Volume 26: Ketones

Preface .. V
Volume Editor’s Preface ... VII
Table of Contents .. XI

Introduction
J. Cossy ... 1

26.1 Product Class 1: Aliphatic and Alicyclic Ketones (Excluding Cyclobutanones and Cyclopropanones)
P. Vogel ... 13

26.1.1 Synthesis by Oxidation of Heterosubstituted Alkanes
S. von Angerer ... 39

26.1.2 Synthesis by Oxidation of Alkenes and Alkanes (Excluding Allylic or Benzyllic Derivatives)
T. S. Balaban .. 127

26.1.3 Synthesis by Reduction of 1,2-Diketones and α-Diazo Ketones, α,α-Dihetero- and α-Heterosubstituted Ketones, Enones, and Ynones
M. Yus and C. Nájera .. 153

26.1.4 Synthesis from Carboxylic Acids and Derivatives by Substitution with a Carbon Nucleophile
B. Figadère and X. Franck ... 243

26.1.5 Synthesis from Aldehydes by Substitution of the Aldehyde Hydrogen
B. Figadère and X. Franck ... 293

26.1.6 Synthesis from Thioketones, Acetals, Cyanohydrins, Enol Ethers, Enamines, Other Ene Derivatives, and Related Compounds
D. Desmaële ... 301

26.1.7 Synthesis by Addition
B. Figadère and X. Franck ... 401

26.1.8 Synthesis by Fragmentation and Rearrangement
T. Constantieux and J. Rodriguez ... 413

26.1.9 Synthesis from Other Ketones
J.-C. Plaquevent, D. Cahard, and F. Guillen 463

26.1.10 Synthesis from Enones by Formation of C—C Bonds
J.-C. Plaquevent, D. Cahard, and F. Guillen 513
26.2 Product Class 2: Cyclobutanones and Their Precursors
J. Salaün ... 557

26.3 Product Class 3: Cyclopropanones and Their Precursors
J. Salaün ... 607

26.4 Product Class 4: 1,2-Diketones and Related Compounds
Y. Landais and J. M. Vincent 647

26.5 Product Class 5: α,α-Diheterosubstituted Ketones
J.-L. Parrain and J. Thibonnet 745

26.6 Product Class 6: α-Heterosubstituted Ketones
J. Suffert ... 869

26.7 Product Class 7: Ynones
A. Nelson ... 971

26.8 Product Class 8: Aryl Ketones
J. M. Campagne and Y. Six 989

26.9 Product Class 9: Enones
S. P. Marsden ... 1045

26.10 Product Class 10: Saturated or Unsaturated Ketones with an Additional Carbonyl, Nitrile, or Carboxy Substituent or Equivalent at a β or More Remote Position: Synthesis of the Ketone Functionality
I. Chataigner, A. Harrison-Marchand, and J. Maddaluno 1123

26.11 Product Class 11: Saturated and Unsaturated Ketones Containing a β- or More Remote Heteroatom Substituent
A. Harrison-Marchand, I. Chataigner, and J. Maddaluno 1225

Keyword Index .. 1287

Author Index ... 1341

Abbreviations .. 1417
Table of Contents

Introduction
J. Cossy

Introduction ... 1

26.1 Product Class 1: Aliphatic and Alicyclic Ketones
(Excluding Cyclobutanones and Cyclopropanones)
P. Vogel

26.1 Product Class 1: Aliphatic and Alicyclic Ketones
(Excluding Cyclobutanones and Cyclopropanones) 13

26.1.1 Synthesis by Oxidation of Heterosubstituted Alkanes
S. von Angerer

26.1.1 Synthesis by Oxidation of Heterosubstituted Alkanes 39
26.1.1.1 Oxidation of Halides .. 40
26.1.1.1 Method 1: With Sodium Dichromate or Sodium Periodate 40
26.1.1.1 Method 2: With Dimethyl Sulfoxide 40
26.1.1.1 Method 3: With Nitrogen–Oxygen Compounds 41
26.1.1.2 Oxidation of Secondary Alcohols 42
26.1.1.2 Method 1: By Hydrogen Elimination 42
26.1.1.2 Method 2: With Chromium(VI) Compounds 43
26.1.1.2 Variation 1: With Chromic Acid in Aqueous Solution 44
26.1.1.2 Variation 2: With Chromic Acid in Acetic Acid 44
26.1.1.2 Variation 3: With Chromic Acid in Acetone 46
26.1.1.2 Variation 4: With Chromic Acid in a Two-Phase System ... 47
26.1.1.2 Variation 5: With Chromium(VI) Oxide 49
26.1.1.2 Variation 6: With Halochromates 51
26.1.1.2 Method 3: With Manganese Compounds 53
26.1.1.2 Variation 1: With Permanganate 53
26.1.1.2 Variation 2: With Manganese(IV) Oxide 55
26.1.1.2 Method 4: With Other Metal Compounds 58
26.1.1.2 Variation 1: With Iron Compounds 58
26.1.1.2 Variation 2: With Ruthenium(VIII) Oxide 59
26.1.1.2 Variation 3: With Copper(II) Salts 60
26.1.1.2 Method 5: Oxidation of Secondary Alcohols with Halogen Compounds ... 60
26.1.1.2 Variation 1: With Hypofluorous Acid 60
26.1.1.2 Variation 2: With Hypochlorite and Related Oxidants 61
26.1.1.2 Variation 3: With N-tert-Butylbenzenesulfinimidoyl Chloride ... 64
26.1.1.2 Variation 4: With Bromo Compounds 65
26.1.1.2 Variation 5: With Periodate 67
26.1.1.2 Variation 6: With Organic Iodine(V) Compounds 68
26.1.1.2 Variation 7: With Organic Iodine(III) Compounds 71
26.1.2.6 Method 6: Oxidation by Molecular Oxygen 74
26.1.2.6.1 Variation 1: With Ruthenium-Based Catalysts 74
26.1.2.6.2 Variation 2: With Cobalt-Based Catalysts 75
26.1.2.6.3 Variation 3: With Vanadium-Based Catalysts 76
26.1.2.6.4 Variation 4: With Copper-Based Catalysts 78
26.1.2.6.5 Variation 5: With Palladium-Based Catalysts 79
26.1.2.6.6 Variation 6: With Other Reagents ... 82
26.1.2.7 Method 7: Oxidation with Hydrogen Peroxide 83
26.1.2.8 Method 8: Oxidation with Hydroperoxides and Peracids 84
26.1.2.8.1 Variation 1: With tert-Butyl Hydroperoxide 85
26.1.2.8.2 Variation 2: With Peracids ... 86
26.1.2.9 Method 9: Oxidation with Dioxiranes .. 88
26.1.2.10 Method 10: Oxidation with Dimethyl Sulfoxide 89
26.1.2.11 Method 11: Oxidation with Peroxomonosulfate 95
26.1.2.12 Method 12: Oxidation with Nitrogen Compounds 96
26.1.2.12.1 Variation 1: With Organic Oxoammonium Salts 96
26.1.2.12.2 Variation 2: With N-Oxides ... 98
26.1.2.12.3 Variation 3: With Other Nitrogen-Based Oxidants 98
26.1.2.13 Method 13: Oppenauer Oxidation .. 99
26.1.2.14 Method 14: Dehydrogenation with Alkenes and Alkynes 102
26.1.2.14.1 Variation 1: With Alkenes .. 103
26.1.2.14.2 Variation 2: By Isomerization of Allyl Alcohols 103
26.1.2.14.3 Variation 3: By Isomerization of α-Hydroxyalkynes 104
26.1.2.15 Method 15: Other Methods ... 105
26.1.3 Oxidation of Secondary Alcohol Derivatives 108
26.1.3.1 Method 1: Oxidation of Ethers ... 108
26.1.3.2 Method 2: Oxidative Deprotection of Silyl Ethers 111
26.1.4 Oxidation of Nitrogen Compounds .. 113
26.1.4.1 Method 1: From Nitroalkanes (The Nef Reaction) 113
26.1.4.2 Method 2: From Amines .. 115

26.1.2 Synthesis by Oxidation of Alkenes and Alkanes
(Excluding Allylic or Benzylic Derivatives)
T. S. Balaban

26.1.2.1 Method 1: Oxidation of Alkenes without Cleavage of the Skeleton 127
26.1.2.1.1 Variation 1: Using Mercury Salts ... 127
26.1.2.1.2 Variation 2: Using Palladium Salts with Oxygen and a Copper Cocatalyst or Other Oxidant Systems .. 128
26.1.2.1.3 Variation 3: Using Rhodium Salts with Oxygen 131
26.1.2.1.4 Variation 4: By Oxidation of Intermediate Boron Adducts 131
26.1.2.2 Method 2: Oxidation of Alkenes with Cleavage of a C=C Bond 133
26.1.2.2.1 Variation 1: Using Transition Metal Compounds 134
26.1.2.2.2 Variation 2: Using Permanganate and Periodate Reagents 134
26.1.2.2.3 Variation 3: By Ozonolysis ... 135
26.1.2.2.4 Variation 4: By Other Methods ... 136
26.1.2.3 Method 3: Transition-Metal-Catalyzed Oxidation of Alkanes 137
26.1.2.3.1 Variation 1: Using Oxygen ... 137
26.1.2.3.2 Variation 2: Using Ozone .. 140
26.1.2.3.3 Variation 3: Using Hydrogen Peroxide and Organic Peroxides 140
26.1.2.3.4 Variation 4: Using Sodium Periodate 144
26.1.2.3.5 Variation 5: Using Iodosylbenzene 145
26.1.2.3.6 Variation 6: Under Irradiation .. 146
26.1.2.4 Method 4: Oxidation of Alkanes by Other Methods 146
26.1.2.4.1 Variation 1: Using Chromates and Permanganates under Lewis Acid Catalysis .. 146
26.1.2.4.2 Variation 2: Using Dioxiranes .. 147
26.1.2.4.3 Variation 3: Using Ozone .. 148
26.1.2.4.4 Variation 4: Electrochemical Oxidation 148

26.1.3 Synthesis by Reduction of 1,2-Diketones and α-Diazo Ketones, α,α-Dihetero- and α-Heterosubstituted Ketones, Enones, and Ynones
M. Yus and C. Nájera

26.1.3 Synthesis by Reduction of 1,2-Diketones and α-Diazo Ketones, α,α-Dihetero- and α-Heterosubstituted Ketones, Enones, and Ynones ... 153
26.1.3.1 Reduction of 1,2-Diketones and α-Diazo Ketones 153
26.1.3.1.1 Method 1: Reduction of 1,2-Diketones 153
26.1.3.1.2 Method 2: Reduction of α-Diazo Ketones 155
26.1.3.2 Reduction of α,α-Diheterosubstituted Ketones 157
26.1.3.2.1 Method 1: Reduction of α,α-Dihalo Ketones 157
26.1.3.2.2 Method 2: Reduction of α-Oxo Thioacetals 158
26.1.3.3 Reduction of α-Heterosubstituted Ketones 160
26.1.3.3.1 Reduction of α-Silylated Ketones ... 160
26.1.3.3.1.1 Method 1: Acidic Conditions ... 161
26.1.3.3.1.2 Method 2: Basic Conditions .. 162
26.1.3.3.2 Reduction of α-Halo Ketones ... 163
26.1.3.3.2.1 Method 1: Reduction of α-Fluoro Ketones 165
26.1.3.3.2.2 Method 2: Reduction of α-Chloro Ketones 166
26.1.3.3.2.2.1 Variation 1: Active Metals and Salts 166
26.1.3.3.2.2.2 Variation 2: Nucleophilic Reagents 167
26.1.3.3.2.3 Variation 3: Hydrides .. 169
26.1.3.3.2.3.1 Method 3: Reduction of α-Bromo Ketones 170
26.1.3.3.2.3.2 Variation 1: Active Metals or Salts and Electrolysis 170
26.1.3.3.2.3.2.1 Variation 2: Nucleophilic Reagents 172
26.1.3.3.2.3.2.2 Variation 3: Hydrides ... 173
26.1.3.3.2.3.2.3 Method 4: Reduction of α-Iodo Ketones 175
26.1.3.3.3 Reduction of α-Oxygenated Ketones 176
26.1.3.3.1 Method 1: Reduction of α-Hydroxy Ketones 177
26.1.3.3.1.1 Variation 1: Active Metals and Salts .. 177
26.1.3.3.1.2 Variation 2: Nucleophilic Reagents ... 178
26.1.3.3.2 Method 2: Reduction of α-Alkoxy, α-Acyloxy, and α-Sulfonyloxy Ketones 180
26.1.3.3.2.1 Variation 1: Active Metals and Salts .. 180
26.1.3.3.2.2 Variation 2: Nucleophilic Reagents and Hydrides 182
26.1.3.3.3 Method 3: Reduction of α, β-Epoxy Ketones 184
26.1.3.3.3.1 Variation 1: Active Metals and Salts .. 184
26.1.3.3.3.2 Variation 2: Nucleophilic Reagents ... 186
26.1.3.3.4 Reduction of α-Sulfurated Ketones ... 187
26.1.3.3.4.1 Method 1: Reduction of α-Sulfanyl Ketones 188
26.1.3.3.4.2 Method 2: Reduction of α-Sulfinyl Ketones 190
26.1.3.3.4.3 Method 3: Reduction of α-Sulfonyl Ketones 191
26.1.3.3.4.3.1 Variation 1: Active Metals and Salts .. 191
26.1.3.3.4.3.2 Variation 2: Radicals and Nucleophilic Reagents 195
26.1.3.3.5 Reduction of α-Selanyl Ketones .. 195
26.1.3.3.6 Reduction of α-Nitrogenated Ketones .. 198
26.1.3.4 Reduction of Enones ... 199
26.1.3.4.1 Method 1: Catalytic Hydrogenation .. 199
26.1.3.4.1.1 Variation 1: Hydrogenation under Heterogeneous Conditions 199
26.1.3.4.1.2 Variation 2: Hydrogenation under Homogeneous Conditions 202
26.1.3.4.1.3 Variation 3: Transfer Hydrogenation .. 204
26.1.3.4.2 Method 2: Reduction with Hydrides ... 206
26.1.3.4.2.1 Variation 1: Boron Hydrides .. 206
26.1.3.4.2.2 Variation 2: Aluminum Hydrides ... 208
26.1.3.4.2.3 Variation 3: Silicon Hydrides .. 210
26.1.3.4.2.4 Variation 4: Tin Hydrides and Metal Hydroselelenides/Hydrotellurides 212
26.1.3.4.2.5 Variation 5: Transition Metal Hydrides .. 214
26.1.3.4.3 Method 3: Reduction with Dissolving Metals 216
26.1.3.4.3.1 Variation 1: Main Group Metals ... 216
26.1.3.4.3.2 Variation 2: Transition Metals and Salts 220
26.1.3.4.4 Methods 4: Other Methodologies .. 221
26.1.3.5 Reduction of Ynones ... 224
26.1.3.5.1 Method 1: Partial and Full Reduction Methodologies 224
26.1.4 Synthesis from Carboxylic Acids and Derivatives by Substitution with a Carbon Nucleophile

