Volume 29:
Acetals: Hal/X and O/O, S, Se, Te

Preface ... V
Volume Editor’s Preface .. VII
Table of Contents .. XI

Introduction
S. L. Warriner ... 1

29.1 Product Class 1: F/Hal Acetals
S. Challenger ... 13

29.2 Product Class 2: Hal/Hal Acetals (Hal ≠ F)
G. J. Rowlands .. 63

29.3 Product Class 3: Hal/O Acetals
T. Benneche .. 117

29.4 Product Class 4: Hal/S, Hal/Se, and Hal/Te Acetals
C. M. Diaper ... 193

29.5 Product Class 5: Hal/N and Hal/P Acetals
B. Leroy .. 251

29.6 Product Class 6: Acyclic and Semicyclic O/O Acetals
S. von Angerer and S. L. Warriner .. 303

29.7 Product Class 7: 1,3-Dioxetanes and 1,3-Dioxolanes
C. Cordier, S. Leach, and A. Nelson 407

29.8 Product Class 8: 1,3-Dioxanes, 1,3-Dioxepanes, and Larger-Ring O/O Acetals
C. Kouklovsky ... 487

29.9 Product Class 9: Spiroketals
S. V. Ley, L.-G. Milroy, and R. M. Myers 613

29.10 Product Class 10: O/O Acetals with Functionalization Attached to the Acetal Carbon
H. Yorimitsu and K. Oshima .. 691

29.11 Product Class 11: OR¹/OX Acetals
P. Merino .. 707

29.12 Product Class 12: O/S, O/Se, and O/Te Acetals
F. Chemla, F. Ferreira, and B. Roy 801

29.13 Product Class 13: Glycosyl Halides
S. J. Gunn, S. L. Warriner, and J. W. White 889
29.14 **Product Class 14: Glycosyl Sulfur, Selenium, and Tellurium Compounds**
W. B. Turnbull, M. A. Fascione, and S. A. Stalford ... 923

29.15 **Product Class 15: Glycosyl Oxygen Compounds**
(Except Di- and Oligosaccharides)
B. Kryczka, J. Lewkowski, and A. Zawisza .. 971

29.16 **Product Class 16: Glycosyl Oxygen Compounds**
(Di- and Oligosaccharides)
A. V. Demchenko and C. De Meo .. 1057

Keyword Index .. 1149

Author Index .. 1203

Abbreviations .. 1281
Table of Contents

Introduction
S. L. Warriner

Introduction .. 1

29.1
Product Class 1: F/Hal Acetals
S. Challenger

29.1
Product Class 1: F/Hal Acetals ... 13
29.1.1
Product Subclass 1: F/F Acetals ... 13
29.1.1.1
Synthesis of Product Subclass 1 ... 13
29.1.1.1
Method 1: Fluorination of Alkanes ... 13
29.1.1.1
Variation 1: Fluorination α to a Carbonyl Group 13
29.1.1.1
Variation 2: Fluorination at the α-Carbon of Imines and Nitriles and at the β-Carbon of Enamines 16
29.1.1.1
Variation 3: Fluorination α to a Phosphonyl or Sulfonyl Group 17
29.1.1.2
Method 2: Fluorodecarboxylation of Carboxylic Acids 18
29.1.1.3
Method 3: Synthesis from Haloalkanes 18
29.1.1.4
Method 4: Deoxofluorination of Carbonyl Compounds and Their Derivatives ... 19
29.1.1.4
Variation 1: Deoxofluorination of Aldehydes and Ketones 19
29.1.1.4
Variation 2: From 1,1-Bis(trifluoromethylsulfonyloxy) Compounds 22
29.1.1.5
Method 5: Fluorodesulfurization of Thioketones, Dithioacetals, or Dithioketals ... 23
29.1.1.5
Variation 1: By Fluorodesulfurization of Thioketones 23
29.1.1.5
Variation 2: By Fluorodesulfurization of Dithioacetals or Dithioketals ... 24
29.1.1.6
Method 6: Fluorination of C=N Compounds 25
29.1.1.6
Variation 1: By Fluorination of Diazo Compounds 25
29.1.1.6
Variation 2: Fluorination of Hydrazones, Azines, Oximes, or Oxime Ethers 26
29.1.1.6
Variation 3: Fluorination of 2H-Azirines 29
29.1.1.7
Method 7: Synthesis from Alkenes .. 30
29.1.1.7
Variation 1: From 1,1-Difluoroalkanes 30
29.1.1.7
Variation 2: Synthesis of Difluorocyclopropanes 30
29.1.1.7
Variation 3: By Fluorination of Alkenes and Fluoroalkenes 34
29.1.1.7
Variation 4: By Fluorination of Alkenylboron Derivatives and Alkenylsilanes 36
29.1.1.8
Method 8: Synthesis from Alkynes ... 37
29.1.1.2
Applications of Product Subclass 1 in Organic Synthesis 38

