketenes ... 333

23.9.13.1
Synthesis of Product Subclass 13 ... 333
Table of Contents

23.9.13.1 Method 1: Thermolysis Reactions ... 333
23.9.13.1.1 Variation 1: Of (Trifluoromethyl)malonic Acid Derivatives 333
23.9.13.1.2 Variation 2: Of Fluorinated 4H-1,3-Dioxin-4-ones .. 334
23.9.13.1.2 Method 2: Transformation of Fluorinated Alkenes and Alkynes 335
23.9.13.1.2.1 Variation 1: By Reaction with Sulfur Trioxide ... 335
23.9.13.1.2.2 Variation 2: With Lewis Acid Catalysis ... 336
23.9.13.1.3 Method 3: Photolysis of Methyl 2-Diazo-4,4,4-trifluoroacetoacetate 337

23.9.13.2 Applications of Product Subclass 13 in Organic Synthesis 337
23.9.13.2.1 Method 1: Cycloaddition Reactions ... 337
23.9.13.2.2 Method 2: Electrophilic Substitution Reactions ... 338
23.9.13.2.3 Method 3: Addition of Nucleophiles .. 339

23.9.14 Product Subclass 14: Acyl(phosphoryl)ketenes and Acyl(trialkylmetal)ketenes .. 341
23.9.14.1.2 Method 2: Photolysis or Thermolysis of Methyl 2-Diazo-3-(diisopropoxyphosphoryl)-3-oxopropanoate ... 341
23.9.14.1.4 Method 4: Transformation of Functionalized Ethoxyacetylenes 342

23.10 Product Class 10: Imidoylketenes
G. Kollenz

23.10.1 Product Subclass 1: N-Unsubstituted and N-Alkyl-Substituted Imidoylketenes ... 351
23.10.1.1 Method 1: Pyrolysis Reactions ... 352
23.10.1.1.1 Variation 1: Flash-Vacuum Pyrolysis of Meldrum’s Acid Derivatives 352
23.10.1.1.2 Variation 2: Flash-Vacuum Pyrolysis of Pyrrole-2,3-diones 353
23.10.1.1.3 Variation 3: Thermolysis of 3-Aminoacrylates .. 353
23.10.1.2 Method 2: Reaction of 1-Aminopyridinium Iodide with 2,3-Diphenylcycloprop-2-en-1-one ... 354
23.10.1.3 Method 3: Extrusion of Sulfur from Isothiazol-5(2H)-ones 355

23.10.2 Product Subclass 2: (N-Acylimidoyl)ketenes ... 356
23.10.2.1 Method 1: Pyrolysis of 3-(Acamino)acrylates ... 356
23.10.2.1.1 Method 2: Reaction of Pyridinium Ylides with 2,3-Diphenylcycloprop-2-en-1-one ... 357
23.10.2.1.3 Method 3: Reaction of Di-tert-butoxyacetylene with Benzoyl Isocyanate 357

23.10.3 Product Subclass 3: (N-Arylimidoyl)ketenes ... 358
23.10.3.1 Method 1: Thermolysis Reactions ... 359
23.10.3.1.1 Variation 1: Flash-Vacuum Pyrolysis of Meldrum’s Acid Derivatives 359
23.10.3.1.2 Variation 2: Pyrolysis of 1-Aryl-1H-pyrole-2,3-diones 360
23.10.3.1.3 Variation 3: Flash-Vacuum Pyrolysis of 1-Aryl-1H-1,2,3-triazoles 362
23.10.3.1.4 Variation 4: Thermolysis of N-Arylketenimines 363
23.10.3.1.5 Variation 5: Thermolysis of Mesoionic Compounds 364
23.10.3.1.6 Method 2: Extrusion of Sulfur from Isothiazol-5(2H)-ones 364

23.10.4 Product Subclass 4: N-Hetaryl-Substituted Imidoylketenes 365
23.10.4.1 Synthesis of Product Subclass 4 365
23.10.4.1.1 Method 1: Pyrolysis Reactions 365
23.10.4.1.1.1 Variation 1: Flash-Vacuum Pyrolysis of 1-(1H-Pyrazol-5-yl)-1H-1,2,3-triazoles 365
23.10.4.1.1.2 Variation 2: Flash-Vacuum Pyrolysis of Meldrum’s Acid Derivatives 366
23.10.4.1.2 Method 2: Lithiation of Isoxazol-5(2H)-ones 366

23.10.5 Product Subclass 5: Acyl(imidoyl)ketenes 367
23.10.5.1 Synthesis of Product Subclass 5 367
23.10.5.1.1 Method 1: Thermolysis Reactions of Pyrrole-2,3-diones and Furan-2,3-diones 367
23.10.5.1.1.1 Variation 1: In the Solid State 367
23.10.5.1.1.2 Variation 2: In Solution 368

23.10.6 Product Subclass 6: N-Unsubstituted 6-(Oxomethylene)cyclohexa-2,4-dien-1-imines 372
23.10.6.1 Synthesis of Product Subclass 6 372
23.10.6.1.1 Method 1: Thermolysis of 1,2,3-Benzotriazin-4(3H)-ones 372
23.10.6.1.2 Method 2: Reactions of 3,2,1-Benzoxathiazin-4(1H)-one 2-Oxide 373

23.10.7 Product Subclass 7: N-Substituted 6-(Oxomethylene)cyclohexa-2,4-dien-1-imines 374
23.10.7.1 Synthesis of Product Subclass 7 374
23.10.7.1.1 Method 1: Photolysis Reactions of 1,2,3-Benzotriazin-4(3H)-ones 375
23.10.7.1.2 Method 2: Thermolysis Reactions 376
23.10.7.1.2.1 Variation 1: Of a 3,2,1-Benzoxathiazin-4(1H)-one 2-Oxide 376
23.10.7.1.2.2 Variation 2: Of 2,1-Benzisothiazol-3(1H)-ones 377
23.10.7.1.2.3 Variation 3: Of 1-Phenyl-1H-indole-2,3-dione 377
23.10.7.1.3 Method 3: Ring Opening of 2,1-Benzisoxazol-1-ium Salts 377

23.11 Product Class 11: Alk-1-ynylketenes
H. W. Moore

23.11.1 Product Class 11: Alk-1-ynylketenes 381
23.11.1.1 Synthesis of Product Class 11 381
23.11.1.1.1 Method 1: Retro-Diels–Alder Reactions 381
23.11.1.1.2 Method 2: Thermolysis of 1-Alkoxalk-1-ynes 384
23.11.1.1.3 Method 3: Alk-1-ynyl(cyano)ketenes from 2,5-Di(alk-1-ynyl)-3,6-diazido-1,4-quinones 385
23.11.1.1.4 Methods 4: Additional Methods for the Generation of Alk-1-ynylketenes 389
23.12 Product Class 12: Aryl- and Hetarylketenes
T. T. Tidwell