B. Figadère and X. Franck

26.1.4 Synthesis from Carboxylic Acids and Derivatives by Substitution with a Carbon Nucleophile .. 243
26.1.4.1 Method 1: Synthesis from Acyl Halides .. 243
26.1.4.1.1 Variation 1: With Organotin Reagents .. 244
26.1.4.1.2 Variation 2: With Organoboron Reagents 244
26.1.4.1.3 Variation 3: With Organoauminum Reagents 245
<table>
<thead>
<tr>
<th>Section</th>
<th>Method</th>
<th>Reagents</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>26.1.4.4</td>
<td>Variation 4</td>
<td>With Organozinc Reagents</td>
<td>247</td>
</tr>
<tr>
<td>26.1.4.5</td>
<td>Variation 5</td>
<td>With Organocadmium Reagents</td>
<td>248</td>
</tr>
<tr>
<td>26.1.4.6</td>
<td>Variation 6</td>
<td>With Organomercury Reagents</td>
<td>248</td>
</tr>
<tr>
<td>26.1.4.7</td>
<td>Variation 7</td>
<td>With Organocopper Reagents</td>
<td>249</td>
</tr>
<tr>
<td>26.1.4.8</td>
<td>Variation 8</td>
<td>With Organocobalt, Organorhodium, or Organoiron Reagents</td>
<td>252</td>
</tr>
<tr>
<td>26.1.4.9</td>
<td>Variation 9</td>
<td>With Organomanganese Reagents</td>
<td>253</td>
</tr>
<tr>
<td>26.1.4.10</td>
<td>Variation 10</td>
<td>With Organotitanium or Organozirconium Reagents</td>
<td>254</td>
</tr>
<tr>
<td>26.1.4.11</td>
<td>Variation 11</td>
<td>With Grignard Reagents</td>
<td>255</td>
</tr>
<tr>
<td>26.1.4.12</td>
<td>Variation 12</td>
<td>With Organolithium Reagents</td>
<td>259</td>
</tr>
<tr>
<td>26.1.4.13</td>
<td>Variation 13</td>
<td>With Miscellaneous Organometallic Reagents</td>
<td>258</td>
</tr>
<tr>
<td>26.1.4.2</td>
<td>Method 2</td>
<td>Synthesis from Carboxylic Acids</td>
<td>258</td>
</tr>
<tr>
<td>26.1.4.2.1</td>
<td>Variation 1</td>
<td>With Grignard Reagents</td>
<td>259</td>
</tr>
<tr>
<td>26.1.4.2.2</td>
<td>Variation 2</td>
<td>With Organolithium Reagents</td>
<td>260</td>
</tr>
<tr>
<td>26.1.4.3</td>
<td>Method 3</td>
<td>Synthesis from Carboxylic Esters</td>
<td>261</td>
</tr>
<tr>
<td>26.1.4.3.1</td>
<td>Variation 1</td>
<td>With Grignard Reagents</td>
<td>261</td>
</tr>
<tr>
<td>26.1.4.3.2</td>
<td>Variation 2</td>
<td>With Organolithium or Organosodium Reagents</td>
<td>263</td>
</tr>
<tr>
<td>26.1.4.4</td>
<td>Method 4</td>
<td>Synthesis from Carboxylic Anhydrides</td>
<td>264</td>
</tr>
<tr>
<td>26.1.4.4.1</td>
<td>Variation 1</td>
<td>With Organosilicon Reagents</td>
<td>264</td>
</tr>
<tr>
<td>26.1.4.4.2</td>
<td>Variation 2</td>
<td>With Organotin Reagents</td>
<td>265</td>
</tr>
<tr>
<td>26.1.4.4.3</td>
<td>Variation 3</td>
<td>With Organoboron Reagents</td>
<td>266</td>
</tr>
<tr>
<td>26.1.4.4.4</td>
<td>Variation 4</td>
<td>With Organoelement Reagents</td>
<td>266</td>
</tr>
<tr>
<td>26.1.4.4.5</td>
<td>Variation 5</td>
<td>With Organozinc Reagents</td>
<td>267</td>
</tr>
<tr>
<td>26.1.4.4.6</td>
<td>Variation 6</td>
<td>With Organocadmium Reagents</td>
<td>268</td>
</tr>
<tr>
<td>26.1.4.4.7</td>
<td>Variation 7</td>
<td>With Organocopper Reagents</td>
<td>268</td>
</tr>
<tr>
<td>26.1.4.4.8</td>
<td>Variation 8</td>
<td>With Organomanganese Reagents</td>
<td>269</td>
</tr>
<tr>
<td>26.1.4.4.9</td>
<td>Variation 9</td>
<td>With Grignard Reagents</td>
<td>270</td>
</tr>
<tr>
<td>26.1.4.4.10</td>
<td>Variation 10</td>
<td>With Organolithium or Organosodium Reagents</td>
<td>271</td>
</tr>
<tr>
<td>26.1.4.5</td>
<td>Method 5</td>
<td>Synthesis from S-Alkyl or S-Aryl Thioesters</td>
<td>272</td>
</tr>
<tr>
<td>26.1.4.5.1</td>
<td>Variation 1</td>
<td>With Organosilicon or Organoboron Reagents</td>
<td>272</td>
</tr>
<tr>
<td>26.1.4.5.2</td>
<td>Variation 2</td>
<td>With Organozinc Reagents</td>
<td>273</td>
</tr>
<tr>
<td>26.1.4.5.3</td>
<td>Variation 3</td>
<td>With Organocopper Reagents</td>
<td>274</td>
</tr>
<tr>
<td>26.1.4.5.4</td>
<td>Variation 4</td>
<td>With Grignard Reagents</td>
<td>274</td>
</tr>
<tr>
<td>26.1.4.6</td>
<td>Method 6</td>
<td>Synthesis from Amides</td>
<td>275</td>
</tr>
<tr>
<td>26.1.4.6.1</td>
<td>Variation 1</td>
<td>With Grignard Reagents</td>
<td>275</td>
</tr>
<tr>
<td>26.1.4.6.2</td>
<td>Variation 2</td>
<td>With Organolithium Reagents</td>
<td>276</td>
</tr>
<tr>
<td>26.1.4.7</td>
<td>Method 7</td>
<td>Synthesis from Nitriles</td>
<td>277</td>
</tr>
<tr>
<td>26.1.4.7.1</td>
<td>Variation 1</td>
<td>With Organozinc Reagents</td>
<td>277</td>
</tr>
<tr>
<td>26.1.4.7.2</td>
<td>Variation 2</td>
<td>With Organotitanium and Organozirconium Reagents</td>
<td>278</td>
</tr>
<tr>
<td>26.1.4.7.3</td>
<td>Variation 3</td>
<td>With Grignard Reagents</td>
<td>278</td>
</tr>
<tr>
<td>26.1.4.7.4</td>
<td>Variation 4</td>
<td>With Organolithium Reagents</td>
<td>279</td>
</tr>
<tr>
<td>26.1.4.7.5</td>
<td>Variation 5</td>
<td>With Alkyldiene phosphorane Reagents</td>
<td>279</td>
</tr>
<tr>
<td>26.1.4.8</td>
<td>Method 8</td>
<td>Synthesis from Dihydroimidazoles</td>
<td>280</td>
</tr>
<tr>
<td>26.1.4.8.1</td>
<td>Variation 1</td>
<td>With Grignard Reagents</td>
<td>280</td>
</tr>
<tr>
<td>26.1.4.8.2</td>
<td>Variation 2</td>
<td>With Organolithium Reagents</td>
<td>281</td>
</tr>
<tr>
<td>26.1.4.9</td>
<td>Method 9</td>
<td>Synthesis from Miscellaneous Acylating Reagents</td>
<td>281</td>
</tr>
<tr>
<td>26.1.4.9.1</td>
<td>Variation 1</td>
<td>From Carbon Dioxide and Its Derivatives</td>
<td>281</td>
</tr>
<tr>
<td>26.1.4.9.2</td>
<td>Variation 2</td>
<td>From 5,6-Dihydro-1,3-oxazines</td>
<td>282</td>
</tr>
<tr>
<td>26.1.4.9.3</td>
<td>Variation 3</td>
<td>From 1,1-Benzoxathiol-1-ium Salts and Related Compounds</td>
<td>283</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>26.1.4.9.4</td>
<td>Variation 4: From Ortho Esters</td>
<td>283</td>
<td></td>
</tr>
<tr>
<td>26.1.4.9.5</td>
<td>Variation 5: From Acyl Cyanides</td>
<td>284</td>
<td></td>
</tr>
<tr>
<td>26.1.4.9.6</td>
<td>Variation 6: From Acylsilanes</td>
<td>284</td>
<td></td>
</tr>
<tr>
<td>26.1.5</td>
<td>Synthesis from Aldehydes by Substitution of the Aldehyde Hydrogen</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B. Figadère and X. Franck</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26.1.5.1</td>
<td>Method 1: Radical Reaction of Aldehydes with Alkenes</td>
<td>293</td>
<td></td>
</tr>
<tr>
<td>26.1.5.2</td>
<td>Method 2: Addition of Diazooalkanes to Aldehydes</td>
<td>294</td>
<td></td>
</tr>
<tr>
<td>26.1.5.3</td>
<td>Method 3: Hydroacylation of Aldehydes</td>
<td>295</td>
<td></td>
</tr>
<tr>
<td>26.1.5.3.1</td>
<td>Variation 1: With Ruthenium Complexes</td>
<td>296</td>
<td></td>
</tr>
<tr>
<td>26.1.5.3.2</td>
<td>Variation 2: With Cobalt Complexes</td>
<td>296</td>
<td></td>
</tr>
<tr>
<td>26.1.5.3.3</td>
<td>Variation 3: With Rhodium Complexes</td>
<td>297</td>
<td></td>
</tr>
<tr>
<td>26.1.6</td>
<td>Synthesis from Thioketones, Acetals, Cyanohydrins, Enol Ethers, Enamines, Other Ene Derivatives, and Related Compounds</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>D. Desmaële</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26.1.6.1</td>
<td>Synthesis from Thioketones</td>
<td>301</td>
<td></td>
</tr>
<tr>
<td>26.1.6.1.1</td>
<td>Method 1: Hydrolysis of Thioketones</td>
<td>301</td>
<td></td>
</tr>
<tr>
<td>26.1.6.1.2</td>
<td>Method 2: Oxidative Cleavage of Thioketones</td>
<td>302</td>
<td></td>
</tr>
<tr>
<td>26.1.6.1.3</td>
<td>Method 3: Nitrosative Cleavage of Thioketones</td>
<td>304</td>
<td></td>
</tr>
<tr>
<td>26.1.6.2</td>
<td>Synthesis from Iminium Ions, Ketimines, and Derivatives</td>
<td>304</td>
<td></td>
</tr>
<tr>
<td>26.1.6.2.1</td>
<td>Method 1: Hydrolysis of Iminium Salts and Imines</td>
<td>304</td>
<td></td>
</tr>
<tr>
<td>26.1.6.3</td>
<td>Synthesis from N-Sulfanyl- and N-Sulfonylimines</td>
<td>307</td>
<td></td>
</tr>
<tr>
<td>26.1.6.3.1</td>
<td>Method 1: Hydrolysis of N-Sulfanyl- and N-Sulfonylimines</td>
<td>307</td>
<td></td>
</tr>
<tr>
<td>26.1.6.4</td>
<td>Synthesis from Oximes and Derivatives</td>
<td>307</td>
<td></td>
</tr>
<tr>
<td>26.1.6.4.1</td>
<td>Method 1: Hydrolysis of Oximes and Derivatives</td>
<td>307</td>
<td></td>
</tr>
<tr>
<td>26.1.6.4.1.1</td>
<td>Variation 1: Sodium Hydrogen Sulfite Assisted Hydrolysis of Oximes and Derivatives</td>
<td>308</td>
<td></td>
</tr>
<tr>
<td>26.1.6.4.1.2</td>
<td>Variation 2: Metal Salt Assisted Hydrolysis of Oximes and Derivatives</td>
<td>309</td>
<td></td>
</tr>
<tr>
<td>26.1.6.4.2</td>
<td>Method 2: Cleavage of Oximes and Derivatives by the Exchange Method</td>
<td>310</td>
<td></td>
</tr>
<tr>
<td>26.1.6.4.3</td>
<td>Method 3: Oxidative Cleavage of Oximes and Derivatives</td>
<td>311</td>
<td></td>
</tr>
<tr>
<td>26.1.6.4.3.1</td>
<td>Variation 1: Aerobic Oxidation and Ozonolysis of Oximes and Derivatives</td>
<td>311</td>
<td></td>
</tr>
<tr>
<td>26.1.6.4.3.2</td>
<td>Variation 2: Oxidative Cleavage of Oximes and Derivatives with Peroxidic Compounds</td>
<td>312</td>
<td></td>
</tr>
<tr>
<td>26.1.6.4.3.3</td>
<td>Variation 3: Oxidative Cleavage of Oximes and Derivatives with High-Valency Metals</td>
<td>313</td>
<td></td>
</tr>
<tr>
<td>26.1.6.4.3.4</td>
<td>Variation 4: Other Oxidative Cleavages of Oximes and Derivatives</td>
<td>316</td>
<td></td>
</tr>
<tr>
<td>26.1.6.4.4</td>
<td>Method 4: Nitrosative Cleavage of Oximes and Derivatives</td>
<td>317</td>
<td></td>
</tr>
<tr>
<td>26.1.6.4.5</td>
<td>Method 5: Reductive Cleavage of Oximes and Derivatives</td>
<td>318</td>
<td></td>
</tr>
</tbody>
</table>
26.1.6.4.5.1 Variation 1: Metal-Catalyzed Reductive Cleavage of Oximes and Derivatives

Variation 1: Metal-Catalyzed Reductive Cleavage of Oximes and Derivatives .. 318

26.1.6.4.5.2 Variation 2: Other Reductive Cleavages of Oximes and Derivatives

Variation 2: Other Reductive Cleavages of Oximes and Derivatives .. 320

26.1.6.5 Synthesis from Hydrazine Derivatives

Synthesis from Hydrazine Derivatives 320

26.1.6.5.1 Method 1: Hydrolysis of Hydrazine Derivatives

Method 1: Hydrolysis of Hydrazine Derivatives 320

26.1.6.5.1.1 Variation 1: Acidic Hydrolysis of Hydrazones and Derivatives

Variation 1: Acidic Hydrolysis of Hydrazones and Derivatives 321

26.1.6.5.1.2 Variation 2: Metal Salt Assisted Hydrolysis of Hydrazone Derivatives

Variation 2: Metal Salt Assisted Hydrolysis of Hydrazone Derivatives 321

26.1.6.5.2 Method 2: Cleavage of Hydrazine Derivatives by the Exchange Method

Method 2: Cleavage of Hydrazine Derivatives by the Exchange Method . 323

26.1.6.5.3 Method 3: Oxidative Cleavage of Hydrazine Derivatives

Method 3: Oxidative Cleavage of Hydrazine Derivatives 324

26.1.6.5.3.1 Variation 1: Aerobic Oxidation and Ozonolysis of Hydrazine Derivatives

Variation 1: Aerobic Oxidation and Ozonolysis of Hydrazine Derivatives . 324

26.1.6.5.3.2 Variation 2: Oxidative Cleavage of Hydrazine Derivatives with Peroxidic Compounds

Variation 2: Oxidative Cleavage of Hydrazine Derivatives with Peroxidic Compounds ... 325