29.1.2
Product Subclass 2: F/Cl Acetals ... 39
29.1.2.1
Synthesis of Product Subclass 2 .. 39
29.1.2.1
Method 1: Halogenation of Alkanes ... 39
29.1.2.1
Method 2: Synthesis from gem-Dihaloalkanes 41
29.1.2.1
Method 3: Synthesis from C—O Compounds 41
29.1.2.1
Variation 1: Synthesis from 1,1-Bis(trifluoromethylsulfonyloxy) Compounds 41
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>29.1.2.1.2</td>
<td>Variation 2: Synthesis from α-Chlorooxiranes</td>
<td>42</td>
</tr>
<tr>
<td>29.1.2.1.4</td>
<td>Method 4: Synthesis from C=N Compounds</td>
<td>42</td>
</tr>
<tr>
<td>29.1.2.1.5</td>
<td>Method 5: Synthesis from Alkenes</td>
<td>43</td>
</tr>
<tr>
<td>29.1.2.1.5.1</td>
<td>Variation 1: Synthesis of 1-Chloro-1-fluorocyclopropanes</td>
<td>43</td>
</tr>
<tr>
<td>29.1.2.1.5.2</td>
<td>Variation 2: Synthesis from Haloalkenes</td>
<td>44</td>
</tr>
<tr>
<td>29.1.2.2</td>
<td>Applications of Product Subclass 2 in Organic Synthesis</td>
<td>45</td>
</tr>
<tr>
<td>29.1.3</td>
<td>Product Subclass 3: F/Br Acetals</td>
<td>46</td>
</tr>
<tr>
<td>29.1.3.1</td>
<td>Synthesis of Product Subclass 3</td>
<td>46</td>
</tr>
<tr>
<td>29.1.3.1.1</td>
<td>Method 1: Synthesis from Alkanes</td>
<td>46</td>
</tr>
<tr>
<td>29.1.3.1.2</td>
<td>Method 2: Bromodecarboxylation of α-Fluorocarboxylic Acid Derivatives</td>
<td>48</td>
</tr>
<tr>
<td>29.1.3.1.3</td>
<td>Method 3: Synthesis from Haloalkanes by Halogen Exchange</td>
<td>48</td>
</tr>
<tr>
<td>29.1.3.1.4</td>
<td>Method 4: Halogenation of C—O Compounds</td>
<td>49</td>
</tr>
<tr>
<td>29.1.3.1.5</td>
<td>Method 5: Halogenation of C≡N Compounds</td>
<td>49</td>
</tr>
<tr>
<td>29.1.3.1.6</td>
<td>Method 6: Synthesis from Alkenes</td>
<td>50</td>
</tr>
<tr>
<td>29.1.3.1.6.1</td>
<td>Variation 1: Synthesis of 1-Bromo-1-fluorocyclopropanes</td>
<td>50</td>
</tr>
<tr>
<td>29.1.3.1.6.2</td>
<td>Variation 2: Synthesis from Haloalkenes</td>
<td>51</td>
</tr>
<tr>
<td>29.1.3.1.7</td>
<td>Method 7: Fragmentation and Bromination of a 2-Deoxy-2-fluoro Carbohydrate Derivative</td>
<td>52</td>
</tr>
<tr>
<td>29.1.3.2</td>
<td>Applications of Product Subclass 3 in Organic Synthesis</td>
<td>52</td>
</tr>
<tr>
<td>29.1.4</td>
<td>Product Subclass 4: F/I Acetals</td>
<td>53</td>
</tr>
<tr>
<td>29.1.4.1</td>
<td>Synthesis of Product Subclass 4</td>
<td>53</td>
</tr>
<tr>
<td>29.1.4.1.1</td>
<td>Method 1: Synthesis from Haloalkanes</td>
<td>53</td>
</tr>
<tr>
<td>29.1.4.1.2</td>
<td>Method 2: Halogenation of C—O Compounds</td>
<td>53</td>
</tr>
<tr>
<td>29.1.4.1.3</td>
<td>Method 3: Halogenation of C≡N Compounds</td>
<td>54</td>
</tr>
<tr>
<td>29.1.4.1.4</td>
<td>Method 4: Synthesis from Alkenes</td>
<td>54</td>
</tr>
<tr>
<td>29.1.4.1.5</td>
<td>Method 5: Synthesis from Fluorinated Alkenes</td>
<td>54</td>
</tr>
<tr>
<td>29.1.4.1.6</td>
<td>Method 6: Fragmentation and Iodination of a 2-Deoxy-2-fluoro Carbohydrate Derivative</td>
<td>55</td>
</tr>
<tr>
<td>29.1.4.2</td>
<td>Applications of Product Subclass 4 in Organic Synthesis</td>
<td>55</td>
</tr>
<tr>
<td>29.2</td>
<td>Product Class 2: Hal/Hal Acetals (Hal ≠ F)</td>
<td>63</td>
</tr>
<tr>
<td>29.2.1</td>
<td>Product Subclass 1: Cl/Cl Acetals</td>
<td>63</td>
</tr>
<tr>
<td>29.2.1.1</td>
<td>Synthesis of Product Subclass 1</td>
<td>63</td>
</tr>
<tr>
<td>29.2.1.1.1</td>
<td>Method 1: Chlorination of Alkanes</td>
<td>63</td>
</tr>
<tr>
<td>29.2.1.1.1.1</td>
<td>Variation 1: α-Dichlorination of Aldehydes</td>
<td>64</td>
</tr>
<tr>
<td>29.2.1.1.1.2</td>
<td>Variation 2: α-Dichlorination of Ketones</td>
<td>65</td>
</tr>
<tr>
<td>29.2.1.1.1.3</td>
<td>Variation 3: α-Dichlorination of Imines</td>
<td>66</td>
</tr>
<tr>
<td>29.2.1.1.2</td>
<td>Method 2: Chlorination of the Carbonyl Group</td>
<td>67</td>
</tr>
<tr>
<td>29.2.1.1.3</td>
<td>Method 3: Chlorination of Hydrazones</td>
<td>68</td>
</tr>
<tr>
<td>29.2.1.1.4</td>
<td>Method 4: Synthesis from Dichloroalkanes</td>
<td>69</td>
</tr>
<tr>
<td>29.2.1.1.4.1</td>
<td>Variation 1: Via Dichloro(metallo)alkanes</td>
<td>69</td>
</tr>
</tbody>
</table>
29.2.1.5 Method 5: Radical Reactions of Trichloroalkanes .. 72
29.2.1.5.1 Variation 1: Intermolecular Radical Reactions .. 72
29.2.1.5.2 Variation 2: Intramolecular Radical Reactions .. 73
29.2.1.6 Method 6: Synthesis of gem-Dichlorocyclopropanes 75
29.2.1.6.1 Variation 1: Synthesis from Chloroform .. 75
29.2.1.6.2 Variation 2: Synthesis from Trichloroacetates .. 77
29.2.1.6.3 Variation 3: Synthesis from Organomercury Carbene Precursors 78
29.2.1.7 Method 7: Trapping of Dichloroketene ... 79
29.2.1.7.1 Variation 1: [2+2] Cycloaddition of Dichloroketene 79
29.2.1.7.2 Variation 2: [3,3]-Sigmatropic Rearrangement of Ylides Derived from Dichloroketene ... 80
29.2.1.8 Method 8: Chlorination of Alkynes .. 81

29.2.2 Product Subclass 2: Cl/Br Acetals ... 82
29.2.2.1 Synthesis of Product Subclass 2 .. 82
29.2.2.1.1 Method 1: Synthesis from Chloroalkanes .. 82
29.2.2.1.2 Method 2: Synthesis from Bromo(chloro)(metallo)alkanes 83
29.2.2.1.3 Method 3: Synthesis of gem-Bromo(chloro)cyclopropanes 84
29.2.2.1.3.1 Variation 1: Synthesis from Bromo(chloro)methane 84
29.2.2.1.3.2 Variation 2: Synthesis from Organomercury Carbene Precursors 85
29.2.2.1.4 Methods 4: Miscellaneous Methods ... 85

29.2.3 Product Subclass 3: Cl/I Acetals ... 87
29.2.3.1 Synthesis of Product Subclass 3 .. 87
29.2.3.1.1 Method 1: Synthesis from Haloalkanes .. 87
29.2.3.1.2 Method 2: Synthesis from [Chloro(iodo)methyl]lithium 87
29.2.3.1.3 Method 3: Synthesis from α-Chloro Sulfoxides 88
29.2.3.1.4 Method 4: Synthesis from 1,2-Halohydrins .. 88
29.2.3.1.5 Method 5: Synthesis of gem-Chloro(iodo)cyclopropanes 90

29.2.4 Product Subclass 4: Br/Br Acetals .. 90
29.2.4.1 Synthesis of Product Subclass 4 .. 91
29.2.4.1.1 Method 1: Bromination of Alkanes ... 91
29.2.4.1.1.1 Variation 1: α-Dibromination of Carbonyl Compounds 92
29.2.4.1.2 Method 2: Bromination of Aldehydes or Ketones 94
29.2.4.1.3 Method 3: Bromination of Hydrazones .. 95
29.2.4.1.4 Method 4: Synthesis of gem-Dibromocyclopropanes 96
29.2.4.1.4.1 Variation 1: α-Elimination from Bromoform 96
29.2.4.1.4.2 Variation 2: Synthesis from Organomercury Carbene Precursors 97
29.2.4.1.5 Method 5: Synthesis from Dibromo(metallo)alkanes 98
29.2.4.1.6 Method 6: Synthesis from Haloalkanes and Haloalkenes 99
29.2.4.1.7 Method 7: Synthesis from Alkynes .. 99
29.2.4.1.8 Method 8: Synthesis from Carboxylic Acids 100
29.2.4.2 Applications of Product Subclass 4 in Organic Synthesis 101
29.2.4.2.1 Method 1: Alkene Formation ... 101

29.2.5 Product Subclass 5: Br/I Acetals ... 101
29.2.5.1 Synthesis of Product Subclass 5 .. 102
29.2 Method 1: Synthesis from Haloalkanes

- **Product Subclass 6: I/I Acetals**
 - Method 1: Iodination of Hydrazones
 - Variation 1: Oxidation of \(N-(\text{tert-Butyldimethylsilyl}) \)hydrazones with Iodine
 - Method 2: Synthesis from Haloalkanes

- **Product Subclass 6: I/I Acetals**
 - Method 2: Synthesis from 1,2-Haloxydrins

29.3 Product Class 3: Hal/O Acetals

T. Benneche

- **Product Class 3: Hal/O Acetals**

29.3.1 Product Subclass 1: F/O Acetals

- **Synthesis of Product Subclass 1**
- Method 1: Anodic Fluorination of Ethers
- Method 2: Nucleophilic Substitution with Fluoride Ions
- Method 3: Cleavage of O/S Acetals
- Variation 1: Using Xenon Difluoride
- Variation 2: Using \(N,N \)-Diethylanisulfur Trifluoride
- Method 4: Cleavage of O/S(O) Acetals with \(N,N \)-Diethylanisulfur Trifluoride
- Method 5: Decarboxylation with Xenon Difluoride
- Method 6: Addition of (Benzyl)oxyfluorocarbenes to Acrylonitrile
- Method 7: Peracid Oxidation of Fluoroalkenes
- Method 8: Transformation of Benzyl Alcohols into (Fluoromethoxy)benzenes Using Xenon Difluoride
- Method 9: Transformation of Epoxy Alcohols into \(\alpha \)-Fluoro Ethers