23.12 Product Class 12: Aryl- and Hetarylketenes ... 391
23.12.1 Product Subclass 1: Monoarylketenes ... 392
23.12.1.1 Synthesis of Product Subclass 1 ... 393
23.12.1.1.1 Method 1: Monoarylketenes by Dehydration of Arylacetic Acids 393
23.12.1.1.2 Method 2: Monoarylketenes from Arylacetic Anhydrides 393
23.12.1.1.2.1 Variation 1: Arylketene by Decarboxylation of Arylmalonic Acids 394
23.12.1.1.3 Method 3: Monoarylketenes from Arylacetate Esters 394
23.12.1.1.4 Method 4: Monoarylketenes by Dehydrohalogenation of Arylacetyl Chlorides ... 395
23.12.1.1.4.1 Variation 1: Monoarylketenes by Dehydrochlorination Using a Shuttle Procedure with a Kinetic Base and a Stoichiometric Base 396
23.12.1.1.5 Method 5: Monoarylketenes by Dehalogenation of Arylhaloacetyl Halides ... 399
23.12.1.1.6 Method 6: Monoarylketenes by Wolff Rearrangement of α-Diazo Ketones 400
23.12.1.1.6.1 Variation 1: Metal-Catalyzed Wolff Rearrangement 401
23.12.1.1.6.2 Variation 2: Monoarylketenes by Microwave and Ultrasound-Enhanced Wolff Rearrangement 403
23.12.1.1.6.3 Variation 3: Monoarylketenes by Photochemical Wolff Rearrangement 404
23.12.1.1.6.4 Variation 4: Phenylketene by Wolff-Type Rearrangement of a Sulfur Ylide 405
23.12.1.1.8 Method 7: Monoarylketenes from Ynols and Ynolates 405
23.12.1.1.8.1 Variation 1: Monoarylketenes by Oxidation of Arylacetylenes 406
23.12.1.1.8.2 Variation 2: Monoarylketenes by Oxidation of Lithium Arylacetyldides .. 407
23.12.1.1.8.3 Variation 3: Monoarylketenes by Ruthenium-Catalyzed Alkyne Oxygenation ... 408
23.12.1.1.9 Method 9: Monoarylketenes from Metal–Carbene Complexes 409
23.12.1.2 Applications of Product Subclass 1 in Organic Synthesis 410
23.12.1.2.1 Method 1: Esters and Amides by Addition of Nucleophiles to Monoarylketenes ... 410
23.12.1.2.2 Method 2: Ketones and Vinyl Ethers by Addition of Carbon Electrophiles 410
23.12.1.2.3 Method 3: N-Aroyloxyamines by Aminoxyl Radical Addition to Monoarylketenes ... 411
23.12.1.2.4 Method 4: Cyclobutanones by [2+2] Cycloaddition with Alkenes and Dienes ... 412
23.12.1.2.5 Method 5: Cyclobutenones by [2+2] Cycloaddition of Monoarylketenes with Alkynes ... 414
23.12.1.2.6 Method 6: β-Lactams by [2+2] Cycloaddition of Monoarylketenes with Imines ... 416
23.12.1.2.6.1 Variation 1: Pyrimidinones by [4+2] Cycloaddition of Monoarylketenes with 1,3-Diazabuta-1,3-dienes ... 418
23.12.1.2.7 Method 7: 2-Arylacetate Derivatives by [4+2] Cycloaddition of o-Chloranil with Ketene Enolates ... 419
23.12.1.2.8 Method 8: Carbene Formation by Decarbonylation of Monoarylketenes ... 419
23.12.2 Product Subclass 2: Alkyl(aryl)- and Aryl(vinyl)ketenes 420
23.12.2.1 Synthesis of Product Subclass 2 .. 421
23.12.2.1 Method 1: Alkyl(aryl)ketenes by Elimination from 2-Arylalkanoate Esters 421

23.12.2.2 Method 2: Alkyl(aryl)ketenes by Dehydrohalogenation of 2-Arylalkanoyl Chlorides ... 423

23.12.2.3 Method 3: Alkyl(aryl)ketenes by Dehalogenation of 2-Aryl-2-haloalkanoyl Halides 423

23.12.2.4 Method 4: Alkyl(aryl)ketenes by Wolff Rearrangement of α-Diazo Ketones ... 424

23.12.2.5 Method 5: Alkyl(aryl)ketenes by Decarboxylation of Malonic Acids 425

23.12.2.6 Method 6: Aryl(vinyl)ketenes by Cyclobutenone Ring Opening 426

23.12.2.7 Method 7: Aryl(vinyl)ketenes from Metal–Carbene Complexes ... 427

23.12.2.8 Method 8: Alkyl(aryl)ketenes by $[4+2]$ Cycloaddition of Cyclic Diazenes 428

23.12.2.9 Method 9: 2-Arylalkanoic Acid Derivatives by Stereoselective Esterification of Alkyl(aryl)ketenes ... 428

23.12.2.10 Variation 1: Chiral 2-Arylalkanoate Esters by Catalytic Stereoselective Addition of Methanol to Alkyl(aryl)ketenes ... 431

23.12.2.11 Variation 2: Chiral 2-Arylalkanoate Enol Esters by Catalytic Stereoselective Esterification of Alkyl(aryl)ketenes with Aldehydes ... 433

23.12.2.12 Variation 3: Chiral 2-Arylalkanamides by Stereoselective Amination of Alkyl(aryl)ketenes ... 434

23.12.2.13 Method 2: Ketones and Vinyl Esters and Ethers by Addition of Carbon Nucleophiles to Ethyl(phenyl)ketene ... 436

23.12.2.14 Method 3: Divinyl Ketone Formation by Iridium–Alkyne Complex Addition to Methyl(phenyl)ketene with Double C–H Activation ... 438

23.12.2.15 Method 4: Lactones and Cycloalkanones by Electrophilic Addition to Alkyl(aryl)ketenes ... 438

23.12.2.16 Method 5: Allenyl Ketones and Esters by Wittig-Type Reactions of Alkyl(aryl)ketenes ... 439

23.12.2.17 Method 6: Cyclobutanones by $[2+2]$ Cycloaddition of Methyl(phenyl)ketene with Alkenes and Dienes ... 440

23.12.2.18 Variation 1: Cyclobutanones by Intra-molecular $[2+2]$ Cycloaddition of Aryl(pent-4-enyl)ketenes ... 441

23.12.2.19 Method 7: Naphthol Formation by Intramolecular Cyclization of an Alkyl(aryl)ketene with an Alkynyl Group ... 441

23.12.2.20 Method 8: β-Lactone Formation by Intramolecular Cycloaddition of an Alkyl(aryl)ketene with a Carbonyl Group ... 442