26.1.6.5.3.3 Variation 3: Oxidative Cleavage of Hydrazine Derivatives with High-Valency Metals

Variation 3: Oxidative Cleavage of Hydrazine Derivatives with High-Valency Metals .. 327

26.1.6.5.3.4 Variation 4: Other Oxidative Cleavages of Hydrazine Derivatives

Variation 4: Other Oxidative Cleavages of Hydrazine Derivatives 329

26.1.6.6 Method 4: Nitrosative Cleavage of Hydrazine Derivatives

Method 4: Nitrosative Cleavage of Hydrazine Derivatives 331

26.1.6.7 Method 5: Reductive Cleavage of Hydrazine Derivatives

Method 5: Reductive Cleavage of Hydrazine Derivatives 332

26.1.6.8 Method 6: Enzymatic Cleavage of Hydrazine Derivatives

Method 6: Enzymatic Cleavage of Hydrazine Derivatives 332

26.1.6.6.1 Method 1: Hydrolysis of O,O-Acetals

Method 1: Hydrolysis of O,O-Acetals 333

26.1.6.6.2 Method 2: Hydrolysis of O,O-Acetals by Exchange with Another Carbonyl Compound

Method 2: Hydrolysis of O,O-Acetals by Exchange with Another Carbonyl Compound .. 335

26.1.6.6.3 Method 3: Metal-Induced Cleavage of O,O-Acetals

Method 3: Metal-Induced Cleavage of O,O-Acetals 336

26.1.6.6.4 Method 4: Electrophilic Cleavage of O,O-Acetals

Method 4: Electrophilic Cleavage of O,O-Acetals 338

26.1.6.6.5 Method 5: Oxidative Cleavage of O,O-Acetals

Method 5: Oxidative Cleavage of O,O-Acetals 339

26.1.6.6.6 Method 6: Reductive Cleavage of O,O-Acetals

Method 6: Reductive Cleavage of O,O-Acetals 340

26.1.6.6.7 Method 7: Nucleophilic Cleavage of O,O-Acetals

Method 7: Nucleophilic Cleavage of O,O-Acetals 341

26.1.6.6.8 Method 8: Photolysis of O,O-Acetals

Method 8: Photolysis of O,O-Acetals 342

26.1.6.7 Synthesis from O,S-Acetals

Synthesis from O,S-Acetals .. 343

26.1.6.7.1 Method 1: Hydrolysis of O,S-Acetals

Method 1: Hydrolysis of O,S-Acetals 343

26.1.6.7.2 Method 2: Cleavage of O,S-Acetals by Exchange with Another Carbonyl Compound

Method 2: Cleavage of O,S-Acetals by Exchange with Another Carbonyl Compound .. 344

26.1.6.7.3 Method 3: Metal-Induced Cleavage of O,S-Acetals

Method 3: Metal-Induced Cleavage of O,S-Acetals 344

26.1.6.7.4 Method 4: Electrophilic Cleavage of O,S-Acetals

Method 4: Electrophilic Cleavage of O,S-Acetals 345

26.1.6.7.5 Method 5: Oxidative Cleavage of O,S-Acetals

Method 5: Oxidative Cleavage of O,S-Acetals 346

26.1.6.8 Synthesis from α-Hydroxylated Sulfones

Synthesis from α-Hydroxylated Sulfones 347

26.1.6.8.1 Method 1: Cleavage of α-Alkoxalkylated Sulfones

Method 1: Cleavage of α-Alkoxalkylated Sulfones 347

26.1.6.9 Synthesis from 0,N-Acetals

Synthesis from 0,N-Acetals .. 348

26.1.6.9.1 Method 1: Hydrolysis of 0,N-Acetals

Method 1: Hydrolysis of 0,N-Acetals 348

26.1.6.9.2 Method 2: Reductive Cleavage of 0,N-Acetals

Method 2: Reductive Cleavage of 0,N-Acetals 349

26.1.6.10 Synthesis from α-Hydroxy and α-Trimethylsiloxy Alkylphosphonates

Synthesis from α-Hydroxy and α-Trimethylsiloxy Alkylphosphonates 350

26.1.6.10.1 Method 1: Deprotection of α-Hydroxy Alkylphosphonates

Method 1: Deprotection of α-Hydroxy Alkylphosphonates 350

26.1.6.11 Synthesis from S,S-Acetals

Synthesis from S,S-Acetals .. 351

26.1.6.31.1 Method 1: Hydrolysis of S,S-Acetals

Method 1: Hydrolysis of S,S-Acetals 352
26.1.6.11.2 Method 2: Metal-Induced Cleavage of S,S-Acetals 352
26.1.6.11.3 Method 3: Alkylative and Electrophilic Cleavage of S,S-Acetals 354
26.1.6.11.4 Method 4: Oxidative Cleavage of S,S-Acetals 355
26.1.6.11.5 Method 5: Nitrosative Cleavage of S,S-Acetals 358
26.1.6.11.6 Method 6: Photolysis of S,S-Acetals 359
26.1.6.12 Synthesis from Dithioketal Monosulfoxides and Dithioketal Disulfoxides 359
26.1.6.12.1 Method 1: Hydrolysis of Dithioketal Monosulfoxides and Dithioketal Disulfoxides ... 359
26.1.6.12.2 Method 2: Metal-Catalyzed Cleavage of Dithioketal Monosulfoxides and Dithioketal Disulfoxides ... 360
26.1.6.13 Synthesis from S- or N-α-Substituted Sulfones 361
26.1.6.13.1 Method 1: Acidic Hydrolysis of S- or N-α-Substituted Sulfones 361
26.1.6.13.2 Method 2: Metal-Induced Hydrolyses of α-(Methylsulfanyl)methyl Sulfones .. 362
26.1.6.14 Synthesis from 1-[(Methylsulfanyl)methyl]-1H-1,2,3-benzotriazoles, Dihydrobenzothiazoles, or Nitromethyl Sulfides 363
26.1.6.14.1 Method 1: Acidic Hydrolysis of 1-[(Methylsulfanyl)methyl]-1H-benzotriazoles ... 363
26.1.6.14.2 Method 2: Metal-Induced Hydrolysis of Dihydrobenzothiazoles 363
26.1.6.15 Synthesis from Diselenoacetals .. 365
26.1.6.15.1 Method 1: Metal-Induced Cleavage of Diselenoacetals 365
26.1.6.15.2 Method 2: Oxidative and Nitrosative Cleavage of Diselenoacetals 365
26.1.6.16 Synthesis from N,N-Acetals .. 366
26.1.6.16.1 Method 1: Hydrolysis of N,N-Acetals 366
26.1.6.17 Synthesis from α-Heterosubstituted Nitriles 367
26.1.6.17.1 Method 1: Hydrolysis of α-Halogenated Nitriles 367
26.1.6.17.2 Method 2: Hydrolysis of Cyanohydrins and Derivatives 368
26.1.6.17.2.1 Variation 1: Cleavage of O-Silylated Cyanohydrins 369
26.1.6.17.2.2 Variation 2: Hydrolysis of O-Acylated Cyanohydrins 370
26.1.6.17.3 Method 3: Hydrolysis of α-Cyanodithiocarbamates 371
26.1.6.17.4 Method 4: Hydrolytic Cleavage of α-(Dialkylamino)nitriles 372
26.1.6.18 Synthesis from Haloalkenes .. 372
26.1.6.18.1 Method 1: Acidic Hydrolysis of Haloalkenes 372
26.1.6.18.2 Method 2: Metal-Assisted Hydrolysis of Haloalkenes 374
26.1.6.19 Synthesis from Enol Derivatives ... 374
26.1.6.19.1 Method 1: Synthesis from Enol Ethers 374
26.1.6.19.2 Method 2: Hydrolysis of Enol Esters 375
26.1.6.19.3 Method 3: Synthesis from Silylated Enol Ethers 376
26.1.6.19.3.1 Variation 1: Miscellaneous Cleavages of Silylated Enol Ethers 377
26.1.6.19.3.2 Variation 2: Alkylation of Silylated Enol Ethers 378
26.1.6.19.4 Method 4: Alkylation of Stannylated Enols 379
26.1.6.19.5 Method 5: Hydrolysis of Enol Trifluoromethanesulfonates and Enol Phosphates

26.1.6.20 Synthesis from Vinyl Sulfides and Vinyl Selenides

26.1.6.20.1 Method 1: Hydrolysis of Vinyl Sulfides and Vinyl Selenides

26.1.6.20.2 Method 2: Metal-Catalyzed Hydrolysis of Vinyl Sulfides and Vinyl Selenides

26.1.6.21 Synthesis from Enamines and Derivatives

26.1.6.21.1 Method 1: Hydrolysis of Enamines and Derivatives

26.1.6.21.2 Method 2: Hydrolysis of Enamides

26.1.6.22 Synthesis from Nitroalkenes

26.1.6.22.1 Method 1: Reduction of Nitroalkenes

26.1.6.22.2 Method 2: Reductive Alkylation of Nitroalkenes

26.1.7 Synthesis by Addition

B. Figadère and X. Franck

26.1.7 Synthesis by Addition

26.1.7.1 Method 1: Synthesis from Alkynes

26.1.7.1.1 Variation 1: By Mercury-Catalyzed Hydration

26.1.7.1.2 Variation 2: By Gold-Catalyzed Hydration

26.1.7.1.3 Variation 3: By Palladium-Catalyzed Hydration

26.1.7.1.4 Variation 4: By Platinum-Catalyzed Hydration

26.1.7.1.5 Variation 5: By Iron-Catalyzed Hydration

26.1.7.1.6 Variation 6: By Ruthenium-Catalyzed Hydration

26.1.7.1.7 Variation 7: By a Hydroboration–Oxidation Sequence

26.1.7.2 Method 2: Synthesis from Allenes

26.1.7.2.1 Variation 1: By Mercury-Catalyzed Hydration

26.1.7.2.2 Variation 2: By a Hydroboration–Oxidation Sequence

26.1.7.3 Method 3: Synthesis from Ketenes

26.1.7.3.1 Variation 1: With Organozinc Reagents

26.1.7.3.2 Variation 2: With Grignard Reagents

26.1.7.3.3 Variation 3: With Organolithium Reagents

26.1.8 Synthesis by Fragmentation and Rearrangement

T. Constantieux and J. Rodriguez

26.1.8 Synthesis by Fragmentation and Rearrangement

26.1.8.1 Method 1: Fragmentation of Alkenes

26.1.8.2 Method 2: Fragmentation of 1,2-Diols

26.1.8.2.1 Variation 1: Fragmentation of 1,2-Diols with Periodates

26.1.8.2.2 Variation 2: Fragmentation of 1,2-Diols with Lead(IV) Acetate

26.1.8.2.3 Variation 3: Fragmentation of 1,2-Diols with N-Halosuccinimide

26.1.8.2.4 Variation 4: Miscellaneous Fragmentation Reactions of 1,2-Diols

26.1.8.3 Method 3: Fragmentation of 1,3-Diheterofunctionalized Compounds (Grob Fragmentation)
26.1.8.3.1 Variation 1: Fragmentation of 1,3-Amino Halides, 1,3-Amino Sulfonates, and 1,3-Hydroxy Halides 420
26.1.8.3.2 Variation 2: Fragmentation of 1,3-Amino Alcohols 420
26.1.8.3.3 Variation 3: Fragmentation of Acyclic 1,3-Diols and Derivatives 421
26.1.8.3.4 Variation 4: Fragmentation of Cyclic 1,3-Diol Monosulfonates and Derivatives (Wharton Fragmentation) 422
26.1.8.4 Method 4: Fragmentation of α,β-Unsaturated Ketones (Eschenmoser Fragmentation) ... 425
26.1.8.5 Method 5: Fragmentation of Ketones (Norrish Type II Fragmentation) ... 428
26.1.8.6 Method 6: Electrocyclic Rearrangements 430
26.1.8.6.1 Variation 1: Claisen-Type Rearrangements .. 431
26.1.8.6.2 Variation 2: Oxy-Cope Rearrangement ... 433
26.1.8.7 Method 7: Isomerization of Allylic Alcohols 434
26.1.8.7.1 Variation 1: Metal-Promoted Isomerization ... 435
26.1.8.7.2 Variation 2: Tandem Isomerization–Aldol Reaction 437
26.1.8.7.3 Variation 3: Enantioselective Isomerization 438
26.1.8.7.4 Variation 4: Isomerization with Ring Expansion ... 439
26.1.8.8 Method 8: Rearrangement of 1,2-Diheterofunctionalized Compounds ... 440
26.1.8.8.1 Variation 1: 1,2-Diols and Derivatives ... 441
26.1.8.8.2 Variation 2: 2-Sulfanyl and 2-Selenyl Alcohol Derivatives ... 443
26.1.8.8.3 Variation 3: 2-Aza Alcohol Derivatives ... 444
26.1.8.8.4 Variation 4: 2-Halo Alcohols and Derivatives ... 445
26.1.8.8.5 Variation 5: 2-Hydroxy Ketones and Derivatives ... 448
26.1.8.8.6 Variation 6: 2-Epoxy Alcohols .. 449
26.1.8.8.7 Variation 7: 2-Epoxy Ketones .. 450
26.1.8.8.8 Variation 8: 2-Halo Ketones .. 451
26.1.8.9 Method 9: Rearrangement of Epoxides ... 451
26.1.8.9.1 Variation 1: Alkyl- and/or Aryl-Substituted Epoxides ... 451
26.1.8.9.2 Variation 2: α,β-Epoxy Ketones .. 452
26.1.8.9.3 Variation 3: Epoxysilanes .. 453