29.3.2 Product Subclass 2: Cl/O Acetals

- **Synthesis of Product Subclass 2**
- Method 1: Chlorination of Ethers
- Method 2: Cleavage of O/O Acetals
29.3.2.1.2 Variation 1: Using Boron Trichloride .. 127
29.3.2.1.2 Variation 2: Using Acid Chlorides ... 127
29.3.2.1.3 Method 3: Cleavage of O/S Acetals ... 129
29.3.2.1.3 Variation 1: Using Sulfuryl Chloride .. 129
29.3.2.1.3 Variation 2: Using N-Chlorosuccinimide and Chlorotrimeethylsilane 130
29.3.2.1.4 Method 4: Cleavage of O/S(O) Acetals with Acetyl Chloride or Thionyl Chloride ... 131
29.3.2.1.5 Method 5: Decarbonylation of Alkox y- and (Aryloxy)acetyl Chlorides • 131
29.3.2.1.6 Method 6: Decarboxylative Chlorination of O-Acyl Thiohydroxamates (Barton–Borodin–Hunsdiecker Reaction) 132
29.3.2.1.7 Method 7: Desulfonation of Aryloxymethanesulfonyl Chlorides 133
29.3.2.1.8 Method 8: Addition of Hydrogen Chloride to Enol Ethers 133
29.3.2.1.9 Method 9: Reaction of Metalated Geminal Dichloroalkanes with Ketones 134
29.3.2.1.10 Method 10: Addition of Alkoxy(chloro)carbenes to Alkenes 134
29.3.2.1.11 Method 11: Addition of Carbon Tetrachloride to Enol Ethers 135
29.3.2.1.12 Method 12: Addition of Chlorine to Enol Ethers 135
29.3.2.1.13 Method 13: Addition of Arenesulfonyl Chlorides to Enol Ethers 136
29.3.2.1.14 Method 14: Oxidation of Chloroalkanes 137
29.3.2.1.15 Method 15: Reaction of Alcohols with Aldehydes in the Presence of a Chlorinating Agent ... 137

29.3.2.2 Applications of Product Subclass 2 in Organic Synthesis 139
29.3.2.2.1 Method 1: Formation of α-Metalated Ethers 139
29.3.2.2.1 Variation 1: Formation of α-Lithio Ethers 139
29.3.2.2.1.2 Variation 2: Formation of α-Silyl, α-Germyl, α-Stannyl, and α-Plumbyl Ethers .. 140
29.3.2.2.1.3 Variation 3: Samarium(II) Iodide Based Reactions 142
29.3.2.2.2 Method 2: Formation of O/O Acetals: Protection of Alcohols 143
29.3.2.2.3 Method 3: Formation of α-Alkox y Sulfur Compounds 146
29.3.2.2.4 Method 4: Formation of α-Alkox y Nitrogen Compounds 146
29.3.2.2.5 Method 5: Formation of α-Alkox y Phosphorus Compounds 148
29.3.2.2.6 Method 6: Formation of Enol Ethers ... 148
29.3.2.2.6.1 Variation 1: Dehalogenation of 1,2-Dihalo Ethers 148
29.3.2.2.6.2 Variation 2: Carbonyl Alkenations with an Alkoxychloromethane/Titanocene(II) System .. 149
29.3.2.2.7 Method 7: Formation of Carboxyl Ylides 150
29.3.2.2.8 Method 8: Chloromethylation of Aromatic Compounds 151
29.3.2.2.9 Method 9: Formation of Ethers ... 151
29.3.2.2.9.1 Variation 1: Reaction with Main-Group Organometallic Compounds 151
29.3.2.2.9.2 Variation 2: Transition-Metal-Based Reactions 153
29.3.2.2.9.3 Variation 3: Reaction with Enolates or Enolate Equivalents 154
29.3.2.2.9.4 Variation 4: Addition to Alkenes ... 156
29.3.2.2.10 Method 10: Carbenes/Carbenoid Formation 157

29.3.3 Product Subclass 3: Br/O Acetals .. 159
29.3.3.1 Synthesis of Product Subclass 3 .. 159
29.3.3.1.1 Method 1: Bromination of Ethers ... 159
29.3.3.1.2 Method 2: Cleavage of α-Alkox y Stannanes with Bromine 160
<table>
<thead>
<tr>
<th>Subclass</th>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1.3</td>
<td>Method 3</td>
<td>Reaction of (\alpha)-Chloro Ethers with Lithium Bromide, Hydrogen Bromide, or Bromine</td>
</tr>
<tr>
<td>3.1.4</td>
<td>Method 4</td>
<td>Rhodium(II)-Catalyzed Reaction of Diazo Dicarbonyl Compounds with Dibromomethane</td>
</tr>
<tr>
<td>3.1.5</td>
<td>Method 5</td>
<td>Cleavage of O/O Acetals</td>
</tr>
<tr>
<td>3.1.5.1</td>
<td>Variation 1</td>
<td>Using Boron Compounds</td>
</tr>
<tr>
<td>3.1.5.2</td>
<td>Variation 2</td>
<td>Using Acetyl Bromide</td>
</tr>
<tr>
<td>3.1.5.3</td>
<td>Variation 3</td>
<td>Using Bromotrimethylsilane</td>
</tr>
<tr>
<td>3.1.6</td>
<td>Method 6</td>
<td>Cleavage of (\alpha)-Acyloxy Ethers with Bromotrimethylsilane</td>
</tr>
<tr>
<td>3.1.7</td>
<td>Method 7</td>
<td>Cleavage of O/S((\alpha))/O Acetals with Bromine</td>
</tr>
<tr>
<td>3.1.8</td>
<td>Method 8</td>
<td>Addition of Hydrogen Bromide to Enol Ethers</td>
</tr>
<tr>
<td>3.1.9</td>
<td>Method 9</td>
<td>Reaction of Lithiated Geminal Dibromoalkanes with Aldehydes</td>
</tr>
<tr>
<td>3.1.10</td>
<td>Method 10</td>
<td>Radical Addition to Enol Ethers</td>
</tr>
<tr>
<td>3.1.11</td>
<td>Method 11</td>
<td>Bromination of Enol Ethers</td>
</tr>
<tr>
<td>3.1.12</td>
<td>Method 12</td>
<td>Peracid Oxidation of Bromoalkenes</td>
</tr>
<tr>
<td>3.1.13</td>
<td>Method 13</td>
<td>Formation of (\alpha)-Alkoxy Radicals</td>
</tr>
<tr>
<td>3.1.14</td>
<td>Method 14</td>
<td>Formation of Carbonyl Ylides</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subclass</th>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2</td>
<td>Application of Product Subclass 3 in Organic Synthesis</td>
<td></td>
</tr>
<tr>
<td>3.2.1</td>
<td>Method 1</td>
<td>Formation of (\alpha)-Metalated Ethers</td>
</tr>
<tr>
<td>3.2.2</td>
<td>Method 2</td>
<td>Formation of (\alpha)-Halo Carbonyl Compounds by Isomerization of 2-Bromooxiranes</td>
</tr>
<tr>
<td>3.2.3</td>
<td>Method 3</td>
<td>Formation of O/O Acetals</td>
</tr>
<tr>
<td>3.2.4</td>
<td>Method 4</td>
<td>Formation of (\alpha)-Alkoxy Sulfur Compounds</td>
</tr>
<tr>
<td>3.2.5</td>
<td>Method 5</td>
<td>Formation of (\alpha)-Alkoxy Nitrogen Compounds</td>
</tr>
<tr>
<td>3.2.6</td>
<td>Method 6</td>
<td>Formation of (\alpha)-Alkoxy Phosphorus Compounds</td>
</tr>
<tr>
<td>3.2.7</td>
<td>Method 7</td>
<td>Dehydrobromination</td>
</tr>
<tr>
<td>3.2.8</td>
<td>Method 8</td>
<td>Bromomethylation of Aromatic Compounds</td>
</tr>
<tr>
<td>3.2.9</td>
<td>Method 9</td>
<td>Formation of Ethers</td>
</tr>
<tr>
<td>3.2.9.1</td>
<td>Variation 1</td>
<td>Reaction with Main-Group Organometallic Compounds</td>
</tr>
<tr>
<td>3.2.9.2</td>
<td>Variation 2</td>
<td>Transition-Metal-Based Reactions</td>
</tr>
<tr>
<td>3.2.9.3</td>
<td>Variation 3</td>
<td>Reaction with Enolates or Enolate Equivalents</td>
</tr>
<tr>
<td>3.2.10</td>
<td>Method 10</td>
<td>Formation of (\alpha)-Alkoxy Radicals</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subclass</th>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Product Subclass 4: I/O Acetals</td>
<td></td>
</tr>
<tr>
<td>4.1</td>
<td>Synthesis of Product Subclass 4</td>
<td></td>
</tr>
<tr>
<td>4.1.1</td>
<td>Method 1</td>
<td>Nucleophilic Substitution with Iodide Ions</td>
</tr>
<tr>
<td>4.1.2</td>
<td>Method 2</td>
<td>Cleavage of O/O Acetals with Iodotrimethylsilane</td>
</tr>
<tr>
<td>4.2</td>
<td>Applications of Product Subclass 4 in Organic Synthesis</td>
<td></td>
</tr>
<tr>
<td>4.2.1</td>
<td>Method 1</td>
<td>Formation of (\alpha)-Metalated Ethers</td>
</tr>
<tr>
<td>4.2.2</td>
<td>Method 2</td>
<td>Formation of (\alpha)-Alkoxy Nitrogen Compounds</td>
</tr>
<tr>
<td>4.2.3</td>
<td>Method 3</td>
<td>Formation of (\alpha)-Alkoxy Phosphorus Compounds</td>
</tr>
<tr>
<td>4.2.4</td>
<td>Method 4</td>
<td>Formation of Carbonyl Ylides</td>
</tr>
<tr>
<td>4.2.5</td>
<td>Method 5</td>
<td>Formation of Ethers</td>
</tr>
<tr>
<td>4.2.5.1</td>
<td>Variation 1</td>
<td>Alkylation of a Lithioferrocene</td>
</tr>
<tr>
<td>4.2.5.2</td>
<td>Variation 2</td>
<td>Trapping of Vinylcopper Reagents</td>
</tr>
<tr>
<td>4.2.5.3</td>
<td>Variation 3</td>
<td>Reaction with Enolates</td>
</tr>
</tbody>
</table>
29.3.4.2.6 Method 6: Formation of α-Alkoxy Radicals .. 184