23.12.2.21 Method 9: Succinic Anhydrides by Oxidation of Alkyl(aryl)ketenes ... 442

23.12.2.22 Method 10: Aminoxyl Radical Substituted Polymers from Alkyl(aryl)ketenes ... 442

**23.12.3 Product Subclass 3: Diarylketenes ... 443

**23.12.3.1 Synthesis of Product Subclass 3 ... 444

23.12.3.2 Method 1: Diarylketenes by Dehydration of Diarylacetic Acids ... 444

23.12.3.3 Method 2: Diarylketenes by Dehydrochlorination of Diarylacetyl Chlorides ... 445

23.12.3.4 Method 3: Diarylketenes by Dehalogenation of Diarylhaloacetyl Halides ... 446
Table of Contents

Product Subclass 4: Fulvenones .. 465

<table>
<thead>
<tr>
<th>Section</th>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>23.12.4.1</td>
<td>Method 1</td>
<td>Fulvenones by Elimination from Esters 466</td>
</tr>
<tr>
<td>23.12.4.1.2</td>
<td>Method 2</td>
<td>Fulvenones by Dehydrochlorination of Acyl Chlorides 466</td>
</tr>
<tr>
<td>23.12.4.1.3</td>
<td>Method 3</td>
<td>Fulvenones by Dehalogenation of 2-Haloacyl Halides 467</td>
</tr>
<tr>
<td>23.12.4.1.4</td>
<td>Method 4</td>
<td>Fulvenones by Wolff Rearrangement of α-Diazo Ketones 468</td>
</tr>
<tr>
<td>23.12.4.1.4.1</td>
<td>Variation 1</td>
<td>Azafulvenones by Wolff Rearrangement and Other Routes ... 470</td>
</tr>
<tr>
<td>23.12.4.1.4.2</td>
<td>Variation 2</td>
<td>Pentafulvenone by Photochemical Wolff-like Rearrangement of 2-Halo-phenols 471</td>
</tr>
<tr>
<td>23.12.4.2</td>
<td>Applications of Product Subclass 4 in Organic Synthesis 472</td>
<td></td>
</tr>
<tr>
<td>23.12.4.2.1</td>
<td>Method 1</td>
<td>Pyridinium Zwitterions from Pentafulvenones 472</td>
</tr>
<tr>
<td>23.12.4.2.2</td>
<td>Method 2</td>
<td>Cyclobutanones by [2+2] Cycloaddition with Alkenes and Dienes 472</td>
</tr>
</tbody>
</table>

Product Subclass 5: Hetarylketenes 473

<table>
<thead>
<tr>
<th>Section</th>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>23.12.5.1</td>
<td>Method 1</td>
<td>Hetarylketenes by Ester Elimination of Hetarylacetates 473</td>
</tr>
</tbody>
</table>
23.12.5.1.2 Method 2: Hetarylketenenes by Dehydrochlorination of Hetarylacetyl Chlorides .. 473

23.12.5.1.2.1 Variation 1: Hetarylketenenes by Dehydrochlorination Using a Shuttle Procedure with a Kinetic Base, and a Stoichiometric Base 475

23.12.5.1.3 Method 3: Hetarylketenenes by Thermal Decarbonylation of Furan-2,3-diones .. 475

23.12.5.1.4 Method 4: Hetarylketenenes by Wolff Rearrangement of α-Diazo Ketones ... 476

23.12.5.1.4.1 Variation 1: Hetarylketenenes by Rhodium-Catalyzed Wolff Rearrangement of α-Diazo Ketones 478

23.12.5.1.4.2 Variation 2: Hetarylketenenes by Wolff Rearrangement and [2 + 2] Cycloaddition with Alkynes 478

23.12.5.1.4.3 Variation 3: Hetarylketenenes by Wolff-like Rearrangements of Triazoles and Other Substrates .. 479

23.12.5.1.5 Method 5: Hetarylketenenes by Car bene Carbonylation ... 481

23.12.5.1.6 Method 6: Hetarylketenenes from Chromium–Carbene Complexes .. 481

23.12.5.2 Applications of Product Subclass 5 in Organic Synthesis ... 482

23.12.5.2.1 Method 1: Esters and Amides by Addition of Nucleophiles to Hetarylketenenes .. 482

23.12.5.2.2 Method 2: Imidazo[4,5-c]isoxazole Formation by Cyclization of Hetarylketenenes .. 482

23.12.6 Product Subclass 6: Ferrocenylketenes ... 483

23.12.6.1 Synthesis of Product Subclass 6 ... 483

23.12.6.1.1 Method 1: Ferrocenylketene by Activation of Ferrocenylacetic Acid ... 483

23.12.6.1.2 Method 2: Ferrocenylketenes by Wolff Rearrangement of α-Diazo Ketones ... 485

23.13 Product Class 13: Alkenylketenes

R. L. Danheiser, G. B. Dudley, and W. F. Austin

23.13 Product Class 13: Alkenylketenes ... 493

23.13.1 Product Subclass 1: Vinylketenes ... 494

23.13.1.1 Synthesis of Product Subclass 1 ... 494

23.13.1.1.1 Method 1: Elimination from Carboxylic Acid Derivatives ... 494

23.13.1.1.2 Method 2: Wolff Rearrangement of α′-Diazo-α,β-unsaturated Ketones ... 498

23.13.1.1.3 Method 3: Electrocyclic Ring Opening of Cyclobutenones ... 501

23.13.1.2 Applications of Product Subclass 1 in Organic Synthesis ... 504

23.13.1.2.1 Method 1: [2 + 2] Cycloadditions Leading to 4-Alkenylcyclobutanones ... 506

23.13.1.2.1.1 Variation 1: Intermolecular Cycloadditions ... 507

23.13.1.2.1.2 Variation 2: Intramolecular Cycloadditions ... 512

23.13.1.2.2 Method 2: [2 + 2] Cycloadditions Leading to β-Lactams ... 520

23.13.2 Product Subclass 2: 1,3-Dienylketenes and (2-Arylvinyl)ketenes ... 522

23.13.2.1 Synthesis of Product Subclass 2 ... 522

23.13.2.1.1 Method 1: Elimination from Carboxylic Acid Derivatives ... 525

23.13.2.1.2 Method 2: Wolff Rearrangement of 1,3-Dienyl α′-Diazo Ketones ... 526
23.13.2.1.3 Method 3: Electro cyclic Ring Opening of Cyclobutenones 527
23.13.2.1.3.1 Variation 1: Electro cyclic Ring Opening of 4-Alkenyl- and 4-Arylcyclobutenones ... 528
23.13.2.1.3.2 Variation 2: Electro cyclic Ring Opening of 2-(1,3-Dienyl)cyclobutenones and 2-(2-Arylvinyl)cyclobutenones 530
23.13.2.1.4 Method 4: Electro cyclic Ring Opening of 6,6-Disubstituted Cyclohexa-2,5-dien-1-ones ... 531

23.13.2.2 Applications of Product Subclass 2 in Organic Synthesis .. 533
23.13.2.2.1 Method 1: Six-Electron Electro cyclizations Leading to Phenols 533
23.13.2.2.1.1 Variation 1: Of Ketenes from the Elimination of Carboxylic Acid Derivatives 534
23.13.2.2.1.2 Variation 2: Of Ketenes Generated by the Electro cyclic Ring Opening of Cyclobutenones ... 539
23.13.2.2.1.3 Variation 3: Of Ketenes Generated by Electro cyclic Ring Opening of 4-Hydroxycyclobutenones .. 547