26.1.9 Synthesis from Other Ketones
J.-C. Plaquevent, D. Cahard, and F. Guillen

26.1.9 Synthesis from Other Ketones ... 463
26.1.9.1 Method 1: Monoalkylation of Lithium Enolates ... 464
26.1.9.1.1 Variation 1: Enantioselective Alkylation via Chiral Lithium Amide Deprotonation .. 470
26.1.9.2 Method 2: Monoalkylation of Sodium Enolates ... 471
26.1.9.3 Method 3: Monoalkylation of Potassium Enolates ... 473
26.1.9.4 Method 4: Palladium-Catalyzed Asymmetric Alkylations and Arylations of Alkali Ketone Enolates ... 475
26.1.9.5 Method 5: Monoalkylation of Magnesium Enolates ... 476
26.1.9.6 Method 6: Monoalkylation of Manganese Enolates ... 478
26.1.9.7 Method 7: Monoalkylation Using Sodium Triethylgermanate(II) ... 484
26.1.9.8 Method 8: Miscellaneous Metal-Mediated Alkylations of Enolates ... 485
26.1.9.9 Method 9: Alkylation by Phase-Transfer Catalysis ... 487
26.1.9.10 Method 10: Free Radical Alkylation ... 489
26.1.9.11 Method 11: Polyalkylation of Enols and Enolates ... 493
26.1.9.12 Method 12: Isomerization by Carbonyl Transposition ... 497
Synthesis from Enones by Formation of C—C Bonds

J.-C. Plaquevent, D. Cahard, and F. Guillen

<table>
<thead>
<tr>
<th>Section</th>
<th>Method</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>26.1.10</td>
<td>Method 1:</td>
<td>By Addition of Organosilicon Reagents</td>
<td>513</td>
</tr>
<tr>
<td>26.1.10</td>
<td>Method 2:</td>
<td>By Addition of Organostannane Reagents</td>
<td>515</td>
</tr>
<tr>
<td>26.1.10</td>
<td>Method 3:</td>
<td>By Addition of Organoboron Reagents</td>
<td>516</td>
</tr>
<tr>
<td>26.1.10</td>
<td>Method 4:</td>
<td>By Addition of Organoaluminum Reagents</td>
<td>519</td>
</tr>
<tr>
<td>26.1.10</td>
<td>Method 5:</td>
<td>By Addition of Organozinc Reagents</td>
<td>520</td>
</tr>
<tr>
<td>26.1.10</td>
<td>Method 6:</td>
<td>By Addition of Organocopper Reagents</td>
<td>525</td>
</tr>
<tr>
<td>26.1.10</td>
<td>Method 7:</td>
<td>By Addition of Grignard Reagents</td>
<td>532</td>
</tr>
<tr>
<td>26.1.10</td>
<td>Method 8:</td>
<td>By Michael and Michael-Type Addition Reactions</td>
<td>533</td>
</tr>
<tr>
<td>26.1.10</td>
<td>Variation 1:</td>
<td>Organometallic Catalysis</td>
<td>533</td>
</tr>
<tr>
<td>26.1.10</td>
<td>Variation 2:</td>
<td>Heterobimetallic Catalysis</td>
<td>537</td>
</tr>
<tr>
<td>26.1.10</td>
<td>Variation 3:</td>
<td>Organocatalysis</td>
<td>541</td>
</tr>
<tr>
<td>26.1.10</td>
<td>Variation 4:</td>
<td>Phase-Transfer Catalysis</td>
<td>544</td>
</tr>
<tr>
<td>26.1.10</td>
<td>Variation 5:</td>
<td>Mukaiyama–Michael Reaction</td>
<td>547</td>
</tr>
<tr>
<td>26.1.10</td>
<td>Method 9:</td>
<td>By the Sakurai–Hosomi Reaction</td>
<td>549</td>
</tr>
</tbody>
</table>

Product Class 2: Cyclobutanones and Their Precursors

J. Salaün

<table>
<thead>
<tr>
<th>Section</th>
<th>Method</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>26.2</td>
<td>Synthesis of Product Class 2</td>
<td>.................</td>
<td>557</td>
</tr>
<tr>
<td>26.2.1</td>
<td>Method 1:</td>
<td>Ring Formation by Cyclodialkylation of Protected Carboxyl Groups by 1,3-Dihalopropanes</td>
<td>557</td>
</tr>
<tr>
<td>26.2.1.1</td>
<td>Variation 1:</td>
<td>From 1,3-Dithiane</td>
<td>557</td>
</tr>
<tr>
<td>26.2.1.2</td>
<td>Variation 2:</td>
<td>From Methyl (Methylsulfanyl)methyl Sulfoxide</td>
<td>558</td>
</tr>
<tr>
<td>26.2.1.3</td>
<td>Variation 3:</td>
<td>From Tosylmethyl Isocyanide</td>
<td>558</td>
</tr>
<tr>
<td>26.2.1.2</td>
<td>Method 2:</td>
<td>Ring Formation by Cyclodialkylation of Ketones by 1,3-Dimetalated Propan-2-iminium Salts</td>
<td>559</td>
</tr>
<tr>
<td>26.2.1.3</td>
<td>Method 3:</td>
<td>Cyclization by Intramolecular Substitution</td>
<td>559</td>
</tr>
<tr>
<td>26.2.1.3.1</td>
<td>Variation 1:</td>
<td>Of a δ-Halo Cyanohydrin</td>
<td>559</td>
</tr>
<tr>
<td>26.2.1.3.2</td>
<td>Variation 2:</td>
<td>Of O-Protected Alk-3-en-1-ols or Alk-3-yn-1-ols</td>
<td>559</td>
</tr>
<tr>
<td>26.2.1.4</td>
<td>Method 4:</td>
<td>Ring Formation by Carbonylation</td>
<td>560</td>
</tr>
<tr>
<td>26.2.1.4.1</td>
<td>Variation 1:</td>
<td>Of Titanacyclobutanes</td>
<td>561</td>
</tr>
<tr>
<td>26.2.1.4.2</td>
<td>Variation 2:</td>
<td>Of (Alkoxyalkylidene)chromium Complexes</td>
<td>561</td>
</tr>
<tr>
<td>26.2.1.4.3</td>
<td>Variation 3:</td>
<td>Of a Cobaltacyclopentan-2-one</td>
<td>562</td>
</tr>
</tbody>
</table>
26.2.1.5 Method 5: Reduction ... 562
26.2.1.5.1 Variation 1: Of 2-Acetoxy-cyclobutanones 562
26.2.1.5.2 Variation 2: Of 2,2-Dichlorocyclobutanones 563
26.2.1.6 Method 6: Oxidation ... 564
26.2.1.6.1 Variation 1: Of Cyclobutanols .. 564
26.2.1.6.2 Variation 2: Of Methylene-cyclobutane 564
26.2.1.7 Method 7: Ring Formation by [2 + 2] Cycloaddition 564
26.2.1.7.1 Variation 1: Of Ketenes and Alkenes 565
26.2.1.7.2 Variation 2: Of Mono- or Dichloroketenes and Alkenes 567
26.2.1.7.3 Variation 3: Of Keteniminium Salts and Alkenes 568
26.2.1.7.4 Variation 4: Of Ketene Acetals and Acrylic or Maleic Acid Derivatives 570
26.2.1.7.5 Variation 5: Of Ketene Thioacetals and Alkenes 571
26.2.1.7.6 Variation 6: Of Ketene Silyl Acetals and Alkenes 572
26.2.1.7.7 Variation 7: Of N,N-Diethylprop-1-yn-1-amine and Alkenes 573
26.2.1.8 Method 8: Ring Enlargement of Cyclopropanones Formed by Addition of Diazomethane to Ketenes ... 574
26.2.1.9 Method 9: Ring Enlargement of the Cyclopropane Intermediate Formed by a Simmons–Smith Cyclopropanation Reaction 575
26.2.1.10 Method 10: Rearrangement of Spiro[2.2]pentanes 576
26.2.1.10.1 Variation 1: Of 1-Oxaspiro[2.2]pentanes 576
26.2.1.10.2 Variation 2: Of 1-Azaspiro[2.2]pentanes 579
26.2.1.11 Method 11: Rearrangement of (1-Hydroxyalkyl)cyclopropanes 580
26.2.1.11.1 Variation 1: Of 1-Alkoxy-1-(1-hydroxyalkyl)cyclopropanes 580
26.2.1.11.2 Variation 2: Of 1-(Arylsulfanyl)-1-(1-hydroxyalkyl)cyclopropanes 581
26.2.1.11.3 Variation 3: Of 1-(1-Hydroxyalkyl)-1-selanylcyclopropanes 583
26.2.1.11.4 Variation 4: Of 1-(1-Hydroxyalkyl)-1-(trimethylsilyl)cyclopropanes 584
26.2.1.11.5 Variation 5: Of (1-Formylamino)-1-(1-hydroxyalkyl)cyclopropanes 584
26.2.1.12 Method 12: Rearrangement of Cyclopropanol Derivatives 585
26.2.1.12.1 Variation 1: Of 1-Vinylcyclopropanols 585
26.2.1.12.2 Variation 2: Of 1-(1-Hydroxyalkyl)- or 1-Formylcyclopropanols 587
26.2.1.12.3 Variation 3: Of 1-(Aminomethyl)cyclopropanols 593
26.2.1.12.4 Variation 4: Of a Bicyclo[4.1.0]heptan-2-one Tosylhydrazone 594
26.2.1.13 Method 13: Rearrangement of (1-Bromoalkylidene)cyclopropanes 594
26.2.1.14 Method 14: Ring Contraction .. 595
26.2.1.14.1 Variation 1: Of γ-Lactone Tosylhydrazones 595
26.2.1.14.2 Variation 2: Of Cyclohex-2-enones 595
26.2.1.14.3 Variation 3: Of Cyclohex-3-enones 596
26.2.1.14.4 Variation 4: Of Cycloocta-2,4,6-trienones 596
26.2.1.15 Method 15: Preparation from Preformed Four-Membered Rings 597
26.2.1.15.1 Variation 1: From Cyclobutanones 597
26.2.1.15.2 Variation 2: From Cyclobutenones 600
26.2.1.15.3 Variation 3: From 1,2-Bis(trimethylsiloxy)cyclobutene 601
26.3 Product Class 3: Cyclopropanones and Their Precursors

J. Salaün

26.3 Product Class 3: Cyclopropanones and Their Precursors .. 607

26.3.1 Product Subclass 1: Cyclopropanones .. 607

26.3.1.1 Synthesis of Product Subclass 1 ... 607

26.3.1.1.1 Method 1: Photolysis of Strained Rings ... 607

26.3.1.1.1.1 Variation 1: Photodecarbonylation of Cyclobutanediones 607

26.3.1.1.2 Method 2: Ring-Closing Dehalogenation of α-Halo and α,α′-Dihalo Ketones 608

26.3.1.1.2.1 Variation 1: With Sterically Hindered Bases 608

26.3.1.1.2.2 Variation 2: Electrochemical Dehalogenation 609

26.3.1.1.2.3 Variation 3: Sodium Iodide Induced Dehalogenation 609

26.3.1.1.2.4 Variation 4: Carbonylmetalate-Induced Dehalogenation 610

26.3.1.1.3 Method 3: Addition of Diazoalkanes to Ketenes 610

26.3.1.1.4 Method 4: Isomerization of Allene Oxides .. 611

26.3.1.1.4.1 Variation 1: Thermal Isomerization ... 612

26.3.2 Product Subclass 2: Cyclopropanone Hemiacetals ... 612

26.3.2.1 Synthesis of Product Subclass 2 .. 612

26.3.2.1.1 Method 1: Photodecarbonylation of Cyclobutanediones 612

26.3.2.1.2 Method 2: Ring-Closing Dehalogenation .. 613

26.3.2.1.2.1 Variation 1: Electroreduction of α,α′-Dihalo Ketones 613

26.3.2.1.2.2 Variation 2: Base-Induced Dehydrohalogenation of α-Halo Ketones 613

26.3.2.1.2.3 Variation 3: Sodium-Mediated Ring Closure of β-Halo Esters 614

26.3.2.1.2.4 Variation 4: Sodium-Mediated Ring Closure of β-Haloamides 614

26.3.2.1.3 Method 3: Addition Reactions of Ketenes .. 615

26.3.2.1.3.1 Variation 1: Cyclopropanation of Silylketene Acetals 615

26.3.2.1.3.2 Variation 2: Cyclopropanation of 1-Alkoxyvinyl Esters 615

26.3.2.1.3.3 Variation 3: Addition of Glacial Acetic Acid to Cyclopropanones 616

26.3.3 Product Subclass 3: Cyclopropanone Hemiaminals .. 616

26.3.3.1 Synthesis of Product Subclass 3 .. 616

26.3.3.1.1 Method 1: Addition of Amines to Cyclopropanone 616

26.3.4 Product Subclass 4: Cyclopropanone Acetals .. 617

26.3.4.1 Synthesis of Product Subclass 4 .. 617

26.3.4.1.1 Method 1: Alcoholysis of 1'-Substituted Cyclopropyl Ethers 617

26.3.4.1.1.1 Variation 1: From 1,1-Dihalocyclopropanes 618

26.3.4.1.2 Method 2: Reductive Cyclization of α,α′-Dihalopropanone Acetals 618

26.3.4.1.3 Method 3: Addition of Carbenes or Carbenoids to Ketene Acetals 619

26.3.4.1.3.1 Variation 1: Addition of Dialkoxycarbenes to Ketones 620

26.3.4.1.4 Method 4: Addition to Cyclopropene Acetals 621

26.3.4.1.5 Method 5: Ring Closure of (γ,γ-Dialkoxyallyl)zirconocenes 622

26.3.4.1.6 Method 6: Photoisomerization of Dienedione Monoacetals 622
26.3.5 Product Subclass 5: Cyclopropane-1,1-diamines .. 623
26.3.5.1 Synthesis of Product Subclass 5 ... 623
26.3.5.1.1 Method 1: Secondary Amine Induced Ring Closure of α-Halo Ketones 623
26.3.5.1.2 Method 2: Amine Addition to Cyclopropanone 623
26.3.6 Product Subclass 6: Cyclopropane Thioacetals 624
26.3.6.1 Synthesis of Product Subclass 6 ... 624
26.3.6.1.1 Method 1: Substitution of Cyclopropanone Derivatives 624
26.3.6.1.1.1 Variation 1: Using Basic Conditions 624
26.3.6.1.1.2 Variation 2: By Metallation ... 625
26.3.6.1.2 Method 2: Ring Closure of 1,1,3-Tris(phenylsulfanyl)alkanes 625
26.3.6.1.3 Method 3: Addition of Thiols to Cyclopropanones 626
26.3.7 Product Subclass 7: 1,1-Bis(seleno)cyclopropanes 626
26.3.7.1 Synthesis of Product Subclass 7 ... 626
26.3.7.1.1 Method 1: Substitution of Cyclopropanone Derivatives 626
26.3.7.1.2 Method 2: Ring Closure of Seleno Derivatives 627
26.3.8 Product Subclass 8: Cyclopropenones .. 628
26.3.8.1 Synthesis of Product Subclass 8 ... 628
26.3.8.1.1 Method 1: Hydrolysis .. 628
26.3.8.1.1.1 Variation 1: Of Cyclopropenone Acetals 628
26.3.8.1.1.2 Variation 2: Of Dichlorocyclopropenes 630
26.3.8.1.1.3 Variation 3: Of Cyclopropenium Salts 630
26.3.8.1.2 Method 2: Oxidation of Cyclopropenes 631
26.3.8.1.3 Method 3: Photodecarbonylation of Cyclobutenediones 632
26.3.8.1.4 Method 4: Dehydrohalogenation of α,α'-Dihalo Ketones 632
26.3.9 Product Subclass 9: Cyclopropyl Ketones and Cyclopropanecarbaldehydes 633
26.3.9.1 Synthesis of Product Subclass 9 ... 633
26.3.9.1.1 Method 1: Ring-Closure Reactions 633
26.3.9.1.1.1 Variation 1: Of γ-Chloro Ketones 633
26.3.9.1.1.2 Variation 2: Of 4-Oxopentyl Phosphate Carbaniions 634
26.3.9.1.1.3 Variation 3: Of Methyl 2,3-Dihalo propanoates 634
26.3.9.1.1.4 Variation 4: Of Oxoenolates .. 635
26.3.9.1.2 Method 2: Cyclization of Oxo Esters and Ketones with 1,2-Dibromoethane. 635
26.3.9.1.3 Method 3: Addition Reactions ... 636
26.3.9.1.3.1 Variation 1: Of Carbenes to Undec-2-en-5-yn-1-ol 636
26.3.9.1.3.2 Variation 2: Of Diphenylsulfonium Isopropylide to Chiral Lactams 636
26.3.9.1.3.3 Variation 3: Of Diazocyclopropane to Aldehydes 638
26.3.9.1.4 Method 4: Oxidation Reactions ... 638
26.3.9.1.4.1 Variation 1: Swern Oxidation of Cyclopropylcarbinols 638
26.3.9.1.4.2 Variation 2: Oxidative Ring Opening 639
26.3.9.1.5 Method 5: Addition of Methylolithium to Cyclopropane Carboxylic Acids . 640
26.3.9.1.6 Method 6: Rearrangement of Allene Oxides 640
26.3.9.1.7 Method 7: Photolysis of β,γ- Unsaturated Ketones 641
26.4 Product Class 4: 1,2-Diketones and Related Compounds
Y. Landais and J. M. Vincent