29.4 Product Class 4: Hal/S, Hal/Se, and Hal/Te Acetals
C. M. Diaper

29.4 Product Class 4: Hal/S, Hal/Se, and Hal/Te Acetals .. 193

29.4.1 Product Subclass 1: Hal/S Acetals .. 193

29.4.1.1 Synthesis of Product Subclass 1 ... 194

29.4.1.1.1 α-Halo Sulfides and α-Halosulfenyl Compounds 194

29.4.1.1.1 Method 1: α-Halo Sulfides by α-Halogenation of Sulfides 194

29.4.1.1.2 Method 2: α-Halo Sulfides by Substitution .. 195

29.4.1.1.2.1 Variation 1: Displacement of Halide from Hal/Hal Acetals by an Organothiol or an Organothiolate ... 196

29.4.1.1.2.2 Variation 2: Displacement of an Organosulfanyl Substituent from Dithioacetals by Halogen ... 197

29.4.1.1.2.3 Variation 3: Displacement of Monothioacetals by Halides 197

29.4.1.1.3 Method 3: α-Halo Sulfides by Addition to Alkenes 198

29.4.1.1.4 Method 4: α-Halo Sulfides by the Addition of Organosulfenyl Halides to α-Diazo Carbonyl Compounds ... 200

29.4.1.1.5 Method 5: α-Halo Sulfides from Sulfoxides by Pummerer Rearrangement 200

29.4.1.1.6 Method 6: Substitution of α-Halosulfenyl Halides with Nucleophiles 201

29.4.1.1.7 Method 7: α-Halosulfenyl Halides by Addition Reactions 203

29.4.1.1.8 Method 8: α-Halosulfenyl Halides by Addition to Disulfides 204

29.4.1.2 α-Halo Sulfoxides .. 204

29.4.1.2.1 Method 1: α-Halo Sulfoxides by the Halogenation of Alkyl Sulfoxides 204

29.4.1.2.2 Method 2: Iodomethyl Sulfoxides from Chloromethyl Sulfoxides by the Finkelstein Reaction ... 205

29.4.1.2.3 Method 3: α-Halo Sulfoxides by Michael Addition to α-Halovinyl Sulfoxides .. 206

29.4.1.2.4 Method 4: Halomethyl Sulfoxides by the Addition of Diazomethane to Sulfinyl Halides .. 207

29.4.1.2.5 Method 5: α-Halo Sulfoxides by the Addition of Halogens to Vinylic Sulfoxides .. 207

29.4.1.2.6 Method 6: Oxidation of α-Halo Sulfoxides .. 208

29.4.1.2.7 Method 7: Reaction of α-Halo Sulfoxide Anions with Carbon Electrophiles 209

29.4.1.2.8 Method 8: α-Halosulfinyl Halides by the Oxidation of α-Halosulfenyl Halides .. 211

29.4.1.3 α-Halo Sulfones and S-(α-Haloalkyl)sulfoximides 211

29.4.1.3.1 Method 1: α-Halo Sulfones by the Halogenation of Sulfones 211

29.4.1.3.1.1 Variation 1: Direct Halogenation of Activated Sulfones 212

29.4.1.3.1.2 Variation 2: Halogenation of Sulfones under Basic Conditions 213

29.4.1.3.2 Method 2: α-Halo Sulfones by Michael Addition to Halovinyl Sulfones 214

29.4.1.3.3 Method 3: α-Halo Sulfones by Addition Reactions 215

29.4.1.3.4 Method 4: α-Halo Sulfones by the α-Oxidation of Halo Sulfoxides 216

29.4.1.3.4.1 Variation 1: Oxidation of α-Halo Sulfoxides 216
29.4.1.3.4.2 Variation 2: Oxidation of α-Halo Sulfoxides 217
29.4.1.3.5 Method 5: α-Halo Sulfones by the Reaction of α-Halo Sulfone Anions with Carbon Electrophiles 217
29.4.1.3.6 Method 6: S-(α-Haloalkyl)sulfoximides by the Halogenation of Sulfoximides ... 219

29.4.1.4 α-Halosulfonyl Chlorides, α-Halosulfonates, and α-Halosulfonamides 220

29.4.1.4.1 Method 1: α-Halosulfonyl Halides by Halogenation ... 220
29.4.1.4.2 Method 2: α-Halosulfonates by the Substitution of Dihalomethanes 221
29.4.1.4.3 Method 3: α-Halosulfonamides by Halogenation of Sulfonamides 222
29.4.1.4.4 Method 4: α,β-Dihalosulfonamides by the Addition of Halogens to α,β-Unsaturated Sulfonamides ... 223
29.4.1.4.5 Method 5: Reaction of α-Halosulfonamide Anions with Carbon Electrophiles ... 223
29.4.1.4.6 Method 6: Substitution of α-Halosulfonyl Halides with Heteroatom Nucleophiles ... 224

29.4.1.2 Applications of Product Subclass 1 in Organic Synthesis 225
29.4.1.2.1 Method 1: Radical Cyclizations in the Total Synthesis of Natural Products 225
29.4.1.2.2 Method 2: Protecting Group Chemistry ... 226
29.4.1.2.3 Method 3: Reactions of Hal/S Acetals with Carbon Nucleophiles 227
29.4.1.2.3.1 Variation 1: Reactions with Carbamion Nucleophiles ... 227
29.4.1.2.3.2 Variation 2: Lewis Acid Catalyzed Alkylations of Unsaturated Derivatives 228
29.4.1.2.4 Method 4: The Ramberg–Bäcklund Rearrangement ... 229
29.4.1.2.5 Method 5: Organometallic Reagents Derived from α-Halo Sulfides, Sulfoxides, and Sulfones ... 230
29.4.1.2.5.1 Variation 1: Reagents Derived from α-Chloro Sulfides ... 230
29.4.1.2.5.2 Variation 2: Reagents Derived from α-Halo Sulfoxides ... 231
29.4.1.2.5.3 Variation 3: Vicarious Nucleophilic Substitution Reactions ... 232
29.4.1.2.6 Method 6: The Chloromethylsulfonyloxy Group in the Inversion of Secondary Alcohols ... 233