Product Subclass 3: Alk-1-en-3-ynylketenes ... 555
23.13.3.1 Synthesis of Product Subclass 3 .. 556
23.13.3.1.1 Method 1: Elimination from Carboxylic Acid Derivatives 556
23.13.3.1.2 Method 2: Wolff Rearrangement of Diazo Ketones ... 557
23.13.3.1.3 Method 3: Electro cyclic Ring Opening of 4-Alkynylcyclobutenones 558
23.13.3.2 Applications of Product Subclass 3 in Organic Synthesis 559
23.13.3.2.1 Method 1: Cyclizations Leading to Quinones .. 559

Product Class 14: Alkyl- and Cycloalkylketenes
T. T. Tidwell

Product Class 14: Alkyl- and Cycloalkylketenes ... 569
23.14.1 Product Subclass 1: Monoalkylketenes ... 571
23.14.1.1 Synthesis of Product Subclass 1 .. 571
23.14.1.1.1 Method 1: Dehydration of Alkanoic Acids ... 572
23.14.1.1.1.1 Variation 1: Dehydration of Carboxylic Acids Using Mukaiyama’s Reagent 572
23.14.1.1.2 Method 2: Pyrolysis of Alkanoic Anhydrides ... 574
23.14.1.1.2.1 Variation 1: From Alkanoic Anhydrides under Perkin Conditions 575
23.14.1.1.3.1 Variation 1: Ester Pyrolysis .. 576
23.14.1.1.4 Method 4: Dehydrohalogenation of Alkanoyl Chlorides 577
23.14.1.1.4.1 Variation 1: Dehydrochlorination Using a Shuttle Procedure with a Kinetic Base and a Stoichiometric Base ... 577
23.14.1.1.5 Method 5: Synthesis from Cycloalkanones and Hexa-1,5-dien-3-ones 579
23.14.1.1.5.1 Variation 1: Photolysis of Cyclobutanones ... 581
23.14.1.1.5.2 Variation 2: Photolysis of Cyclohexanones ... 582
23.14.1.1.5.3 Variation 3: Photolysis of Hexa-1,5-dien-3-ones .. 583
23.14.1.1.6 Method 6: Dehalogenation of 2-Haloalkanoyl Halides 583
23.14.1.1.7 Method 7: Wolff Rearrangement of Diazo Ketones ... 585
23.14.1.1.7.1 Variation 1: Metal-Catalyzed Wolff Rearrangement ... 585
23.14.1.1.7.2 Variation 2: Ultrasound-Assisted Wolff Rearrangement 586
23.14.1.7.3 Variation 3: Microwave-Enhanced Wolff Rearrangement 587
23.14.1.7.4 Variation 4: Photochemical Wolff Rearrangement 587
23.14.1.18 Method 8: Thermolysis of Alkynyl Ethers ... 588
23.14.1.19 Method 9: Synthesis from Ynolates (The Kowalski Homologation) 590
23.14.1.2 Applications of Product Subclass 1 in Organic Synthesis 590
23.14.1.2.1 Method 1: Allenyl Esters by Wittig Reactions of Monoalkylketenes 590
23.14.1.2.2 Method 2: Alkanoic Acid Derivatives by Addition of Heteroatom Nucleophiles to Monoalkylketenes .. 592
23.14.1.2.2.1 Variation 1: Alkanoic Acid Derivatives by the Arndt–Eistert Chain Elongation ... 592
23.14.1.2.2.2 Variation 2: β-Amino Acid Derivatives by the Arndt–Eistert Reaction ... 593
23.14.1.2.2.3 Variation 3: β-Amino Acid Esters by Kowalski Homologation of Esters 595
23.14.1.2.2.4 Variation 4: Aldols via Boron Enolates from the Addition of Sulfur Nucleophiles to Monoalkylketenes .. 596
23.14.1.2.2.5 Variation 5: γ-Lactams by Intramolecular Cyclization of Monoalkylketenes with Nitrogen Nucleophiles 597
23.14.1.2.2.6 Variation 6: Amides by Allylic Amine Addition and Aza-Claisen Rearrangement .. 598
23.14.1.2.3 Method 3: 2-Halo Esters by Addition of Electrophilic Halogenating Agents to Monoalkylketenes .. 599
23.14.1.2.4 Method 4: Ketones and Vinyl Ethers by Addition of Carbon Nucleophiles to Monoalkylketenes .. 600
23.14.1.2.5 Method 5: Trifluoromethyl Ketones and Oxo Esters by Acylation of Monoalkylketenes with Trifluoroacetic Anhydride 601
23.14.1.2.6 Method 6: 3-Methylene-β-lactones by Dimerization of Monoalkylketenes 601
23.14.1.2.7 Method 7: Cyclobutanones by [2 + 2] Cycloaddition of Monoalkylketenes with Alkenes and Dienes .. 603
23.14.1.2.7.1 Variation 1: Polycyclic Ketones by Intramolecular [2 + 2] Cycloaddition of Monoalkylketenes with Alkenyl Groups 606
23.14.1.2.10 Method 10: γ-Lactones by Intramolecular [3 + 2] Cyclization of Ketenes to Cyclobutanones .. 611
23.14.1.2 Product Subclass 2: Dialkylketenes and (Oxomethylene)cycloalkanes 613
23.14.1.2.1 Synthesis of Product Subclass 2 ... 614
23.14.1.2.1.1 Method 1: Dehydration of Dialkylalkanoic Acids 614
23.14.1.2.1.2 Method 2: Pyrolysis of 2-Alkylalkanoic Anhydrides 615
23.14.1.2.1.2.1 Variation 1: Decarboxylation of Dialkylmalonic Anhydrides 616
23.14.1.2.1.2.3 Method 3: Elimination Reactions of 2-Alkylalkanoate Ester Enolates 617
<table>
<thead>
<tr>
<th>Subclass</th>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>23.14.2.1.3.1</td>
<td>Variation 1:</td>
<td>Elimination from Ester Enolates Formed by Michael Addition to Acrylates</td>
</tr>
<tr>
<td>23.14.2.1.4</td>
<td>Method 4:</td>
<td>Dehydrochlorination of 2-Alkylalkanoyl Halides</td>
</tr>
<tr>
<td>23.14.2.1.5</td>
<td>Method 5:</td>
<td>Pyrolysis of Ketene Dimers</td>
</tr>
<tr>
<td>23.14.2.1.6</td>
<td>Method 6:</td>
<td>Dehalogenation of 2-Haloalkanoyl Halides</td>
</tr>
<tr>
<td>23.14.2.1.6.1</td>
<td>Variation 1:</td>
<td>Dehalogenation of 2-Haloalkanoyl Halides with Other Metals</td>
</tr>
<tr>
<td>23.14.2.1.7</td>
<td>Method 7:</td>
<td>Wolff Rearrangement of Diazoketones</td>
</tr>
<tr>
<td>23.14.2.1.7.1</td>
<td>Variation 1:</td>
<td>Photochemical Wolff Rearrangement of Diazoketones</td>
</tr>
<tr>
<td>23.14.2.1.7.2</td>
<td>Variation 2:</td>
<td>Ultrasound-Enhanced Wolff Rearrangement</td>
</tr>
<tr>
<td>23.14.2.1.7.3</td>
<td>Variation 3:</td>
<td>Photochemical Wolff Rearrangement of α-Oxo Ketenes</td>
</tr>
<tr>
<td>23.14.2.1.8</td>
<td>Method 8:</td>
<td>Oxygenation of a Dialkythioketene</td>
</tr>
<tr>
<td>23.14.2.2</td>
<td>Applications of Product Subclass 2 in Organic Synthesis</td>
<td></td>
</tr>
<tr>
<td>23.14.2.2.1</td>
<td>Method 1:</td>
<td>Carbenes by Decarbonylation of Dialkylketenes</td>
</tr>
<tr>
<td>23.14.2.2.2</td>
<td>Method 2:</td>
<td>Carboxylic Acid Derivatives by Nucleophilic Addition to Dialkylketenes</td>
</tr>
<tr>
<td>23.14.2.2.2.1</td>
<td>Variation 1:</td>
<td>Carboxylic Anhydrides and Derivatives by Electrophilic Addition to Dialkylketenes</td>
</tr>
<tr>
<td>23.14.2.2.2.2</td>
<td>Variation 2:</td>
<td>Esters and Free Radicals by Radical Addition to Dialkylketenes</td>
</tr>
<tr>
<td>23.14.2.2.3</td>
<td>Method 3:</td>
<td>Ketones and Vinyl Ethers by Addition of Carbon Nucleophiles to Dialkylketenes</td>
</tr>
<tr>
<td>23.14.2.2.4</td>
<td>Method 4:</td>
<td>Cyclobutane-1,3-diones by Dimerization of Dialkylketenes</td>
</tr>
<tr>
<td>23.14.2.2.4.1</td>
<td>Variation 1:</td>
<td>Cyclobutane-1,3-diones by Mixed Dimerization of Dialkylketenes with tert-Butyl(cyano)ketene</td>
</tr>
<tr>
<td>23.14.2.2.5</td>
<td>Method 5:</td>
<td>Cyclobutanones and Cyclobutenones by [2+2] Cycloaddition of Dialkylketenes with Alkenes, Dienes, Allenes, or Alkynes</td>
</tr>
<tr>
<td>23.14.2.2.5.1</td>
<td>Variation 1:</td>
<td>Bicyclo[n.2.0]alkanones by Intramolecular [2+2] Cycloaddition with Alkenyl Groups</td>
</tr>
<tr>
<td>23.14.2.2.6</td>
<td>Method 6:</td>
<td>β-Lactams by [2+2] Cycloaddition of Dialkylketenes with Imines</td>
</tr>
<tr>
<td>23.14.2.2.6.1</td>
<td>Variation 1:</td>
<td>Malonimides by [2+2] Cycloaddition of Dialkylketenes with Isocyanates</td>
</tr>
<tr>
<td>23.14.2.2.7</td>
<td>Method 7:</td>
<td>β-Lactones by [2+2] Cycloaddition of Dialkylketenes with Aldehydes</td>
</tr>
<tr>
<td>23.14.2.2.7.1</td>
<td>Variation 1:</td>
<td>β-Lactones by Asymmetric [2+2] Cycloaddition of Dimethylketene with Chiral Aldehydes</td>
</tr>
<tr>
<td>23.14.2.2.8</td>
<td>Method 8:</td>
<td>Cyclopropanones by [2+1] Cycloaddition of Dialkylketenes with Diazoalkanes</td>
</tr>
<tr>
<td>23.14.2.2.9</td>
<td>Method 9:</td>
<td>Polymerization of Dialkylketenes</td>
</tr>
<tr>
<td>23.14.3</td>
<td>Product Subclass 3: Cyclopropylketene, (Cycloprop-2- enyl)ketene, and Oxiranylketene</td>
<td></td>
</tr>
<tr>
<td>23.14.3.1</td>
<td>Synthesis of Product Subclass 3</td>
<td></td>
</tr>
<tr>
<td>23.14.3.1.1</td>
<td>Method 1:</td>
<td>Elimination from Cyclopropylacetates</td>
</tr>
<tr>
<td>23.14.3.1.2</td>
<td>Method 2:</td>
<td>Dehydrohalogenation of Cyclopropylacetetyl Halides</td>
</tr>
<tr>
<td>23.14.3.1.3</td>
<td>Method 3:</td>
<td>Wolff Rearrangements of Diazoketones</td>
</tr>
<tr>
<td>23.14.3.1.3.1</td>
<td>Variation 1:</td>
<td>(Cycloprop-2-enyl)ketene by Wolff Rearrangement</td>
</tr>
<tr>
<td>23.14.3.1.3.2</td>
<td>Variation 2:</td>
<td>Oxiranylketenes by Wolff Rearrangement</td>
</tr>
</tbody>
</table>
23.14.3.1.4 Method 4: Photochemical Rearrangement of 5,5-Dimethylcyclopent-2-enone