26.4.1 Product Subclass 1: 1,2-Diketones ... 649

26.4.1.1 Method 1: Coupling Reactions ... 649

26.4.1.1.1 Variation 1: Coupling of Aldehydes 650

26.4.1.1.2 Variation 2: Coupling of Carboxylic Acid Derivatives 651

26.4.1.1.3 Variation 3: Coupling of α-Oxonitriles 656

26.4.1.1.4 Variation 4: Carbonylative Coupling of Alkyl Halides with Organometallic Reagents 658

26.4.1.1.5 Variation 5: Nucleophilic Acylation of Carboxylic Acid Derivatives by Acyllithium Reagents 660

26.4.1.1.6 Variation 6: Addition of Organometallic Reagents to 1,2-Diacyl Derivatives 662

26.4.1.1.7 Variation 7: Friedel–Crafts Acylation .. 665

26.4.1.2 Method 2: Substitution of Heteroatoms 667

26.4.1.2.1 Variation 1: Hydrolysis of α-Oxo Ketals 667

26.4.1.2.2 Variation 2: Hydrolysis of α-Oxo Thioketals 668

26.4.1.2.3 Variation 3: Hydrolysis of α-Oxo Imines 670

26.4.1.2.4 Variation 4: Hydrolysis of α,α-Dihalo Ketones 671

26.4.1.2.5 Variation 5: From α-Diazo Ketones 672

26.4.1.3 Method 3: Oxidation .. 673

26.4.1.3.1 Variation 1: Of Ketones .. 673

26.4.1.3.2 Variation 2: Of Enones by Ozonolysis 675

26.4.1.3.3 Variation 3: Of α-Hydroxy Ketones 676

26.4.1.3.4 Variation 4: Of 1,2-Diols .. 677

26.4.1.3.5 Variation 5: Of Alkenes .. 679

26.4.1.3.6 Variation 6: Of Alkynes ... 681

26.4.1.3.7 Variation 7: Of Arenes, Phenols, and Catechols 682

26.4.1.3.8 Variation 8: Of α-Oxo Phosphorus Ylides 684

26.4.1.3.9 Variation 9: Of α-Bromo Ketones .. 686

26.4.1.4 Method 4: Addition of Bromine to 1,2-Bis(siloxy)alkenes 687

26.4.1.5 Method 5: Rearrangements of α,β-Epoxy Ketones 688

26.4.1.6 Methods 6: Additional Methods .. 689

26.4.1.7 Applications of Product Subclass 1 in Organic Synthesis 691

26.4.1.7.1 Method 1: Oxidation of 1,2-Diketones to Carboxylic Acids 691

26.4.1.7.2 Method 2: Addition Reactions with 1,2-Diketones 692

26.4.1.7.3 Variation 1: Addition of Hydrogen 692

26.4.1.7.4 Variation 2: Addition of Organometallic Reagents 693

26.4.1.7.5 Variation 3: Addition of Carbon Functionalities 694

26.4.1.7.6 Variation 4: Addition of Heteroatoms 696

26.4.1.7.7 Variation 5: Cycloadditions of 1,2-Diketones 698

26.4.1.7.8 Method 3: Ring Contraction of Cyclic 1,2-Diketones 698
Product Subclass 2: \(\alpha \)-Thioxo Ketones

Synthesis of Product Subclass 2

Method 1: Substitution of Heteroatoms

Variation 1: In 1,2-Diketones

Variation 2: In \(\alpha \)-Diazo Ketones

Method 2: Oxidation of Active Methylene Compounds

Variation 1: Of Ketones

Variation 2: Of \(\alpha \)-Sulfanyl Ketones

Method 3: Addition

Variation 1: Of Thionyl Chloride to Silyl Enol Ethers

Variation 2: Of Sulfur Ylides to Carboxylic Acid Derivatives

Method 4: Rearrangements

Variation 1: Retro-Diels–Alder Reactions

Variation 2: Rearrangement of Thiirene or Thiirane S-Oxides

Applications of Product Subclass 2 in Organic Synthesis

Product Subclass 3: \(\alpha \)-Selenoxo Ketones

Synthesis of Product Subclass 3

Method 1: Substitution of Heteroatoms

Variation 1: In \(\alpha \)-Diazo Ketones

Variation 2: From \(\alpha \)-Oxo Sulfonium Ylides

Method 2: Oxidation of Active Methylene Compounds

Method 3: Addition of Selenoxides to Activated Alkynes

Methods 4: Additional Methods

Applications of Product Subclass 3 in Organic Synthesis

Product Subclass 4: \(\alpha \)-Imino, \(\alpha \)-Hydroxyimino, and \(\alpha \)-Hydrazono Ketones

Synthesis of Product Subclass 4

Method 1: Coupling Reactions between Carboxylic Acid Derivatives and Imine Derivatives

Method 2: Substitution of Heteroatoms in 1,2-Diketones

Method 3: Oxidation

Variation 1: Nitrosation of Ketones

Variation 2: Nitrosation of Enones

Variation 3: Nitrosation of Phenols

Method 4: From \(\alpha \)-Hydroxyimino Ketones

Methods 5: Additional Methods

Applications of Product Subclass 4 in Organic Synthesis

Product Subclass 5: \(\alpha \)-Diazo Ketones

Synthesis of Product Subclass 5

Method 1: Substitution

Variation 1: Of Acyl Halides

Variation 2: Of Hydrazones

Method 2: Oxidation

Variation 1: Diazo-Transfer Reactions with Active Methylene Compounds

Variation 2: Diazotization of Amines

Applications of Product Subclass 5 in Organic Synthesis
26.5 Product Class 5: α,α-Diheterosubstituted Ketones
J.-L. Parrain and J. Thibonnet

26.5.1 Product Subclass 1: α,α-Difluoro Ketones
26.5.1.1 Synthesis of Product Subclass 1

26.5.1.1.1 Method 1: Direct Fluorination of Ketones
26.5.1.1.2 Method 2: Oxidation of α,α-Difluoro Alcohols
26.5.1.1.3 Method 3: Synthesis from Difluoro Enoxysilanes
26.5.1.1.4 Method 4: Synthesis via Reformatsky-Type Aldol Reactions
26.5.1.1.5 Method 5: Synthesis from Lewis Acid Mediated Aldol-Type Reactions
26.5.1.1.6 Method 6: Synthesis from Anhydrides, Esters, or Amides and Organometallic Reagents
26.5.1.1.7 Method 7: Addition of Difluoroiodomethyl Ketones to Alkenes
26.5.1.1.8 Method 8: Synthesis from Alkynes
26.5.1.1.9 Method 9: Conversion of Arylperfluoroalkanes into Aryl Perfluoroalkyl Ketones
26.5.1.1.10 Method 10: Synthesis by Rearrangement

26.5.1.2 Method 1: Synthesis by Direct Chlorination of Ketones
26.5.1.2.1 Method 2: Via Acylation Reactions
26.5.1.2.3 Method 3: By Addition of Organometallic Reagents
26.5.1.2.4 Method 4: Chlorination of Terminal Alkynes
26.5.1.2.5 Method 5: [2 + 2]-Cycloaddition Reactions of Dichloroketenes
26.5.1.2.6 Method 6: Intramolecular Insertion of Trichloromethyl Ketones into Alkenes, Catalyzed by Ruthenium Complexes

26.5.3 Product Subclass 3: α,α-Dibromo Ketones and α,α-Diiodo Ketones
26.5.3.1 Synthesis of Product Subclass 3

26.5.3.1.1 Method 1: Synthesis of Dibromo Ketones by Direct Bromination of Ketones
26.5.3.1.2 Method 2: Synthesis of Diiodo Ketones by Direct Iodination of Ketones
26.5.3.1.3 Method 3: Synthesis from α-Diazo Ketones
26.5.3.1.4 Method 4: Synthesis via α,α-Dibromo Anions
26.5.3.1.5 Method 5: Synthesis from Alkynes

26.5.4 Product Subclass 4: α-Alkoxy-α-halo Ketones
26.5.4.1 Synthesis of Product Subclass 4

26.5.4.1.1 Method 1: Fluorination of α-Alkoxy Ketones
26.5.4.1.2 Method 2: Chlorination of α-Alkoxy Ketones
26.5.4.1.3 Method 3: Bromination of α-Alkoxy Ketones
26.5.4.1.4 Method 4: From α-Alkoxy- or α-Halo-α,β-unsaturated Ketones
<table>
<thead>
<tr>
<th>Section</th>
<th>Method</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>26.5.1.5</td>
<td>Method 5</td>
<td>From α-Diazo Ketones</td>
<td>776</td>
</tr>
<tr>
<td>26.5.1.6</td>
<td>Method 6</td>
<td>By Addition of an Organometallic Group</td>
<td>776</td>
</tr>
<tr>
<td>26.5.1.7</td>
<td>Method 7</td>
<td>By Addition of Bromine to 1,2-Dialkoxyalkenes</td>
<td>777</td>
</tr>
<tr>
<td>26.5.5</td>
<td>Product Subclass 5: α-Halo-α-sulfanyl and α-Halo-α-sulfinyl Ketones</td>
<td>778</td>
<td></td>
</tr>
<tr>
<td>26.5.5.1</td>
<td>Synthesis of Product Subclass 5</td>
<td>778</td>
<td></td>
</tr>
<tr>
<td>26.5.5.1.1</td>
<td>Method 1</td>
<td>Substitution of Hydrogen with Sulfur Reagents</td>
<td>778</td>
</tr>
<tr>
<td>26.5.5.1.2</td>
<td>Method 2</td>
<td>Halogenation of α-Sulfanyl Ketones</td>
<td>779</td>
</tr>
<tr>
<td>26.5.5.1.3</td>
<td>Method 3</td>
<td>Oxidation of α-Chloro-α-sulfinyl Alcohols</td>
<td>781</td>
</tr>
<tr>
<td>26.5.6</td>
<td>Product Subclass 6: α-Amino-α-halo and α-Halo-α-nitro Ketones</td>
<td>781</td>
<td></td>
</tr>
<tr>
<td>26.5.6.1</td>
<td>Synthesis of Product Subclass 6</td>
<td>782</td>
<td></td>
</tr>
<tr>
<td>26.5.6.1.1</td>
<td>Method 1</td>
<td>Synthesis of α-Fluoro-α-nitro Ketones Using Perchloryl Fluoride</td>
<td>782</td>
</tr>
<tr>
<td>26.5.6.1.2</td>
<td>Method 2</td>
<td>Chlorination of α-Amino Ketones</td>
<td>782</td>
</tr>
<tr>
<td>26.5.6.1.3</td>
<td>Method 3</td>
<td>Oxidation of α-Chloro-α-nitro Alcohols</td>
<td>783</td>
</tr>
<tr>
<td>26.5.6.1.4</td>
<td>Method 4</td>
<td>Synthesis from Trichloronitromethane</td>
<td>784</td>
</tr>
<tr>
<td>26.5.7</td>
<td>Product Subclass 7: α,α-Dialkoxy Ketones</td>
<td>784</td>
<td></td>
</tr>
<tr>
<td>26.5.7.1</td>
<td>Synthesis of Product Subclass 7</td>
<td>785</td>
<td></td>
</tr>
<tr>
<td>26.5.7.1.1</td>
<td>Method 1</td>
<td>Synthesis of α,α-Dialkoxy Ketones from Ketones</td>
<td>785</td>
</tr>
<tr>
<td>26.5.7.1.2</td>
<td>Method 2</td>
<td>Synthesis of α,α-Dialkoxy Ketones from α-Sulfinyl Ketones</td>
<td>786</td>
</tr>
<tr>
<td>26.5.7.1.3</td>
<td>Method 3</td>
<td>Oxidation of α-Hydroxy Acetals</td>
<td>786</td>
</tr>
<tr>
<td>26.5.7.1.3.1</td>
<td>Variation 1</td>
<td>Oxidation by Dess–Martin Periodinane</td>
<td>787</td>
</tr>
<tr>
<td>26.5.7.1.3.2</td>
<td>Variation 2</td>
<td>Swern Oxidation</td>
<td>787</td>
</tr>
<tr>
<td>26.5.7.1.3.3</td>
<td>Variation 3</td>
<td>Oxidation by Chromium(VI) Oxide</td>
<td>788</td>
</tr>
<tr>
<td>26.5.7.1.3.4</td>
<td>Variation 4</td>
<td>Oxidation by Ruthenium(IV) Oxide</td>
<td>789</td>
</tr>
<tr>
<td>26.5.7.1.4</td>
<td>Method 4</td>
<td>Oxidation of 2-Alkoxyphenols</td>
<td>789</td>
</tr>
<tr>
<td>26.5.7.1.5</td>
<td>Method 5</td>
<td>Synthesis from Anhydrides, Esters, or Amides and an Organometallic Reagent</td>
<td>790</td>
</tr>
<tr>
<td>26.5.7.1.5.1</td>
<td>Variation 1</td>
<td>Synthesis from Functional Anhydrides, Esters, Nitriles, or Amides</td>
<td>790</td>
</tr>
<tr>
<td>26.5.7.1.5.2</td>
<td>Variation 2</td>
<td>Synthesis from Dialkoxyethylolithium Reagents</td>
<td>791</td>
</tr>
<tr>
<td>26.5.7.1.6</td>
<td>Method 6</td>
<td>Synthesis from α-Diazo Ketones</td>
<td>792</td>
</tr>
<tr>
<td>26.5.7.1.7</td>
<td>Method 7</td>
<td>Synthesis of Dialkoxycyclbutanones via [2 + 2]-Cycloaddition Reactions</td>
<td>793</td>
</tr>
<tr>
<td>26.5.7.1.8</td>
<td>Method 8</td>
<td>Synthesis by Insertion of a Dialkoxy carbene into Strained Cyclic Ketones</td>
<td>793</td>
</tr>
<tr>
<td>26.5.7.1.9</td>
<td>Method 9</td>
<td>Synthesis by Acetalization of 1,2-Diketones or 1,2-Oxaldehydes</td>
<td>794</td>
</tr>
<tr>
<td>26.5.7.1.10</td>
<td>Method 10</td>
<td>Synthesis by Rearrangement of α,α'-Dialkoxy Ketones</td>
<td>795</td>
</tr>
<tr>
<td>26.5.7.1.11</td>
<td>Method 11</td>
<td>Synthesis from Reagents Derived from α,α-Dialkoxy Ketones</td>
<td>795</td>
</tr>
<tr>
<td>26.5.7.1.11.1</td>
<td>Variation 1</td>
<td>Reactions of Enolates Derived from Dialkoxy Ketones</td>
<td>795</td>
</tr>
<tr>
<td>26.5.7.1.11.2</td>
<td>Variation 2</td>
<td>By Wittig Reaction</td>
<td>796</td>
</tr>
<tr>
<td>26.5.7.2</td>
<td>Applications of Product Subclass 7 in Organic Synthesis</td>
<td>797</td>
<td></td>
</tr>
<tr>
<td>26.5.7.2.1</td>
<td>Method 1</td>
<td>Stereoselective Applications</td>
<td>797</td>
</tr>
</tbody>
</table>
26.5.8 Product Subclass 8: α-Oxy-α-sulfanyl Ketones 798