29.4.2 Product Subclass 2: Hal/Se and Hal/Te Acetals ... 234
29.4.2.1 Synthesis of Product Subclass 2 ... 234
29.4.2.1.1 Method 1: α-Halo Selenides from Enolates ... 234
29.4.2.1.2 Method 2: α-Halo Selenides by Halogenation of Selenium/Chalcogen Acetals ... 235
29.4.2.1.3 Method 3: α-Halo Selenides and α-Halo Tellurides by Substitution ... 236
29.4.2.1.4 Method 4: α-Halo Selenides and α-Halo Tellurides by Addition of Selenenyl Halides to Diazoalkanes ... 237
29.4.2.1.5 Method 5: α-Halo Selenides by Addition Reactions ... 237
29.4.2.1.6 Method 6: α-Halo Selenides by Seleno-Pummerer Rearrangements ... 238

29.5 Product Class 5: Hal/N and Hal/P Acetals
B. Leroy

29.5 Product Class 5: Hal/N and Hal/P Acetals ... 251
29.5.1 Product Subclass 1: α-Haloamines ... 251
29.5.1 Synthesis of Product Subclass 1 .. 252
29.5.1.1 Method 1: Halogenation of O/N and N/N Acetals 252
29.5.1.2 Method 2: Halogenation of Enamines 253
29.5.1.3 Method 3: Halogenation of Imines 253

29.5.2 Product Subclass 2: α-Haloammonium Salts 254
29.5.2.1 Synthesis of Product Subclass 2 254
29.5.2.1.1 Method 1: Addition of Amines to 1,1-Dihaloalkanes 254

29.5.3 Product Subclass 3: α-Halo Amides, α-Halo Imides, α-Halomethylcarbamates, and α-Halo Sulfonamides 255
29.5.3.1 Synthesis of Product Subclass 3 256
29.5.3.1.1 Method 1: Radical Halogenation of Amides and Related Compounds 256
29.5.3.1.2 Method 2: Deprotonation and Halogenation α to Nitrogen 257
29.5.3.1.3 Method 3: Electrochemical Halogenation 258
29.5.3.1.4 Method 4: Addition of Nucleophilic Nitrogen to 1,1-Dihaloalkanes 259
29.5.3.1.5 Method 5: Halogenation of α-Hydroxy Amides and Related Compounds 260
29.5.3.1.6 Method 6: Halogenation of N-Acyl O/N Acetals and Analogues 261
29.5.3.1.6.1 Variation 1: Halogenation of O/N Acetals 261
29.5.3.1.6.2 Variation 2: Halogenation of S/N Acetals 262
29.5.3.1.6.3 Variation 3: Halogenation of N/N Acetals 263
29.5.3.1.7 Method 7: Halogenation of Acyl Enamines 264
29.5.3.1.7.1 Variation 1: Electrophilic Halogenation 264
29.5.3.1.7.2 Variation 2: Radical Halogenation 264
29.5.3.1.8 Method 8: Halogenation of Imines 265
29.5.3.1.8.1 Variation 1: Addition of Acyl Halides 265
29.5.3.1.8.2 Variation 2: Addition of Other Chlorocarbonyl Reagents 266

29.5.4 Product Subclass 4: α-Halonitro and Related Compounds 267
29.5.4.1 Synthesis of Product Subclass 4 267
29.5.4.1.1 Method 1: Halogenation of Nitroalkanes .. 267
29.5.4.1.2 Variation 1: Fluorination .. 267
29.5.4.1.2 Variation 2: Chlorination, Bromination, and Iodination 268
29.5.4.1.2 Method 2: Halogenation of Nitroalkenes 269
29.5.4.1.3 Method 3: Oxidative Halogenation of Oximes 270
29.5.4.1.3.1 Variation 1: Preparation of α-Halonitroso Compounds 270
29.5.4.1.3.2 Variation 2: Preparation of α-Halonitro Compounds 271
29.5.4.1.4 Method 4: Halogenation of Hydrazones 273
29.5.4.1.4.1 Variation 1: Preparation of α-Haloazo Compounds 273
29.5.4.1.4.2 Variation 2: Halogenation of Ketazines 274
29.5.4.1.5 Method 5: Addition of Diazaoalkanes to Vinyl Halides 274
29.5.4.1.6 Method 6: Functionalization of 1-Halo-1-nitroalkanes 274
29.5.4.1.7 Method 7: Modification of 1-Halo-1-nitroalkanes 275

29.5.5 Product Subclass 5: α-Halophosphorus(III) Compounds 276
29.5.5.1 Synthesis of Product Subclass 5 276
29.5.5.1.1 Method 1: Reaction of Alkylphosphorus(III) Compounds with Carbon Tetrahalides .. 276
29.5.5.1.2 Method 2: Addition of Phosphines to 1,1-Dihaloalkanes 278
29.5.5.1.3 Method 3: Reduction of Phosphorus(V) Derivatives 278
29.5.6 Product Subclass 6: \(\alpha\)-Halophosphonium Salts .. 279
29.5.6.1 Synthesis of Product Subclass 6 .. 279
29.5.6.1.1 Method 1: Addition of Phosphines to 1,1-Dihaloalkanes 279
29.5.6.1.2 Method 2: Halogenation of \(\alpha\) Hydroxyphosphonium Salts 280
29.5.6.1.3 Method 3: Halogenation of Phosphonium Ylides 281
29.5.7 Product Subclass 7: \(\alpha\)-Halophosphorus(V) Compounds 281
29.5.7.1 Synthesis of Product Subclass 7 .. 282
29.5.7.1.1 Method 1: Radical Halogenation .. 282
29.5.7.1.2 Method 2: Deprotonation and Halogenation \(\alpha\) to Phosphorus 283
29.5.7.1.2.1 Variation 1: Fluorination of Lithium, Sodium, or Potassium Salts 283
29.5.7.1.2.2 Variation 2: Fluorination Using Palladium Complexes 284
29.5.7.1.2.3 Variation 3: Chlorination, Bromination, and Iodination 285
29.5.7.1.2.4 Variation 4: Halogenation of Silyl-Stabilized Carbanions 286
29.5.7.1.3 Method 3: Addition of Nucleophilic Phosphorus to 1,1-Dihaloalkanes 288
29.5.7.1.3.1 Variation 1: Addition of Phosphites .. 288
29.5.7.1.3.2 Variation 2: Addition of Phosphorus Trihalides 288
29.5.7.1.4 Method 4: Halogenation of \(\alpha\)-Hydroxyphosphorus(V) Derivatives 289
29.5.7.1.4.1 Variation 1: Fluorination ... 289
29.5.7.1.4.2 Variation 2: Chlorination, Bromination, and Iodination 290
29.5.7.1.5 Method 5: Halogenation of Vinylphosphorus(V) Derivatives 292
29.5.7.1.6 Method 6: Addition of Halophosphorus(III) Derivatives to Carbonyl Compounds .. 292
29.5.7.1.7 Method 7: Functionalization of \(\alpha\)-Halo Phosphorus(V) Compounds 293
29.5.7.1.8 Method 8: Modification of \(\alpha\)-Haloalk-1-enylyphosphorus(V) Compounds 294
29.5.7.1.9 Method 9: Selective Dehalogenation of \(\alpha\),\(\alpha\)-Dihalophosphorus(V) Compounds .. 295