23.14.3.1.4.1 Variation 1: Photolysis of Cyclopentadienones

23.14.3.2 Applications of Product Subclass 3 in Organic Synthesis

23.14.3.2.1 Method 1: Bicyclooctadienones and Cycloheptadienones from Cycloprenylketenes by Cope Rearrangement

23.14.4 Product Subclass 4: (Fluoroalkyl)ketenes

23.14.4.1 Synthesis of Product Subclass 4

23.14.4.1.1 Method 1: Dehydration of Fluoroalkanoic Acids

23.14.4.1.2 Method 2: Dehalogenation of 2-Haloacetyl Halides

23.14.4.1.3 Method 3: Wolff Rearrangement of Diazo Ketones

23.14.4.1.3.1 Variation 1: Bis(trifluoromethyl)ketene by Wolff-Type Rearrangement upon Oxidation of an Alkyne

23.14.4.1.4 Method 4: Hydrolysis of a Perfluoroalkene

23.14.4.1.5 Method 5: Acyl(trifluoromethyl)ketenes by Cleavage of a 1,3-Dioxin-4-one

23.14.4.2 Applications of Product Subclass 4 in Organic Synthesis

23.14.4.2.1 Method 1: Fluoroalkyl Cyclobutanones, Cyclobutenones, and Derivatives by [2 + 2]-Cycloaddition Reactions of (Fluoroalkyl)ketenes