26.5.8.1 Synthesis of Product Subclass 8 .. 799

26.5.8.1.1 Method 1: By Oxidation of β-Oxo Sulfides 799
26.5.8.1.2 Method 2: From α-Oxo Sulfoxides: Pummerer Reaction 800
26.5.8.1.2.1 Variation 1: Synthesis of α-Acetoxy-β-oxo Sulfides 801
26.5.8.1.2.2 Variation 2: Synthesis of α-Siloxy-β-oxo Sulfides 802
26.5.8.1.3 Method 3: By Oxidation of Functional Secondary Alcohols 802
26.5.8.1.3.1 Variation 1: By Swern Oxidation .. 803
26.5.8.1.3.2 Variation 2: Using Pyridinium Dichromate or Pyridinium Chlorochromate 803
26.5.8.1.4 Method 4: Synthesis from α-Halo-α-sulfanyl- or α-Halo-α-oxo Ketones 804
26.5.8.1.5 Method 5: Synthesis from α-Diazo-β-oxo Sulfones 805
26.5.8.1.6 Method 6: Synthesis from Anhydrides, Esters, or Amides and an Organometallic Reagent .. 806
26.5.8.1.7 Method 7: Synthesis from α-Oxosulfoxides or 1,2-Diketones 809
26.5.8.1.8 Method 8: Epoxidation of α-Sulfanyl-α,β-unsaturated Ketones 810
26.5.8.1.9 Method 9: Synthesis by Rearrangement 812

26.5.8.2 Applications of Product Subclass 8 in Organic Synthesis 812

26.5.9 Product Subclass 9: α-Alkoxy-α-seleno Ketones 813

26.5.9.1 Synthesis of Product Subclass 9 .. 814

26.5.9.1.1 Method 1: Synthesis from α-Seleno Ketones 814
26.5.9.1.2 Method 2: Synthesis from α-Diazo Ketones 815

26.5.10 Product Subclass 10: α-Alkoxy-α-amino and α-Amino-α-hydroxy Ketones 816

26.5.10.1 Synthesis of Product Subclass 10 ... 817

26.5.10.1.1 Method 1: By Oxidation of α-Amino Ketones 817
26.5.10.1.2 Method 2: By Oxidation of α-Hydroxy N,O-Acetals 818
26.5.10.1.3 Method 3: By Substitution of Heteroatoms 820
26.5.10.1.3.1 Variation 1: From α,α-Dihydroxy Ketones 820
26.5.10.1.3.2 Variation 2: From α-Alkoxy-α-halo Ketones 821
26.5.10.1.3.3 Variation 3: From α-Amino-α-halo Ketones 822
26.5.10.1.4 Method 4: From α-Diazo Ketones ... 823
26.5.10.1.5 Method 5: By Addition of Organometallic Reagents 824
26.5.10.1.5.1 Variation 1: From Functionalized Esters, Nitriles, or Amides 824
26.5.10.1.5.2 Variation 2: From α-Lithio N,O-Actal Reagents 825
26.5.10.1.6 Method 6: [3 + 2] Cycloaddition to Cyclopropenone 826
26.5.10.1.7 Method 7: Epoxidation of α,β-Unsaturated β-Amino Ketones 826
26.5.10.1.8 Method 8: By Addition of Alcohols or Amines 827
26.5.10.1.8.1 Variation 1: Addition of Alcohols to 1,2-Oximines or 1,2-Oxenamines 827
26.5.10.1.8.2 Variation 2: Addition of Amines to 1,2-Diketones 828
26.5.10.1.9 Method 9: By Cycloaddition .. 829

26.5.11 Product Subclass 11: α,α-Disulfanyl Ketones 830

26.5.11.1 Synthesis of Product Subclass 11 ... 831

26.5.11.1.1 Method 1: Substitution of Hydrogen with Sulfur Reagents 831
26.5.11.1.2 Method 2: From α-Oxo Sulfoxides .. 833
26.5.11.1.3 Method 3: Oxidation of α-Hydroxy-1,3-dithianes 833
26.5.12.1 Synthesis of Product Subclass 12 ... 842
26.5.12.1.1 Method 1: Via Pummerer Reaction from \(\alpha\)-Sulfoxy Ketones 842
26.5.12.1.2 Method 2: By Sulfanylation of \(\alpha\)-Amino Ketones 843
26.5.12.1.3 Method 3: From \(\alpha\)-Alkylsulfanyl Ketones 844
26.5.12.1.4 Method 4: By Substitution of Heteroatoms 844
26.5.12.1.4.1 Variation 1: From \(\alpha\)-Amino-\(\alpha\)-halo Ketones or Dihydroxy Ketones 844
26.5.12.1.4.2 Variation 2: From \(\alpha,\alpha\)-Diamino Ketones 845
26.5.12.1.4.3 Variation 3: From \(\alpha\)-Diazo Ketones 846
26.5.12.1.4.4 Method 5: Using \(\alpha\)-Amino-\(\alpha\)-(sulfonylmethyl)lithium Reagents 846
26.5.12.1.6 Method 6: From 1,2-Diketones or 1,2-Oxoaldehydes 847

26.5.13 Product Subclass 13: \(\alpha,\alpha\)-Diselanyl Ketones 848
26.5.13.1 Synthesis of Product Subclass 13 ... 849
26.5.13.1.1 Method 1: By Addition of Metal Enolates to Elemental Selenium 849
26.5.13.1.2 Method 2: From \(\alpha\)-Selanyl Ketones 850
26.5.13.1.3 Method 3: From \(\alpha\)-Diazo Ketones 850

26.5.14 Product Subclass 14: \(\alpha,\alpha\)-Diamino Ketones 851
26.5.14.1 Synthesis of Product Subclass 14 ... 851
26.5.14.1.1 Method 1: By Substitution of Halogen .. 851
26.5.14.1.2 Method 2: Via Cycloaddition .. 852
26.5.14.1.3 Method 3: By Addition of Diaminoalkylmetal Reagents 853
26.5.14.1.4 Method 4: From 1,2-Diketones or \(\alpha\)-Oxooaldehydes 854

26.6 Product Class 6: \(\alpha\)-Heterosubstituted Ketones
J. Suffert

26.6 Product Class 6: \(\alpha\)-Heterosubstituted Ketones 869
26.6.1 Product Subclass 1: \(\alpha\)-Fluoro Ketones 869
26.6.1.1 Synthesis of Product Subclass 1 ... 870
26.6.1.1.1 Method 1: Substitution of a Hydrogen Atom from an Alkanone 870
26.6.1.1.1.1 Variation 1: Direct Fluorination of Ketones without a Base 870
26.6.1.1.1.2 Variation 2: Deprotonation with an External Base 871
26.6.1.1.1.3 Variation 3: From an Alkanone via a Preformed Acetate Enol Ether 872
26.6.1.1.1.4 Variation 4: From Alkanones through Preformed Enol Silyl Ethers 873
26.6.1.1.1.5 Variation 5: Via a Preformed Enamine or Enamide 874
26.6.1.2 Method 2: Synthesis from Trifluoromethyl Ketones via Fluorinated Silyl Enol Ethers ... 876

26.6.2 Product Subclass 2: α-Chloro Ketones ... 877

26.6.2.1 Synthesis of Product Subclass 2 ... 878

26.6.2.1.1 Method 1: Substitution of a Hydrogen Atom from an Alkanone 878

26.6.2.1.1.1 Variation 1: Direct Chlorination with Chlorine 878

26.6.2.1.1.2 Variation 2: Direct Chlorination with Sulfuryl Chloride 881

26.6.2.1.1.3 Variation 3: Direct Chlorination with Selenium Oxychloride 883

26.6.2.1.1.4 Variation 4: Direct Chlorination with Sodium Chlorite/Manganese(III) Acetylacetonate .. 884

26.6.2.1.1.5 Variation 5: Direct Chlorination with Manganese(IV) Chloride 884

26.6.2.1.1.6 Variation 6: Direct Chlorination with Chlorotrimethylsilane/Dimethyl Sulfoxide .. 885

26.6.2.1.1.7 Variation 7: Direct Chlorination with Copper(II) Chloride/Lithium Chloride 886

26.6.2.1.1.8 Variation 8: Direct Chlorination with Trichloroisocyanuric Acid 888

26.6.2.1.1.9 Variation 9: Direct Chlorination with Hydrogen Chloride and Potassium Permanganate .. 888

26.6.2.1.1.10 Variation 10: Deprotonation with a Base Prior to Chlorination 889

26.6.2.1.1.11 Variation 11: Via a Preformed Enamine 890

26.6.2.1.1.12 Variation 12: Via a Preformed Silyl Enol Ether 892

26.6.2.1.1.13 Variation 13: Via a Preformed Enol Ether or Enol Ester 894

26.6.2.1.2 Method 2: Synthesis from α,α-Dichloro Ketones by Reduction 895

26.6.2.1.3 Method 3: Synthesis by Oxidative Addition to an Alkene 898

26.6.2.1.3.1 Variation 1: Oxidation of an Alkene with Nitrosyl Chloride 898

26.6.2.1.3.2 Variation 2: Oxidation of an Alkene with Chromyl Chloride 900

26.6.2.1.3.3 Variation 3: Oxidation of an Alkene with 2-Cyanopyridinium Chlorochromate .. 901

26.6.2.1.3.4 Variation 4: Oxidation of an Alkene with Chromium(VI) Oxide and Chlorotrimethylsilane .. 901

26.6.2.1.3.5 Variation 5: Oxidation of an Alkene with Iron(III) Chloride 902

26.6.2.1.4 Method 4: Synthesis via the Opening of an Epoxide 903

26.6.2.1.4.1 Variation 1: Ring Opening of Epoxides with Chloro(dimethyl)sulfonium Chloride .. 904

26.6.2.1.4.2 Variation 2: Opening of an α,β-Epoxy Ketone with Benzoyl Chloride 904

26.6.3 Product Subclass 3: α-Bromo Ketones ... 905

26.6.3.1 Synthesis of Product Subclass 3 ... 906

26.6.3.1.1 Method 1: Substitution of Hydrogen by Bromine 906

26.6.3.1.1.1 Variation 1: Direct Bromination with Bromine in Acetic Acid/Water or in the Presence of Urea .. 906

26.6.3.1.1.2 Variation 2: Direct Bromination with Bromine in Concentrated Sulfuric Acid .. 908

26.6.3.1.1.3 Variation 3: Direct Bromination with Bromine in Methanol or Carbon Tetrachloride .. 908

26.6.3.1.1.4 Variation 4: Direct Bromination with Bromine in the Presence of Potassium Chlorate or Sodium Chlorate in Water 910