29.6 Product Class 6: Acyclic and Semicyclic O/O Acetals
S. von Angerer and S. L. Warriner

29.6 Product Class 6: Acyclic and Semicyclic O/O Acetals 303
29.6.1 Synthesis of Product Class 6 .. 304
29.6.1.1 Synthesis from Compounds of Higher Oxidation State 304
29.6.1.1.1 Method 1: Synthesis by Reduction ... 304
29.6.1.1.2 Method 2: Synthesis from CH-Acidic Compounds 305
29.6.1.1.2.1 Variation 1: From Alkynes .. 305
29.6.1.1.2.2 Variation 2: From Ketones .. 306
29.6.1.1.2.3 Variation 3: From \(\beta\)-Oxo Nitriles and Related Compounds 308
29.6.1.1.3 Method 3: Synthesis from Organometallic Compounds 308
29.6.1.1.3.1 Variation 1: From Organomagnesium Compounds 308
29.6.1.1.3.2 Variation 2: From Organoaluminum and Organozinc Compounds 309
<table>
<thead>
<tr>
<th>Section</th>
<th>Method</th>
<th>Variation</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>29.6.1.3.3</td>
<td>Variation 3: From Organosilanes</td>
<td></td>
<td>310</td>
</tr>
<tr>
<td>29.6.1.4</td>
<td>Method 4: Synthesis from Ketenes and Ketene Acetals</td>
<td></td>
<td>311</td>
</tr>
<tr>
<td>29.6.1.5</td>
<td>Method 5: Synthesis from Enol Derivatives</td>
<td></td>
<td>311</td>
</tr>
<tr>
<td>29.6.1.5.1</td>
<td>Variation 1: From Silyl Enol Ethers</td>
<td></td>
<td>311</td>
</tr>
<tr>
<td>29.6.1.5.2</td>
<td>Variation 2: From Enol Ethers</td>
<td></td>
<td>312</td>
</tr>
<tr>
<td>29.6.1.6</td>
<td>Method 6: Synthesis Using Enamines</td>
<td></td>
<td>313</td>
</tr>
<tr>
<td>29.6.1.2</td>
<td>Synthesis from Compounds of the Same Oxidation State</td>
<td></td>
<td>313</td>
</tr>
<tr>
<td>29.6.1.2.1</td>
<td>Method 1: Synthesis from 1,1-Dihaloalkanes</td>
<td></td>
<td>313</td>
</tr>
<tr>
<td>29.6.1.2.1.1</td>
<td>Variation 1: From Alcohols</td>
<td></td>
<td>314</td>
</tr>
<tr>
<td>29.6.1.2.1.2</td>
<td>Variation 2: From Phenols</td>
<td></td>
<td>316</td>
</tr>
<tr>
<td>29.6.1.2.2</td>
<td>Method 2: Synthesis from Hal[OR]¹ Acetals</td>
<td></td>
<td>316</td>
</tr>
<tr>
<td>29.6.1.2.2.1</td>
<td>Variation 1: From Alcohols</td>
<td></td>
<td>317</td>
</tr>
<tr>
<td>29.6.1.2.2.2</td>
<td>Variation 2: From Phenols</td>
<td></td>
<td>321</td>
</tr>
<tr>
<td>29.6.1.2.2.3</td>
<td>Variation 3: From Ketones</td>
<td></td>
<td>322</td>
</tr>
<tr>
<td>29.6.1.2.3</td>
<td>Method 3: Synthesis from Aldehydes or Ketones and Alcohols</td>
<td></td>
<td>323</td>
</tr>
<tr>
<td>29.6.1.2.3.1</td>
<td>Variation 1: From Alcohols without Removal of Water</td>
<td></td>
<td>323</td>
</tr>
<tr>
<td>29.6.1.2.3.2</td>
<td>Variation 2: From Alcohols with Removal of Water by Physical Methods</td>
<td></td>
<td>327</td>
</tr>
<tr>
<td>29.6.1.2.3.3</td>
<td>Variation 3: From Alcohols with Removal of Water by Chemical Means</td>
<td></td>
<td>328</td>
</tr>
<tr>
<td>29.6.1.2.3.4</td>
<td>Variation 4: From Alcohols and Alkylating Agents</td>
<td></td>
<td>334</td>
</tr>
<tr>
<td>29.6.1.2.4</td>
<td>Method 4: Synthesis from Aldehydes or Ketones and Alcohol Derivatives</td>
<td></td>
<td>336</td>
</tr>
<tr>
<td>29.6.1.2.4.1</td>
<td>Variation 1: From Alkoxy silanes</td>
<td></td>
<td>337</td>
</tr>
<tr>
<td>29.6.1.2.4.2</td>
<td>Variation 2: From Titanium or Antimony Alkoxides</td>
<td></td>
<td>337</td>
</tr>
<tr>
<td>29.6.1.2.4.3</td>
<td>Variation 3: From Trilalkyl Orthoformates</td>
<td></td>
<td>338</td>
</tr>
<tr>
<td>29.6.1.2.4.4</td>
<td>Variation 4: From Other Acetals</td>
<td></td>
<td>339</td>
</tr>
<tr>
<td>29.6.1.2.4.5</td>
<td>Variation 5: From Dialkoxytriphenylphosphoranes</td>
<td></td>
<td>340</td>
</tr>
<tr>
<td>29.6.1.2.5</td>
<td>Method 5: Synthesis from Other O/O Acetals</td>
<td></td>
<td>341</td>
</tr>
<tr>
<td>29.6.1.2.5.1</td>
<td>Variation 1: With Other Acetals</td>
<td></td>
<td>341</td>
</tr>
<tr>
<td>29.6.1.2.5.2</td>
<td>Variation 2: By Exchange of Both Alkoxy Groups</td>
<td></td>
<td>341</td>
</tr>
<tr>
<td>29.6.1.2.5.3</td>
<td>Variation 3: By Exchange of One Alkoxy Group</td>
<td></td>
<td>342</td>
</tr>
<tr>
<td>29.6.1.2.6</td>
<td>Method 6: Synthesis from Acetals with Other Heteroatoms</td>
<td></td>
<td>349</td>
</tr>
<tr>
<td>29.6.1.2.6.1</td>
<td>Variation 1: From O/S Acetals</td>
<td></td>
<td>349</td>
</tr>
<tr>
<td>29.6.1.2.6.2</td>
<td>Variation 2: From S/S Acetals</td>
<td></td>
<td>351</td>
</tr>
<tr>
<td>29.6.1.2.6.3</td>
<td>Variation 3: From O/N Acetals</td>
<td></td>
<td>353</td>
</tr>
<tr>
<td>29.6.1.2.7</td>
<td>Method 7: Synthesis from Imines, Oximes, and Related Compounds</td>
<td></td>
<td>354</td>
</tr>
<tr>
<td>29.6.1.2.8</td>
<td>Method 8: Synthesis from Heterosubstituted Alkenes</td>
<td></td>
<td>355</td>
</tr>
<tr>
<td>29.6.1.2.8.1</td>
<td>Variation 1: From Haloalkenes and Alcohols</td>
<td></td>
<td>355</td>
</tr>
<tr>
<td>29.6.1.2.8.2</td>
<td>Variation 2: From Acyclic Enol Ethers and Alcohols</td>
<td></td>
<td>356</td>
</tr>
<tr>
<td>29.6.1.2.8.3</td>
<td>Variation 3: From Cyclic Enol Ethers and Alcohols</td>
<td></td>
<td>362</td>
</tr>
<tr>
<td>29.6.1.2.8.4</td>
<td>Variation 4: From Allenyl Enol Ethers and Alcohols</td>
<td></td>
<td>365</td>
</tr>
<tr>
<td>29.6.1.2.8.5</td>
<td>Variation 5: From Enol Ethers via Cycloaddition</td>
<td></td>
<td>366</td>
</tr>
<tr>
<td>29.6.1.2.8.6</td>
<td>Variation 6: From Aryl Ethers by Oxidation</td>
<td></td>
<td>368</td>
</tr>
<tr>
<td>29.6.1.2.8.7</td>
<td>Variation 7: From Enolates or Enol Esters and Alcohols</td>
<td></td>
<td>370</td>
</tr>
<tr>
<td>29.6.1.2.8.8</td>
<td>Variation 8: From Furan and Alcohols</td>
<td></td>
<td>371</td>
</tr>
<tr>
<td>29.6.1.2.8.9</td>
<td>Variation 9: From Enol Ethers with Acetals</td>
<td></td>
<td>373</td>
</tr>
<tr>
<td>29.6.1.2.8.10</td>
<td>Variation 10: Dimerization of Enol Ethers</td>
<td></td>
<td>374</td>
</tr>
<tr>
<td>29.6.1.3</td>
<td>Synthesis from Compounds of Lower Oxidation State</td>
<td></td>
<td>374</td>
</tr>
<tr>
<td>29.6.1.3.1</td>
<td>Method 1: Synthesis from Heterosubstituted Alkanes</td>
<td></td>
<td>374</td>
</tr>
</tbody>
</table>
29.6.1.3.1 Variation 1: From Alcohols and Ethers 374
29.6.1.3.2 Variation 2: From Sulfides ... 378
29.6.1.3.3 Variation 3: From Dimethyl Sulfoxide 378
29.6.1.3.4 Variation 4: From Amines and Other Nitrogen Derivatives 379
29.6.1.3.5 Method 2: Synthesis from Alkynes 380
29.6.1.3.6 Variation 1: From Alkyl- and Arylalkynes 381
29.6.1.3.7 Variation 2: From Vinylacetylenes 383
29.6.1.3.8 Variation 3: From Alkynes with Electron-Withdrawing Substituents 384
29.6.1.3.9 Method 3: Synthesis from Alkenes 386
29.6.1.3.10 Variation 1: By Oxidation with Thallium(III) Salts 386
29.6.1.3.11 Variation 2: By Oxidation with Molecular Oxygen 388
29.6.1.3.12 Variation 3: By Oxidation with Ozone 388
29.6.1.3.13 Variation 4: By Oxidation with Alkyl Nitrites 389
29.6.1.3.14 Variation 5: By Electrochemical Oxidation 389
29.6.1.3.15 Variation 6: By Oxidation of Benzenes 390
29.6.1.3.16 Method 4: Synthesis from Alkanes 392