23.14.4.2.2 Method 2: (Trifluoromethyl)malonates by Nucleophilic Additions to a (Trifluoromethyl)ketene

23.15 Product Class 15: Bisketenes

T. T. Tidwell

23.15 Product Class 15: Bisketenes

23.15.1 Product Subclass 1: 1,2-Bisketenes

23.15.1.1 Synthesis of Product Subclass 1

23.15.1.1.1 Method 1: 1,2-Bisketenes by Thermal Ring Opening of Cyclobutene-1,2-diones

23.15.1.1.1.1 Variation 1: Stabilized 1,2-Bisketenes by Thermal Ring Opening of Cyclobutene-1,2-diones

23.15.1.1.2 Method 2: 1,2-Bisketenes by Photochemical Ring Opening of Cyclobutene-1,2-diones

23.15.1.1.3 Method 3: Metal-Complexed 1,2-Bisketene

23.15.1.1.4 Method 4: 1,2-Bisketenes by Wolff Rearrangement of Bis(diazo ketones)

23.15.1.2 Applications of Product Subclass 1 in Organic Synthesis

23.15.1.2.1 Method 1: Acids, Esters, and Amides by Nucleophilic Additions to 1,2-Bisketenes

23.15.1.2.1.1 Variation 1: (Carboxy)ketenes and Succinic Anhydrides by Water Addition to 1,2-Bisketenes

23.15.1.2.2 Method 2: Diamides by Amine Addition to 1,2-Bisketenes

23.15.1.2.2.1 Variation 1: Carbamoyl-Substituted Esters by Successive Amine and Alcohol Addition
23.15.1.2.2 Variation 2: A Cyclic Carbamoyl Ester by Addition of an Amino Alcohol to a 1,2-Bisketene .. 693

23.15.1.2.3 Method 3: A Fumaroyl Bromide by Bromine Addition to a 1,2-Bisketene .. 693

23.15.1.2.4 Method 4: Maleic Anhydride Formation by Aminoxyl Radical Addition to a 1,2-Bisketene ... 694

23.15.1.2.5 Method 5: Furanone Formation by Dimerization of 1,2-Bisketenes ... 694

23.15.1.2.6 Method 6: Naphthofuranones by [4+2] Cycloaddition of 1,2-Bisketenes with Pendant Alkenes .. 695

23.15.1.2.7 Method 7: Cyclopropanes and Quinones by [2+1] and [4+2] Cycloaddition of 1,2-Bisketenes with Alkynes ... 695

23.15.1.2.8 Method 8: A β-Lactone by [2+2] Cycloaddition of a 1,2-Bisketene with Acetaldehyde .. 697

23.15.1.2.9 Method 9: Cyclopentenediones by [4+1] Cycloaddition of 1,2-Bisketenes with Carbenes and Diazooalkanes .. 697

23.15.1.2.10 Method 10: Cyclopropenones and Alkynes by Photolysis of 1,2-Bisketenes ... 697

23.15.2 Product Subclass 2: 1,3- and Higher Bisketenes ... 699

23.15.2.1 Synthesis of Product Subclass 2 ... 699

23.15.2.1.1 Method 1: A Bisketene by Dehydration of a Dicarboxylic Acid ... 699

23.15.2.1.2 Method 2: A Bisketene by Elimination from a Bis(isopropenyl) Ester .. 700

23.15.2.1.3 Method 3: Bisketenes by Dehydrochlorination of Dicarboxylic Acid Chlorides .. 701

23.15.2.1.3.1 Variation 1: Bisketenes by Dehydrochlorination of Dicarboxylic Acid Chlorides by a Shuttle Procedure with a Kinetic Base and a Stoichiometric Base ... 702

23.15.2.1.3.2 Variation 2: 1,4-Bis(oxovinyl)benzenes by Dehydrochlorination .. 705

23.15.2.1.4 Method 4: Bisketenes by Ring Opening of Benzo-1,2-quinones ... 705

23.15.2.1.5 Method 5: Bisketenes by Wolff Rearrangement of Bis(diazo ketones) .. 706

23.15.2.1.6 Method 6: Bis- and Tris(oxovinyl)silanes by Thermolysis of (Ethoxyethynyl)silanes .. 707

23.15.2.1.7 Method 7: A 1,5-Bisketene by [4+2] Cycloaddition of Norbornadiene with a 1,3,4-Oxadiazine Followed by Nitrogen Elimination 710

23.15.2.1.8 Method 8: A Bis(allenylketene) from a Bis(methylene cyclobutenenone) .. 710

23.15.2.2 Applications of Product Subclass 2 in Organic Synthesis .. 711

23.15.2.2.1 Method 1: Esters and Amides by Addition of Nucleophiles to Bisketenes .. 711

23.15.2.2.1.1 Variation 1: Polyamides and Polyesters from Bisketenes and Diamines or Diols ... 711

23.15.3 Product Subclass 3: Bis(oxomethylene)cyclohexanes and -cyclohexadienes .. 712

23.15.3.1 Synthesis of Product Subclass 3 .. 713

23.15.3.1.1 Method 1: Bis(oxomethylene)cyclohexanes and -cyclohexadienes by Dehydrochlorination of Dicarboxylic Acid Chlorides .. 713

23.15.3.1.2 Method 2: Bis(oxomethylene)cyclohexadienes by Dehalogenation of Terephthaloyl Halides .. 714

23.15.3.1.3 Method 3: 1,2-Bis(oxomethylene)cyclohexane by Ring Opening of a Cyclobutene-1,2-dione .. 714
Method 4:

5,6-Bis(oxomethylene)cyclohexa-1,3-diene by Ring Opening of a Cyclobutene-1,2-dione

Variation 1:

5,6-Bis(oxomethylene)cyclohexa-1,3-diene by Thermal Nitrogen Loss from Phthalazine-1,4-dione

Method 5:

5,6-Bis(oxomethylene)cyclohexa-1,3-diene by Cyclophane Cleavage

Method 6:

Bis(oxomethylene)cycloalkanes by Double Wolff Rearrangement

Applicationsof Product Subclass 3 in Organic Synthesis

1. **Method 1:** Esters and Amides by Addition of Nucleophiles to Bisketenes
2. **Method 2:** [4+2] Cycloadditions of 1,2-Bisketenes with Alkenes and Benzoquinones
3. **Method 3:** Spiro[cyclopropane-1,1\(^{\prime}\)]-(3\(^{\prime}\)H)-isobenzofuran]-3\(^{\prime}\)-ones by Cycloaddition of a 1,2-Bisketene with Alkenes
4. **Method 4:** A 1,3,5-Oxathiazine by [4+2] Cycloaddition of a Bisketene with an Isocyanate
5. **Method 5:** Benzyne by Photochemical Decarbonylation of 5,6-Bis(oxomethylene)cyclohexa-1,3-diene
6. **Method 6:** A Bicyclic Enyne by Photochemical Decarbonylation of a Bisketene
7. **Method 7:** Polymerization of a 1,4-Bisketene by [2+2] Cyclodimerization