26.6.3.1.1.5 Variation 5: Bromination of an Enolate with Bromine 911
26.6.3.1.6 Variation 6: Bromination with Perbromide Salts 911
26.6.3.1.7 Variation 7: Bromination with Copper Bromide 913
26.6.3.1.8 Variation 8: Bromination with Bromine Donors in Dimethyl Sulfoxide 913
26.6.3.1.9 Variation 9: Bromination with Bromine Donors: Perfluoroalkanesulfonyl Bromides or Benzeneselenenyl Bromide 915
26.6.3.1.10 Variation 10: Bromination with Bromine Donors: Hexabromocyclopentadiene and Bromomalonic Derivatives.................... 916
26.6.3.1.11 Variation 11: Bromination with Bromine Donors: N-Bromosuccinimide in the Presence of Ammonium Acetate 917
26.6.3.1.12 Variation 12: Bromination in the Presence of an Oxidant 918
26.6.3.1.2 Method 2: Synthesis from an Enol Ether 919
26.6.3.1.3 Method 3: Synthesis from an α,β-Unsaturated Ketone by Reductive Bromination 920
26.6.3.1.4 Method 4: Synthesis via the Ring Opening of an Epoxide 921
26.6.3.1.4.1 Variation 1: Photocatalytic Bromination of an Epoxide 921
26.6.3.1.4.2 Variation 2: Opening of an Epoxide with Bromo(dimethyl)sulfonium Bromide 922
26.6.3.1.5 Methods 5: Additional Methods .. 922
26.6.4 Product Subclass 4: α-Iodo Ketones 923
26.6.4.1 Synthesis of Product Subclass 4 .. 923
26.6.4.1.1 Method 1: Substitution of Hydrogen by Iodine 923
26.6.4.1.1.1 Variation 1: Direct Iodination under Acidic Conditions 924
26.6.4.1.1.2 Variation 2: Iodination of Enolates 925
26.6.4.1.2 Method 2: Synthesis by Conjugate Addition to α-Iodocycloalkenones 927
26.6.4.1.3 Method 3: Synthesis from an Enol Ether by Enol Acetate 927
26.6.4.1.3.1 Variation 1: Via an Iodonium Ion Transfer Reagent and an Enol Acetate 927
26.6.4.1.3.2 Variation 2: Via an Iodonium Ion Transfer from the Reagent to a Silyl Enol Ether 929
26.6.4.1.4 Method 4: Synthesis via the Ring Opening of an Epoxide 930
26.6.4.1.4.1 Variation 1: Using Iodotrimethylsilane 930
26.6.4.1.4.2 Variation 2: Via the Ring Opening of an α-Nitro Epoxide 931
26.6.4.1.5 Method 5: Synthesis via Oxidative Addition to an Alkene 931
26.6.4.1.5.1 Variation 1: Using Silver Chromate and Iodine 932
26.6.4.1.5.2 Variation 2: Using Pyridinium Dichromate and Iodine 932
26.6.4.1.5.3 Variation 3: Using Bis(2,4,6-trimethylpyridine)iodonium(I) Tetrafluoroborate/Dimethyl Sulfoxide 933
26.6.4.5 Product Subclass 5: α-Hydroxy and α-Oxo Ketones 934
26.6.5.1 Synthesis of Product Subclass 5 .. 934
26.6.5.1.1 Method 1: Substitution of an α-Hydrogen Atom 934
26.6.5.1.1.1 Variation 1: From Alkanones by Deprotonation/Oxidation 934
26.6.5.1.1.2 Variation 2: By Oxidation with Dimethyldioxirane or an Oxaziridine 935
26.6.5.1.1.3 Variation 3: By Oxidation of a Titanium Enolate 936
26.6.5.1.1.4 Variation 4: By Reaction of a Tin Enolate with Nitrosobenzene 937
26.6.5.1.1.5 Variation 5: By Oxidation with a Molybdenum Complex 938
26.6.5.1.1.6 Variation 6: By Oxidation with Thallium(III) Salts 939
26.6.5.1.1.7 Variation 7: By Oxidation with Hydroxy(mesyloxy)iodobenzene 939
26.6.5.1.8 Variation 8: By Treatment with Oxygen and Triethyl Phosphite

940

26.6.5.1.2 Method 2: Synthesis via a Silyl Enol Ether

941

26.6.5.1.2.1 Variation 1: Oxidation with 3-Chloroperoxybenzoic Acid

941

26.6.5.1.2.2 Variation 2: Oxidation with Osmium(VIII) Oxide/4-Methylmorpholine N-Oxide

942

26.6.5.1.3 Method 3: Synthesis via Oxidative Addition to an Alkene

942

26.6.5.1.3.1 Variation 1: By Oxidation with Permanganate Salts

942

26.6.5.1.3.2 Variation 2: By Oxidation with Ruthenium(III) Chloride and Peracetic Acid

943

Product Subclass 6: \(\alpha\)-Sulfanyl Ketones

944

26.6.6.1 Synthesis of Product Subclass 6

945

26.6.6.1.1 Method 1: Substitution of a Hydrogen Atom

945

26.6.6.1.2 Method 2: \(\alpha\)-Sulfanylation of Silyl Enol Ethers or Enamines

946

26.6.6.1.3 Method 3: Regioselective \(\alpha\)-Sulfanylation of Boryl Enol Ethers

946

Product Subclass 7: \(\alpha\)-Selanyl Ketones

947

26.6.7.1 Synthesis of Product Subclass 7

947

26.6.7.1.1 Method 1: Substitution of a Hydrogen Atom

947

26.6.7.1.1.1 Variation 1: Selanylation under Neutral Conditions

947

26.6.7.1.1.2 Variation 2: Selanylation under Basic Conditions

949

26.6.7.1.1.3 Variation 3: Selanylation under Acidic Conditions

950

26.6.7.1.2 Method 2: Regioselective \(\alpha\)-Selanylation of O-Silylated Enols or Boryl Enol Ethers

952

26.6.7.1.3 Method 3: Synthesis by Homologation from Phenylselenoacetaldehyde

952

Product Subclass 8: \(\alpha\)-Amino Ketones

953

26.6.8.1 Synthesis of Product Subclass 8

954

26.6.8.1.1 Method 1: Neber Rearrangement

954

26.6.8.1.2 Method 2: Synthesis from Silyl Enol Ethers by Aminohydroxylation

955

26.6.8.1.3 Method 3: Synthesis from \(\alpha\)-Bromo Ketones by Substitution

956

26.6.8.1.4 Method 4: Synthesis from Aldehydes and Iminium Salts

957

26.6.8.1.5 Method 5: Synthesis from \(\alpha\)-Amino Acids via an Oxazolidin-5-one

958

26.6.8.1.6 Method 6: Synthesis via the Cyclization of an \(\alpha\)-Amino Ester

958

26.6.8.1.7 Method 7: Synthesis via the Electroreductive Coupling of Aliphatic Amides

959

26.6.8.1.8 Method 8: Synthesis via the Selective Reduction of Acyl Cyanides

959

26.6.8.1.9 Method 9: Synthesis from Amines

960

Product Subclass 9: \(\alpha\)-Phosphino and \(\alpha\)-Phosphoryl Ketones

961

26.6.9.1 Synthesis of Product Subclass 9

961

26.6.9.1.1 Method 1: 2-(Diphenylphosphoryl)cycloalkanones by Base-Mediated Phosphinylation/Oxidation of Cycloalkanones

961

26.6.9.1.2 Method 2: \(\alpha\)-(Dialkoxyphosphoryl) Ketones by Rearrangement of a Vinyl Phosphate

962

26.6.9.1.3 Method 3: Diethyl (2-Oxoethyl)phosphonates from \(\alpha\)-Bromo Ketones and Diethyl Chlorophosphate

963

26.6.9.1.4 Method 4: \(\alpha\)-Phosphorylated Ketones from \(\alpha\)-Chloro Ketones

964
26.7 Product Class 7: Ynones
A. Nelson

26.7 Product Class 7: Ynones ... 971
26.7.1 Product Subclass 1: Propargyl Ketones 971
26.7.1.1 Synthesis of Product Subclass 1 971
26.7.1.1.1 Method 1: Acylation of Organometallic Reagents 971
26.7.1.1.1.1 Variation 1: Acylation of Lithiated Alkynes with Carbonyl Compounds 972
26.7.1.1.1.2 Variation 2: Copper(I)-Catalyzed Coupling of Terminal Alkynes and Acid Chlorides 973
26.7.1.1.1.3 Variation 3: Coupling of Terminal Alkynes and Acid Chlorides under Bimetallic Copper(I)/Palladium Conditions .. 973
26.7.1.1.1.4 Variation 4: Palladium(0)-Catalyzed Coupling of Trialkynylindiums with Acid Chlorides 974
26.7.1.1.1.5 Variation 5: By Acylation of an Organometallic Reagent with a Propargylic Ester 975
26.7.1.1.2 Method 2: Oxidation of Propargyl Alcohols 975
26.7.1.1.2.1 Variation 1: By Propargylic Oxidation of Alkynes 976
26.7.1.1.3 Method 3: Three-Component Couplings Involving Carbon Monoxide 977
26.7.1.1.4 Method 4: By Elimination of Aminoalkenones 977
26.7.1.1.5 Method 5: By Oxy-Cope Rearrangement 978
26.7.1.1.6 Method 6: By Elimination of α,γ-Dioxo Phosphonium Ylides 978
26.7.2 Product Subclass 2: β,γ-Alkynyl Ketones 979
26.7.2.1 Synthesis of Product Subclass 2 979
26.7.2.1.1 Method 1: By Alkynylation of Enolates 979
26.7.2.1.2 Method 2: By Rearrangement of 3-Furyllithium 980
26.7.2.1.3 Method 3: By 1,2-Shift of an Alkynyl Group 980
26.7.3 Product Subclass 3: γ,δ-Alkynyl Ketones 981
26.7.3.1 Synthesis of Product Subclass 3 982
26.7.3.1.1 Method 1: By Conjugate Addition to α,β-Unsaturated Ketones 982
26.7.3.1.1.1 Variation 1: Addition of Alkynylaluminum Reagents 982
26.7.3.1.1.2 Variation 2: Addition of Alkynylboronates 982
26.7.3.1.1.3 Variation 3: Transition-Metal-Catalyzed Addition of Terminal Alkynes 983
26.7.3.1.2 Method 2: By Propargylation of Enolates 984
26.7.3.1.3 Method 3: By Fragmentation 984
26.7.4 Product Subclass 4: Other Alkynyl Ketones 985
26.7.4.1 Synthesis of Product Subclass 4 985
26.7.4.1.1 Method 1: By Eschenmoser Fragmentation 985
Product Class 8: Aryl Ketones
J. M. Campagne and Y. Six

Product Subclass 1: Nonsubstituted and Carbon-Substituted Aryl Ketones

Synthesis of Product Subclass 1

Method 1: Friedel–Crafts Acylation
Method 2: Oxidation
Variation 1: Oxidation of Benzylic Halides
Variation 2: Oxidation of Benzylic Alcohols and Ethers
Variation 3: Oxidation of Benzylic Sulfur Compounds
Variation 4: Oxidation of Benzylic Nitrogen Compounds
Variation 5: Oxidative Decyanation
Variation 6: Benzyl Oxidation
Variation 7: Wacker Oxidation
Method 3: Acylation of Organometallic Reagents
Variation 1: Arylstannyl Reagents
Variation 2: Arylboryl Reagents
Variation 3: Aryl Grignard Reagents
Variation 4: Aryllithium Reagents
Variation 5: Miscellaneous Aryl Organometallic Reagents
Method 4: Transition-Metal-Catalyzed Carbonylation of Aryl Halides and Pseudohalides
Method 5: Hydration of Arylalkynes
Method 6: Oxidation of Arylalkynes to 1,2-Diketones
Method 7: Oxidative Cleavage of \textit{gem}-Disubstituted Arylalkenes
Variation 1: Ionic \([2 + 2 + 2]\) Benzannulation
Variation 2: Transition-Metal-Catalyzed \([2 + 2 + 2]\) Benzannulation
Method 8: Synthesis by Aromatic Ring Formation
Method 9: Aryl Ketones by Aromatization of Diels–Alder Adducts
Method 10: Aryl Ketones by Electrocyclization and Aromatization
Method 11: Transition-Metal-Catalyzed \textit{ortho} Alkylation of Aryl Ketones
Method 12: Transition-Metal-Catalyzed \textit{ortho} Vinylation of Aryl Ketones
Method 13: Transition-Metal-Catalyzed \textit{ortho} Arylation of Aryl Ketones

Applications of Product Subclass 1 in Organic Synthesis

Method 1: Asymmetric Reduction
Method 2: Photochemistry
Method 3: Willgerodt Reaction
Method 4: 1,2-Aryl Shift
Method 5: Haller–Bauer Reaction

Product Subclass 2: Heteroatom-Substituted Aryl Ketones

Synthesis of Product Subclass 2

Method 1: Friedel–Crafts Acylation
Variation 1: Halogen-Substituted Aryl Ketones
26.8.2.1.2 Variation 2: Oxygen-Substituted Aryl Ketones

- Page 1013

26.8.2.1.3 Variation 3: Sulfur-Substituted Aryl Ketones

- Page 1014

26.8.2.1.4 Variation 4: Nitrogen-Substituted Aryl Ketones

- Page 1014

26.8.2.1.2 Method 2: Houben–Hoesch Reaction

- Page 1015

26.8.2.1.3 Method 3: Fries Rearrangement

- Page 1015

26.8.2.1.4 Variation 1: Hydroxy-Substituted Aryl Ketones

- Page 1015

26.8.2.1.4 Variation 2: Amino-Substituted Aryl Ketones

- Page 1016

26.8.2.1.4 Method 4: Hydroxy-Substituted Diaryl Ketones by Acyl Radical

- Page 1017

26.8.2.1.5 Method 5: Aryl Ring Formation

- Page 1017

26.8.2.1.5.1 Variation 1: Amino-Substituted Aryl Ketones by Ionic [2 + 2 + 2] Aromatic

- Page 1017

26.8.2.1.5.2 Variation 2: Hydroxy-Substituted Aryl Ketones by [3 + 3] Aromatic Ring

- Page 1017

26.8.2.1.5.3 Variation 3: Heteroatom-Substituted Aryl Ketones by [4 + 2] Aromatic

- Page 1019

26.8.2.1.5.4 Variation 4: Heteroatom-Substituted Aryl Ketones by [4 + 2] Aromatic

- Page 1019

26.8.2.1.5.5 Variation 5: Beirut Reaction

- Page 1019

26.8.2.1.5.6 Variation 6: Aromatization of Diels–Alder Adducts

- Page 1020

26.8.2.1.6 Method 6: Heteroatom-Substituted Aryl Ketones by Intramolecular

- Page 1021

26.8.2.1.6.1 Variation 1: Intramolecular Anionic Condensation

- Page 1021

26.8.2.1.6.2 Variation 2: Radical Oxidative Cyclization

- Page 1021

26.8.2.2 Applications of Product Subclass 2 in Organic Synthesis

- Page 1022

26.8.2.2.1 Method 1: Friedländer Quinoline Synthesis

- Page 1022

26.8.3 Product Subclass 3: Aryl Ketones with the Carbonyl in a Ring

- Page 1023

26.8.3.1 Synthesis of Product Subclass 3

- Page 1023

26.8.3.1.1 Method 1: Intramolecular Acylation by Electrophilic Aromatic

- Page 1023

26.8.3.1.2 Method 2: Intramolecular Alkylation by Electrophilic Aromatic

- Page 1024

26.8.3.1.3 Method 3: Free Radical Cyclization onto Aromatic Rings

- Page 1026

26.8.3.1.4 Method 4: Intramolecular Alkylation of Aromatic Carboxylic Acid

- Page 1027

26.8.3.1.5 Method 5: Cyclization of Aroyl Radicals

- Page 1027

26.8.3.1.6 Method 6: Benzocyclobutanones from Heteroatom-Substituted Benzoyl

- Page 1028

26.8.3.1.7 Method 7: [2 + 2] Cycloaddition to Benzyne Species Generated from

- Page 1028

26.8.3.1.8 Method 8: Acylation and Carbonylation of Aryl Metallic Species

- Page 1030

26.8.3.1.9 Method 9: By Ring Formation

- Page 1031
26.8.3.1.9.1 Variation 1: By Transition-Metal-Catalyzed $[2 + 2 + 2]$ Aromatic Ring Formation .. 1031
26.8.3.1.9.2 Variation 2: By $[3 + 3]$ Aromatic Ring Formation 1031
26.8.3.1.9.3 Variation 3: By $[4 + 2]$ Aromatic Ring Formation 1031
26.8.3.1.9.4 Variation 4: By Electrocyclization and Aromatization 1033