29.7 Product Class 7: 1,3-Dioxetanes and 1,3-Dioxolanes
C. Cordier, S. Leach, and A. Nelson

29.7.1 Product Subclass 1: 1,3-Dioxetanes 407
29.7.1.1 Synthesis of Product Subclass 1 .. 407
29.7.1.1.1 Method 1: Synthesis by Formation of Two C—O Bonds 407

29.7.2 Product Subclass 2: 1,3-Dioxolanes ... 408
29.7.2.1 Synthesis of Product Subclass 2 .. 411
29.7.2.1.1 Method 1: Synthesis by Formation of Two C—O Bonds 411
29.7.2.1.1.1 Variation 1: Reactions of Carbonyl Compounds with 1,2-Diols 411
29.7.2.1.1.2 Variation 2: Reactions of Acetals and Ketals with 1,2-Diols 426
29.7.2.1.1.3 Variation 3: Reactions of Enol Ethers with 1,2-Diols 437
29.7.2.1.1.4 Variation 4: Reactions of Carbonyl Compounds with 1,2-Bis(trimethylsilyl) Ethers .. 442
29.7.2.1.1.5 Variation 5: Reactions of Epoxides with Ketones 444
29.7.2.1.1.6 Variation 6: By Double Michael Addition of 1,2-Diols to Electron-Deficient Alkynes .. 447
29.7.2.1.1.7 Variation 7: Reaction of 1,1-Dihalo Compounds with 1,2-Diols 448
29.7.2.1.1.8 Variation 8: Reactions of Ketones and 2-Halo Alcohols 451
29.7.2.1.1.9 Variation 9: From But-2-ene-1,4-diols and Ketones 452
29.7.2.1.2 Method 2: Synthesis by Formation of One C—O Bond 453
29.7.2.1.2.1 Variation 1: From Monoprotected 1,2-Diols 453
29.7.2.1.2.2 Variation 2: By Oxidation of Electron-Rich Arenes and Heteroarenes and Cyclization ... 456
29.7.2.1.2.3 Variation 3: By Cyclization of Hydroxy-Substituted Enol Ethers 458
29.7.2.1.2.4 Variation 4: By Intramolecular Transacetalization 459
29.7.2.1.2.5 Variation 5: From Stable Acyclic Hemiacetals Derived from Allylic Alcohols 459
29.7.2.6 Variation 6: By Cyclization of 2-Hydroxyalkyl Hal/O Acetals and
2-Haloalkyl Hemiacetals ... 460
29.7.2.1.3 Method 3: Exchange of Ligands on Existing Acetals 461
29.7.2.1.3.1 Variation 1: Radical Epimerization 461
29.7.2.1.3.2 Variation 2: Radical Reactions 461
29.7.2.1.3.3 Variation 3: From Metalated Dioxolanes 464
29.7.2.1.3.4 Variation 4: From Methylene-dioxolanes 464
29.7.2.1.3.5 Variation 5: Cycloaddition .. 465
29.7.2.1.3.6 Variation 6: From Ortho Esters 466
29.7.2.2 Applications of Product Subclass 2 in Organic Synthesis 469
29.7.2.2.1 Method 1: Deprotection Reactions 469
29.7.2.2.1.1 Variation 1: Deprotection to Carbonyl Compounds and 1,2-Diols 469
29.7.2.2.1.2 Variation 2: Conversion into Monofunctionalized 1,2-Diols 476
29.7.2.2.2 Method 2: Chiral 1,3-Dioxolanes in Asymmetric Synthesis 477
29.7.2.2.3 Method 3: Chiral 1,3-Dioxolan-4-ones in Asymmetric Synthesis 479

29.8 Product Class 8: 1,3-Dioxanes, 1,3-Dioxepanes, and Larger-Ring O/O
Acetals
C. Kouklovsky

29.8 Product Class 8: 1,3-Dioxanes, 1,3-Dioxepanes, and Larger-Ring O/O
Acetals .. 487
29.8.1 Product Subclass 1: 1,3-Dioxanes .. 487
29.8.1.1 Synthesis of Product Subclass 1 .. 491
29.8.1.1.1 Method 1: Synthesis by Formation of Two C—O Bonds 491
29.8.1.1.1.1 Variation 1: From Reactions of Carbonyl Compounds with 1,3-Diols 491
29.8.1.1.1.2 Variation 2: From Reactions of 1,3-Diols with Acetals or Ketals 503
29.8.1.1.1.3 Variation 3: From Reactions of Enol Ethers with 1,3-Diols 517
29.8.1.1.1.4 Variation 4: From Reactions of Carbonyl Compounds with 1,3-Diol ... 523
29.8.1.1.1.5 Bis(silyl ethers) .. 523
29.8.1.1.1.6 Bis(silyl ethers) .. 528
29.8.1.1.1.7 Bis(silyl ethers) .. 530
29.8.1.1.1.8 Bis(silyl ethers) .. 532
29.8.1.1.1.9 Bis(silyl ethers) .. 534
29.8.1.1.1.10 Bis(silyl ethers) ... 534
29.8.1.1.1.11 Bis(silyl ethers) ... 535
29.8.1.1.1.12 Bis(silyl ethers) ... 548
29.8.1.1.1.13 Bis(silyl ethers) ... 554
29.8.1.1.1.14 Bis(silyl ethers) ... 554
29.8.1.1.1.15 Bis(silyl ethers) ... 558
29.8.1.1.1.16 Bis(silyl ethers) ... 566
29.8.1.1.1.17 Bis(silyl ethers) ... 567
29.8.1.1.1.18 Bis(silyl ethers) ... 572
29.8.1.1.1.19 Bis(silyl ethers) ... 575
29.8.1.1.1.20 Bis(silyl ethers) ... 575
29.8.1.1.1.21 Bis(silyl ethers) ... 576
29.8.1.1.1.22 Bis(silyl ethers) ... 576
29.8.1.2 Variation 2: Cleavage To Give Monoprotected 1,3-Diols 580