Product Subclass 4: Other Bisketenes

1. **Method 1:** Bis(acylketenes) by Thermolysis of Bis(dioxinones) and Bis(Meldrum’s acid) Derivatives
2. **Method 2:** A Tris(acylketene) by Thermolysis of a Triester
3. **Method 3:** A Bis(acylketene) by Carbon Dioxide Addition to a Diynediamine
4. **Method 4:** Bis(acylketenes) by Wolff Rearrangement of Bis(diazo) Tetraketones
5. **Method 5:** Bis(dienylketenes) by Photolysis of Bis(cyclohexadienones)
6. **Method 6:** A Bis(oxovinyl)platinum Complex by Addition of a Ketene to an (Oxovinyl)platinum Complex
7. **Method 7:** Bis(ketenechromium) Complexes from Bis(alkylidenechromium) Complexes

Product Class 16: Sulfur, Selenium, and Tellurium Analogues of Ketenes

C. Spanka and E. Schaumann

Product Class 16: Sulfur, Selenium, and Tellurium Analogues of Ketenes

1. **Product Subclass 1: Thioketenes**
 - Synthesis of Product Subclass 1
 - **Method 1:** Sulfuration of Ketenes

Table of Contents

Science of Synthesis Original Edition Volume 23
© Georg Thieme Verlag KG
23.16.1.2 Method 2: Synthesis from Dithiocarboxylates 738
23.16.1.3 Method 3: Elimination Reactions of Ketene S,X-Acetals 739
23.16.1.4 Method 4: Synthesis by Cycloreversion 740
23.16.1.4.1 Variation 1: [2 + 2] Cycloreversion of 2,4-Bis(alkylidene)-1,3-dithietanes (Thioketene Dimers) or 4-Alkylidene-1,3-dithietan-2-ones ⋯ 740
23.16.1.4.2 Variation 2: [3 + 2] Cycloreversion of 2-Alkylidene-1,3-dithiolane Derivatives .. 742
23.16.1.4.3 Variation 3: 1,2,3-Thiadiazoles as Stable Thioketene Precursors (Thio-Wolff Rearrangement) .. 746
23.16.1.5 Method 5: Treatment of Alkylidene phosphoranes with Carbon Disulfide . 750
23.16.1.6 Method 6: Thioketenes via Alkynyl Sulfides ... 751
23.16.1.6.1 Variation 1: Protonation or Silylation of Alk-1-yne thiolates Followed by [1,3]-Hydrogen/Silicon Shift .. 753
23.16.1.6.2 Variation 2: Thia-Cope Rearrangement of Alkynyl Allyl Sulfides 754
23.16.1.7 Methods 7: Other Methods ... 758
23.16.2 Product Subclass 2: Cumulated Thioketenes and Their Derivatives 760
23.16.2.1 Synthesis of Product Subclass 2 ... 760
23.16.2.1.1 Method 1: Synthesis of Alkylidene thioketenes 760
23.16.2.1.2 Method 2: Synthesis of (Arylimino)thioketenes 761
23.16.2.1.3 Method 3: Synthesis of Carbon Subsulfide (Propadienedithione) 762
23.16.3 Product Subclass 3: Thioketene S-Oxides ... 764
23.16.3.1 Synthesis of Product Subclass 3 .. 764
23.16.3.1.1 Method 1: Direct Oxidation of Thioketenes 764
23.16.3.1.2 Method 2: [3 + 2] Cycloreversion of 1,3-Dithiolane 1,1,3-Trioxides 765
23.16.3.1.3 Method 3: Retro-Diels–Alder Reaction ... 765
23.16.4 Product Subclass 4: Selenoketenes ... 766
23.16.4.1 Synthesis of Product Subclass 4 .. 766
23.16.4.1.1 Method 1: Rearrangement of Alkynyl Selenides 767
23.16.4.1.2 Method 2: [3,3]-Sigmatropic Rearrangement of Alkynyl Allyl Selenides (Selena-Cope Rearrangement) 769
23.16.4.1.3 Method 3: Nitrogen Extrusion from 1,2,3-Selenadiazoles 772
23.16.5 Product Subclass 5: Telluroketenes ... 776

23.17 Product Class 17: Ketenimines

H. Perst

23.17 Product Class 17: Ketenimines ... 781
23.17.1 Product Subclass 1: Monoketenimines ... 783
23.17.1.1 Synthesis of Product Subclass 1 ... 783
23.17.1.1.1 Synthesis by Formation of the C=C Bond 784
23.17.1.1.1 Method 1: Dehydrocyanation of Imidoyl Cyanides 784
23.17.1.1.2 Method 2: Dehydration of Carboxamides by Oxophilic Reagents in the Presence of Tertiary Amines 785
23.17.1.1.2.1 Variation 1: Using Triphenylphosphine–Carbon Tetrachloride–Triethylamine 787
23.17.1.1.2.2 Variation 2: Using Triphenylphosphine–Bromine–Triethylamine 788
23.17.1.1.2.3 Variation 3: Using Diphosgene–Triethylamine 791
23.17.1.1.3 Method 3: \(\beta\)-Elimination from Imidocarboxylic Acid Derivatives 793
23.17.1.1.3.1 Variation 1: Dehydrohalogenation of Imidoyl Halides 793
23.17.1.1.3.2 Variation 2: Dehalogenation of \(\alpha\)-Haloimidoyl Halides 795
23.17.1.1.3.3 Variation 3: \(\beta\)-Elimination from Imidocarboxylic Acid Esters 796
23.17.1.1.4 Method 4: \(\beta\)-Elimination from Other Precursors via Imidocarboxylic Acid Derivatives Formed In Situ ... 798
23.17.1.1.4.1 Variation 1: From Oximes .. 798
23.17.1.1.4.2 Variation 2: From 2,2-Dihaloaziridines 799
23.17.1.1.5 Method 5: Elimination of Hydrogen Sulfide from Thioamides 801
23.17.1.1.5.1 Variation 1: From Thioamides via Imidoyl Chlorides 801
23.17.1.1.5.2 Variation 2: From Methyl Imidothioesters 802
23.17.1.1.6 Method 6: Connective Alkene Formation by Reaction of Phosphonium Ylides or Related Reagents with Azaheterocumulenes 804
23.17.1.1.6.1 Variation 1: Ketenamines from Wittig Reaction of Alkylideneretriphenylphosphoranes with Isocyanates 804
23.17.1.1.6.2 Variation 2: Reaction of Alkylidene phosphoranes with Isothiocyanates or Carbodiimides .. 808
23.17.1.1.6.3 Variation 3: Horner–Wittig Reaction of Isocyanates with Carbanions Derived from Diethyl Phosphonates 809
23.17.1.1.7 Method 7: Cycloreversion ... 809
23.17.1.1.8 Method 8: Cheletropic Reactions (Sulfur Extrusion from 2,5-Dihydroisothiazol-5-imines) .. 811
23.17.1.1.9 Method 9: Addition of Isocyanides to Carbenes ... 812
23.17.1.1.10 Method 10: Addition of Isocyanides to Suitable Carbon Fragments in the Coordination Sphere of Transition-Metal Complexes 814
23.17.1.1.10.1 Variation 1: Addition of Carbenes to Transition Metal–Isocyanide Complexes .. 814
23.17.1.1.10.2 Variation 2: Addition of Isocyanides to Transition Metal–Carbene Complexes ... 815
23.17.1.1.10.3 Variation 3: Rearrangement of a Transition Metal–Isocyanide Complex 816
23.17.1.1.10.4 Variation 4: Palladium-Assisted Reactions of Isocyanides with Alkyl Chlorides ... 817
23.17.1.1.11 Method 11: Addition of Isocyanides to Alkynes 818
23.17.1.1.12 Method 12: Addition of Isocyanides to Cyclopropene Derivatives 820
23.17.1.1.13 Method 13: Iminocarbene–Ketenimine Rearrangement 821
23.17.1.1.13.1 Variation 1: Photochemical Transformation of 2-(Cyanomimino)-1-diazoalkanes 821
23.17.1.1.13.2 Variation 2: Thermal or Photochemical Transformation of 1-Aryl-1,2,3-triazoles and 1H-Benzotriazoles 822
23.17.1.1.1 Synthesis by Formation of the C=\(N\) Bond 824
23.17.1.1.2 Method 1: Dehydrocyanation of \(\alpha\)-Cyanoenamines 825
23.17.1.1.2.2 Method 2: Dehydrohalogenation of \(\alpha\)-Haloenamines 826
23.17.1.1.2.3 Method 3: Eliminations from Ketene \(N,S\)-Acetals 828
23.1.1.2.4 Method 4: Connective Imine Formation by Aza-Wittig Reaction of Iminophosphoranes or Related Compounds with Ketenes 831