Product Class 9: Enones

S. P. Marsden

26.9 Product Class 9: Enones .. 1045
26.9.1 Product Subclass 1: α,β-Unsaturated Ketones ... 1045
26.9.1.1 Synthesis of Product Subclass 1 .. 1045
26.9.1.1.1 Method 1: Oxidation Adjacent to Alkenes 1045
26.9.1.1.1.1 Variation 1: Allylic Oxidation with Stoichiometric Chromium Reagents --- 1045
26.9.1.1.1.2 Variation 2: Allylic Oxidation with Peroxides and Catalytic Metal Salts ... 1046
26.9.1.1.1.3 Variation 3: Allylic Oxidation with Selenium Reagents 1047
26.9.1.1.2 Method 2: Oxidation of Allylic Alcohols ... 1048
26.9.1.1.3 Method 3: Acylation of Organometallic Reagents 1050
26.9.1.1.3.1 Variation 1: Addition of Alkenylmetals to Carboxylic Acids 1050
26.9.1.1.3.2 Variation 2: Addition of Alkenylmetals to Carboxylic Esters and Derivatives .. 1051
26.9.1.1.3.3 Variation 3: Addition of Alkenylmetals to Carboxylic Amides and Derivatives .. 1052
26.9.1.1.3.4 Variation 4: Direct Addition of Alkenylmetals to Carboxylic Acid Halides and Anhydrides .. 1053
26.9.1.1.3.5 Variation 5: Lewis Acid Catalyzed Addition of Alkenylmetals to Carboxylic Acid Halides and Anhydrides 1055
26.9.1.1.3.6 Variation 6: Transition-Metal-Catalyzed Coupling of Alkenylmetals with Carboxylic Acid Halides and Anhydrides 1056
26.9.1.1.3.7 Variation 7: Transition-Metal-Catalyzed Coupling of Alkenylmetals with Organic Halides and Carbon Monoxide .. 1057
26.9.1.1.3.8 Variation 8: Addition of Alkenylmetals to Nitriles 1058
26.9.1.1.3.9 Variation 9: Addition of Organometallics to α,β-Unsaturated Carboxylic Acids .. 1059
26.9.1.1.3.10 Variation 10: Addition of Organometallics to α,β-Unsaturated Carboxylic Amides .. 1059
26.9.1.1.3.11 Variation 11: Transition-Metal-Catalyzed Coupling of Organometallics with Alkenyl Acid Halides .. 1060
26.9.1.1.3.12 Variation 12: Transition-Metal-Mediated Coupling of Organometallics with Alkenyl Halides and Carbon Monoxide 1062
26.9.1.1.3.13 Variation 13: Addition of Organometallics to α,β-Unsaturated Nitriles ... 1063
26.9.1.1.4 Method 4: Substitution of Alkenes ... 1063
26.9.1.1.4.1 Variation 1: Lewis Acid Catalyzed Substitution with Acid Halides 1063
26.9.1.1.4.2 Variation 2: Transition-Metal-Catalyzed Substitution with Acid Halides ... 1064
26.9.1.1.5 Method 5: Elimination Reactions ... 1065
26.9.1.1.5.1 Variation 1: Oxidative Elimination of Metal Hydride from Enol Derivatives 1065
26.9.1.1.5.2 Variation 2: Elimination of a Hydrogen Halide from α-Halo Ketones 1066
26.9.1.5.3 Variation 3: Elimination from β-Heterosubstituted Ketones 1067
26.9.1.5.4 Variation 4: Pericyclic Elimination of α-Sulfinyl and α-Seleninyl Ketones . 1069
26.9.1.5.5 Variation 5: Pericyclic Elimination of β-Acetoxy, β-Sulfinyl, and β-Seleninyl Ketones 1070
26.9.1.6 Method 6: Reduction of Propargylic Ketones .. 1071
26.9.1.7 Method 7: Organometallic Addition to β-Heterosubstituted α,β-Unsaturated Ketones 1072
26.9.1.7.1 Variation 1: Direct Substitution .. 1072
26.9.1.7.2 Variation 2: Substitution by Addition/Rearrangement 1073
26.9.1.8 Method 8: Aldol Condensation .. 1074
26.9.1.8.1 Variation 1: Intermolecular Aldol Reaction of Ketones 1074
26.9.1.8.2 Variation 2: Intermolecular Aldol Reaction of Enamines and Enol Ethers 1075
26.9.1.8.3 Variation 3: Intramolecular Aldol Condensation .. 1077
26.9.1.8.4 Variation 4: Tandem Michael Addition/Intramolecular Aldol Reaction (Robinson Annulation) 1078
26.9.1.9 Method 9: Wittig-Type Alkenations .. 1080
26.9.1.9.1 Variation 1: Wittig Reaction of Oxophosphoranes .. 1080
26.9.1.9.2 Variation 2: Horner–Wittig Reaction of Oxophosphine Oxides 1082
26.9.1.9.4 Variation 4: Peterson Reaction of α-Silyl Ketones 1084
26.9.1.9.5 Variation 5: Wittig Alkenation of 1,2-Dicarboxyls 1085
26.9.1.10 Method 10: Cyclocondensation of Danishefsky-Type Dienes with Alkenes 1086
26.9.1.11.1 Method 11: Using Hexacarboxylicdibalt–Alkyne Complexes (Pauson–Khand Reaction) 1087
26.9.1.11.2 Variation 2: By Direct Transition-Metal-Promoted Coupling 1089
26.9.1.12 Method 12: Transition-Metal-Catalyzed Addition of Aryl Halides and Carbon Monoxide to Allenes 1090
26.9.1.13 Method 13: Addition of Nucleophiles to Propargylic Ketones 1091
26.9.1.14 Method 14: α-Alkylation of Preformed α,β-Unsaturated Ketones 1093
26.9.1.14.1 Variation 1: By Base-Mediated Dienolate Formation 1093
26.9.1.14.2 Variation 2: By Catalyzed Nucleophilic Addition/Aldkylation/Elimination 1094
26.9.1.15 Method 15: α'-Alkylation of Preformed α,β-Unsaturated Ketones 1095
26.9.1.16 Method 16: γ-Alkylation of Preformed α,β-Unsaturated Enones 1096
26.9.1.16.1 Variation 1: By Direct γ-Alkylation 1096
26.9.1.16.2 Variation 2: By α'-Alkylation of Vinylogous Esters with Rearrangement 1097
26.9.1.17 Method 17: Alkylation of Unpoled Enal Anion Equivalents 1098
26.9.1.18 Method 18: Hydroacylation of Alkynes 1099
26.9.1.19 Method 19: Oxidative Ring Opening of Furans 1100
26.9.1.20 Method 20: Retro-Diels–Alder Reaction 1101
26.9.1.21 Method 21: Nazarov Cyclization of Dienones 1102
26.9.1.22 Method 22: Isomerization of Propargylic Alcohols 1103
26.9.1.23 Method 23: Alkene Metathesis 1104
26.9.2 Product Subclass 2: β,γ- Unsaturated Ketones 1105
26.9.2.1 Synthesis of Product Subclass 2 1105
26.9.2.1.1 Method 1: Acylation of Allyl Organometallics 1105
26.9.2.1.1.1 Variation 1: Addition of Allylmetals to Carboxylic Acids 1106
26.9.2.1.1.2 Variation 2: Addition of Allylmetals to Carboxylic Amides

Addition of Allylmetals to Carboxylic Amides

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1106</td>
</tr>
</tbody>
</table>

26.9.2.1.1.3 Variation 3: Addition of Allylmetals to Reactive Carboxylic Acid Derivatives

Addition of Allylmetals to Reactive Carboxylic Acid Derivatives

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1107</td>
</tr>
</tbody>
</table>

26.9.2.1.1.4 Variation 4: Addition of Allylmetals to Nitriles

Addition of Allylmetals to Nitriles

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1109</td>
</tr>
</tbody>
</table>

26.9.3 Method 2: Deconjugative Alkylation of α,β-Unsaturated Ketones

Deconjugative Alkylation of α,β-Unsaturated Ketones

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1109</td>
</tr>
</tbody>
</table>

26.9.3.1 Method 3: Transition-Metal-Catalyzed Vinylation of Enolates

Transition-Metal-Catalyzed Vinylation of Enolates

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1110</td>
</tr>
</tbody>
</table>

26.10 Product Class 10: Saturated and Unsaturated Ketones with an Additional Carbonyl, Nitrile, or Carboxy Substituent or Equivalent at a β- or More Remote Position: Synthesis of the Ketone Functionality

I. Chataigner, A. Harrison-Marchand, and J. Maddaluno

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1123</td>
</tr>
</tbody>
</table>

26.10.1 Product Subclass 1: Oxonitriles

Oxonitriles

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1124</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1124</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1124</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1125</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1126</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1126</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1127</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1128</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1129</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1129</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1130</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1131</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1131</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1132</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1132</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1132</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1133</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1134</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1134</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1134</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1136</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1136</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1138</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1138</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1139</td>
</tr>
</tbody>
</table>
Product Subclass 2: Oxo Esters and Oxo Amides

Synthesis of Product Subclass 2

Method 1: Oxidation

Variation 1: From Oxygen-Containing Carbonyl Compounds

Variation 2: From Nitrogen-Containing Carbonyl Compounds

Variation 3: From Unsaturated Carbonyl Compounds

Method 2: Electrophilic Acylation

Variation 1: With Acyl Halides and Acyl Cyanides

Variation 2: With Carboxylic Acids, Anhydrides, or Esters

Variation 3: With Amides or Nitriles

Variation 4: With Miscellaneous Electrophiles

Method 3: Nucleophilic Acylation

Variation 1: With Aldehydes (via Cyanohydrins and Related Compounds)

Variation 2: With Metal–Carbonyl Reagents

Variation 3: With Miscellaneous Nucleophiles

Variation 4: With Miscellaneous Electrophiles

Method 4: Radical Acylation of Unsaturated Carbonyl Compounds

Variation 1: With Aldehydes

Variation 2: With Anhydrides

Variation 3: With Selenoesters

Variation 4: With Cyclopropanols

Method 5: Carbonylation

Variation 1: The Pauson–Khand Reaction

Variation 2: Free-Radical Carbonylation

Variation 3: With Organometallic Complexes

Method 6: By Rearrangement

Variation 1: Ring Expansions by Radical Methods

Variation 2: Ring Expansion by Nonradical Methods

Variation 3: Electrocyclic Rearrangements

Variation 4: Miscellaneous Rearrangements

Method 7: Cyclization and Cycloaddition

Variation 1: Dieckmann Condensation

Variation 2: Cycloadditions and Miscellaneous Cyclizations

Methods 8: Miscellaneous Methods

Variation 1: Solvolyses

Variation 2: Hydration of Alkynes

Variation 3: Arylation of Baylis–Hillman Adducts

Product Subclass 3: Diketones and Oxo Imines

Synthesis of Product Subclass 3

Method 1: Oxidation

Variation 1: Of Hydroxy Ketones and Diols

Variation 2: Of Nitro Ketones

Variation 3: Of Alkanones and Alkenones

Variation 4: Of Sulfur-Containing Compounds
26.10.3.1.2 Method 2: Electrophilic Acylation 1191
26.10.3.1.2.1 Variation 1: With Acyl Halides and Acyl Cyanides 1191
26.10.3.1.2.2 Variation 2: With Anhydrides, Carboxylic Acids, and Esters 1193
26.10.3.1.2.3 Variation 3: Of Amides ... 1195
26.10.3.1.3 Method 3: Nucleophilic Acylation 1195
26.10.3.1.3.1 Variation 1: By Aldehydes (via Cyanohydrins and Related Compounds) 1195
26.10.3.1.3.2 Variation 2: By Metal–Carbonyl Reagents 1196
26.10.3.1.4 Method 4: By Radical Acylation of α,β-Unsaturated Ketones 1198
26.10.3.1.4.1 Variation 1: By Acyl Radicals 1198
26.10.3.1.4.2 Variation 2: By Carbon Monoxide Gas 1199
26.10.3.1.5 Method 5: Carbonylation of Functionalized Ketones 1200
26.10.3.1.5.1 Variation 1: By the Pauson–Khand Reaction 1200
26.10.3.1.5.2 Variation 2: With Organorhodium and Organopalladium Compounds 1201
26.10.3.1.6 Method 6: Rearrangement ... 1202
26.10.3.1.6.1 Variation 1: Ring Opening of Oxygenated Heterocycles 1202
26.10.3.1.6.2 Variation 2: Ring Opening of Cycloalkanes 1203
26.10.3.1.6.3 Variation 3: Ring Expansion ... 1205
26.10.3.1.6.4 Variation 4: Sigmatropic Rearrangement 1205
26.10.3.1.7 Method 7: Hydration/Hydrolysis 1206
26.10.3.1.7.1 Variation 1: From Alkynones 1206
26.10.3.1.7.2 Variation 2: From Ene Halides 1207
26.10.3.1.7.3 Variation 3: From Nonoxyxgenated Acetals or Other Functions 1208

26.11 Product Class 11: Saturated and Unsaturated Ketones with a β- or More Remote Heteroatom Substituent
A. Harrison-Marchand, I. Chataigner, and J. Maddaluno

26.11 Product Class 11: Saturated and Unsaturated Ketones with a β- or More Remote Heteroatom Substituent 1225
26.11.1 Product Subclass 1: Halo Ketones .. 1225
26.11.1.1 Synthesis of Product Subclass 1 .. 1225
26.11.1.1.1 Method 1: Oxidation of Halo Alcohols 1225
26.11.1.1.2 Method 2: Electrophilic Acylation of Acid Chlorides and Anhydrides ... 1226
26.11.1.1.3 Method 3: Nucleophilic Acylation of α-Chloro Ketones 1227
26.11.1.1.4 Method 4: Carbonylation of Aliphatic Dihalides 1227
26.11.1.1.5 Method 5: Rearrangement ... 1228
26.11.1.1.5.1 Variation 1: Ring Opening of Cyclopropyl Silyl Ethers 1228
26.11.1.1.5.2 Variation 2: Decomposition of Tertiary Alkyl Hypochlorites 1228
26.11.1.1.6 Method 6: Hydrolysis of Hydrazones 1229
26.11.1.1.7 Methods 7: Miscellaneous Reactions 1229
26.11.1.2 Product Subclass 2: Hydroxy and Sulfanyl Ketones and Derivatives 1230
26.11.1.2.1 Synthesis of Product Subclass 2 1230
26.11.1.2.1.1 Method 1: Oxidation ... 1230
26.11.1.2.1.1.1 Variation 1: From Monoprotected Diols and Hydroxy Sulfides 1230
26.11.1.2.1.1.2 Variation 2: From Unprotected Diols 1232
26.11.1.2.1.3 Variation 3: From Nitro Compounds 1233