23.1.1.2.4.1 Variation 1: With Preformed Iminophosphoranes and Preformed Ketenes ... 831

23.1.1.2.4.2 Variation 2: With Preformed Iminophosphoranes and In Situ Generated Ketenes .. 833

23.1.1.2.4.3 Variation 3: With In Situ Generated Iminophosphoranes and Preformed Ketenes .. 833

23.1.1.2.4.4 Variation 4: Reaction of N-Substituted Diethyl Phosphoramidate Anions with Ketenes .. 837

23.1.1.2.5 Method 5: Connective Imine Formation by the Reaction of Thioketenes with Sulfur Diimides .. 838

23.1.1.2.6 Method 6: Deprotonation and Ring Opening of Isoxazolium Salts ... 839

23.1.1.2.7 Method 7: Cycloreversion .. 840

23.1.1.2.8 Method 8: Cheletropic Reactions ... 840

23.1.1.2.9 Method 9: Thermolysis of Vinyl Azides ... 843

23.1.1.2.10 Method 10: Photolysis of Vinyl Azides or Aryl Azides 844

23.1.1.3 Synthesis by Formation of the C=C and C=N Bonds ... 845

23.1.1.3.1 Method 1: Addition–Elimination Reactions with Nitriles ... 845

23.1.1.3.1.1 Variation 1: Via Nitrilium Ions and Subsequent Deprotonation at the β-Carbon Atom .. 845

23.1.1.3.1.2 Variation 2: Via Nitrile Anions and Subsequent Addition of Electrophiles to the Nitrogen Atom ... 846

23.1.1.3.1.3 Variation 3: Addition of Trialkyl Phosphites to α-Halo Nitriles and Elimination of Haloalkanes ... 849

23.1.1.3.2 Method 2: 1,4-Addition to α,β-Unsaturated Nitriles 851

23.1.1.3.3 Method 3: [2,3]-Sigmatropic Rearrangement of 1-Cyanoalkyl Methylene sulfurylides ... 852

23.1.1.4 Applications of Product Subclass 1 in Organic Synthesis 854

23.1.1.4.1 Method 1: Addition of Proton Nucleophiles and Related Compounds 854

23.1.1.4.2 Method 2: [2 + 2]-Cycloaddition Reactions of Ketenimines 856

23.1.1.4.2.1 Variation 1: With Alkenes or Alkynes 856

23.1.1.4.2.2 Variation 2: With Carbonyl Compounds 858

23.1.1.4.2.3 Variation 3: With Thiocarbonyl Compounds 859

23.1.1.4.2.4 Variation 4: With Imines ... 861

23.1.1.4.2.5 Variation 5: With N=X Systems .. 862

23.1.1.4.2.6 Variation 6: With Heterocumulenes 864

23.1.1.4.2.7 Method 3: [3 + 2]-Cycloaddition Reactions of Ketenimines 865

23.1.1.4.2.8 Variation 1: With 1,3-Dipoles ... 865

23.1.1.4.2.9 Variation 2: With Three-Membered Heterocycles 867

23.1.1.4.2.10 Variation 3: Via Intramolecular Reactions of C-(Aziridin-1-ylimino)ketenimines .. 869

23.1.1.4.2.11 Method 4: [4 + 2]-Cycloaddition Reactions Using Ketenimines as Dienophiles ... 870

23.1.1.4.2.12 Method 5: [4 + 2]-Cycloaddition Reactions Using Ketenimines as 1,3-Dienes .. 871

23.1.1.4.2.13 Variation 1: From a 1,3-Diene Formed by the Ketenimine C=C Bond and a Suitable C-Substituent ... 874
23.17.1.2.5.2 Variation 2: From a 1,3-Diene Formed by the Ketenimine \(C=NC\) Bond and a \(C\)-Aryl Substituent; Intramolecular \([4+2]\)-Cycloaddition Reactions .. 877

23.17.1.2.5.3 Variation 3: From a 1,3-Diene Formed by the Ketenimine \(C=N\) Bond and a Suitable \(N\)-Substituent ... 879

23.17.1.2.5.4 Variation 4: From a 1,3-Diene Formed by the Ketenimine \(C=N\) Bond and an \(N\)-Aryl Substituent 882

23.17.1.2.6 Method 6: Rearrangements of Ketenimines 884

23.17.1.2.7 Method 7: Reactions with Loss of the \(N\)-Substituent 885

23.17.1.2.7.1 Variation 1: Thermal Cleavage .. 885

23.17.1.2.7.2 Variation 2: Addition–Elimination Reactions of \(N\)-Silyl- or \(N\)-Stannylketenimines ... 886

23.17.1.2.7.3 Variation 3: Alk-2-enenitriles from \(C,C,N\)-Tris(trimethylsilyl)ketenimine and Aldehydes .. 888

23.17.2 Product Subclass 2: Bisiminopropa-1,2-dienes 889

23.17.2.1 Synthesis of Product Subclass 2 ... 889

23.17.2.1.1 Method 1: Thermolysis of Isoxazolonoketene \(N,S\)-Acetals 889

Keyword Index ... 899

Author Index ... 1013

Abbreviations ... 1049