29.8.1.2.2 Method 2: Chiral 1,3-Dioxanes in Asymmetric Synthesis 583

29.8.1.2.2.1 Variation 1: As Chiral Reagents 584

29.8.1.2.2.2 Variation 2: As Chiral Auxiliaries 585

29.8.1.2.3 Method 3: Rearrangement of Methylene-1,3-dioxanes 585

29.8.1.2.3.1 Variation 1: Claisen Rearrangement 586

29.8.1.2.3.2 Variation 2: Ferrier Rearrangement 586

29.8.1.2.4 Method 4: Synthesis of Cyclic Ethers from 1,3-Dioxanes 587

29.8.2 Product Subclass 2: 1,3-Dioxepanes .. 587

29.8.2.1 Method 1: Synthesis by Formation of Two C—O Bonds 588

29.8.2.1.1 Variation 1: From Reactions of Carbonyl Compounds with 1,4-Diols 588

29.8.2.1.2 Variation 2: From Reactions of Acetals with 1,4-Diols 591

29.8.2.1.3 Variation 3: From Reactions of 1,4-Diols with Enol Ethers 593

29.8.2.1.4 Variation 4: From Reactions of 1,4-Diols with 1,1-Dihaloalkanes 594

29.8.2.1.5 Method 2: Synthesis by Formation of One C—O Bond 595

29.8.2.1.6 Variation 1: From Monoprotected 1,4-Diols 595

29.8.2.1.7 Variation 2: From Homoallylic Alcohols 596

29.8.2.2 Applications of Product Subclass 2 in Organic Synthesis 597

29.8.2.2.1 Method 1: Deprotection Reactions 597

29.8.2.2.2 Variation 1: Cleavage To Give 1,4-Diols 597

29.8.2.2.3 Variation 2: Cleavage To Give Monoprotected 1,4-Diols 598

29.8.3 Product Subclass 3: Larger-Ring O/O Acetals 599

29.8.3.1 Method 1: Synthesis by Formation of Two C—O Bonds 600

29.8.3.1.1 Variation 1: From Reactions of Carbonyl Compounds and Diols 600

29.8.3.1.2 Variation 2: From Reactions of Acetals with Diols 601

29.8.3.1.3 Variation 3: From Reactions of Enol Ethers with Diols 602

29.8.3.1.4 Variation 4: From Reactions of Dihaloalkanes with Diols 603

29.8.3.1.5 Variation 5: From Reactions of Diazoalkanes with Diols 603

29.8.3.1.6 Method 2: Synthesis by Formation of One C—O Bond 604

29.8.3.1.7 Method 3: Synthesis by Bond Disconnection 605

29.8.3.2 Applications of Product Subclass 3 in Organic Synthesis 605

29.8.3.2.1 Method 1: Deprotection to Monoprotected Diols 605

29.9 Product Class 9: Spiroketals

S. V. Ley, L.-G. Milroy, and R. M. Myers

29.9

29.9.1 Method 1: Synthesis of Product Class 9 613

29.9.1.1 Synthesis by Formation of Two C—O Bonds 616

29.9.1.1.1 Cyclization of Dihydroxy Ketones 616

29.9.1.1.1.1 Method 1: Nucleophilic Addition to Aldehydes 617

29.9.1.1.1.1.1 Variation 1: Using Sulfone-Stabilized Carbanions 617
29.9.1.1.2 Variation 2: Using Acetylide Anions Followed by Reoxidation and Metal-Catalyzed Reduction ... 618
29.9.1.1.3 Variation 3: Using Acetylide Anions Followed by Reoxidation and β-Oxo-1,3-dithiane Formation ... 619
29.9.1.1.4 Variation 4: Using Acetylide Anions Followed by Hydrogenation and Oxidation .. 621
29.9.1.1.5 Variation 5: Using Phosphorus-Stabilized Carbanions ... 622
29.9.1.1.6 Variation 6: Using Nonstabilized Carbanions .. 624
29.9.1.1.7 Variation 7: Using Nitro-Stabilized Anions .. 625
29.9.1.1.8 Method 2: Anionic Acylation Reactions .. 626
29.9.1.1.9 Variation 1: Using Weinreb Amides Involving Acetylide Addition Followed by Reduction 626
29.9.1.1.10 Variation 2: Addition of Nonstabilized Carbanions to Weinreb Amides .. 627
29.9.1.1.11 Variation 3: Double Heteroatom Addition to Weinreb Amides .. 628
29.9.1.1.12 Variation 4: Using Acyl Anion Equivalents ... 629
29.9.1.1.13 Variation 5: Claisen Condensation ... 630
29.9.1.1.14 Variation 6: From Double Addition to Ethyl Formate ... 631
29.9.1.1.15 Method 3: Nucleophilic Addition to Epoxides .. 631
29.9.1.1.16 Variation 1: Using Stabilized Carbanions ... 631
29.9.1.1.17 Method 4: Enolate Addition to an Aldehyde ... 634
29.9.1.1.18 Variation 1: Enolate Addition .. 634
29.9.1.1.19 Variation 2: Stereocontrolled Aldol Addition ... 635
29.9.1.1.20 Variation 3: Silyl Enol Addition ... 636
29.9.1.1.21 Method 5: α-Lithiated Hydrazones as Enolate Equivalents .. 637
29.9.1.1.22 Method 6: Metathesis Processes .. 639
29.9.1.1.23 Variation 1: Using Metal–Carbene Complexes .. 639
29.9.1.1.24 Variation 2: Enyne Cross Metathesis .. 641
29.9.1.1.25 Variation 3: Silicon-Tethered Metathesis ... 642
29.9.1.1.26 Method 7: Synthesis Using Acetals Derived from Lactones ... 642
29.9.1.1.27 Variation 1: Using Phenyl Sulfones .. 643
29.9.1.1.28 Variation 2: Aromatic Anion Addition .. 644
29.9.1.1.29 Variation 3: Acetylide Anion Addition ... 645
29.9.1.1.30 Variation 4: Self-Condensation of Lactones ... 647
29.9.1.1.31 Method 8: Alternative Routes to β-Hydroxy Ketones ... 648
29.9.1.1.32 Variation 1: Oxazolidine N-Oxide Cycloaddition Reactions ... 648
29.9.1.1.33 Method 9: Double Allylboration of Aldehydes ... 649
29.9.1.1.34 Method 10: Hydrobotation of Alkyne-α,ω-diols ... 650
29.9.1.1.35 Method 11: Acid-Catalyzed Michael Addition–Cyclization .. 651
29.9.1.1.36 Synthesis from Other Precursors ... 651
29.9.1.1.37 Method 1: Metal-Catalyzed Processes ... 651
29.9.1.1.38 Variation 1: Iridium-Catalyzed Reactions .. 652
29.9.1.1.39 Method 2: Palladium-Catalyzed Cyclosomerization ... 652
29.9.1.1.40 Method 3: Synthesis from Weinreb Amides via Acetylide Addition Followed by Hetero-Michael Addition .. 652
29.9.1.1.41 Method 4: Carbonyl Cascade Processes .. 654
29.9.1.1.42 Variation 1: Cyclization of Hydroxy Diketones .. 654

Science of Synthesis Original Edition Volume 29
© Georg Thieme Verlag KG
<table>
<thead>
<tr>
<th>Section</th>
<th>Method/Variation</th>
<th>Synthesis by Formation of One C—O and One C—C Bond</th>
<th>Synthesis by Formation of One C—O Bond</th>
<th>Synthesis by Formation of One C—C Bond</th>
</tr>
</thead>
<tbody>
<tr>
<td>29.9.1.2.1</td>
<td>Method 1:</td>
<td>Carbanion Addition to Lactones</td>
<td></td>
<td>Synthesis by Formation of One C—O Bond</td>
</tr>
<tr>
<td>29.9.1.2.2</td>
<td>Method 2:</td>
<td>Synthesis from Cyclic Vinyl Ethers</td>
<td></td>
<td>Synthesis by Formation of One C—O Bond</td>
</tr>
<tr>
<td>29.9.1.2.2.1</td>
<td>Variation 1:</td>
<td>Acylation</td>
<td></td>
<td>Synthesis by Formation of One C—O Bond</td>
</tr>
<tr>
<td>29.9.1.2.2.2</td>
<td>Variation 2:</td>
<td>Alkylation of Phenyl Sulfones</td>
<td></td>
<td>Synthesis by Formation of One C—O Bond</td>
</tr>
<tr>
<td>29.9.1.2.3</td>
<td>Variation 3:</td>
<td>From Enol Ethers via Wittig Alkenation</td>
<td></td>
<td>Synthesis by Formation of One C—O Bond</td>
</tr>
<tr>
<td>29.9.1.2.2.4</td>
<td>Variation 4:</td>
<td>From Cyclic Ether Phenyl Sulfones as Precursors</td>
<td></td>
<td>Synthesis by Formation of One C—O Bond</td>
</tr>
<tr>
<td>29.9.1.2.2.5</td>
<td>Variation 5:</td>
<td>Metal-Catalyzed Cross Coupling</td>
<td></td>
<td>Synthesis by Formation of One C—O Bond</td>
</tr>
<tr>
<td>29.9.1.2.2.6</td>
<td>Variation 6:</td>
<td>Sulfone Alkylation</td>
<td></td>
<td>Synthesis by Formation of One C—O Bond</td>
</tr>
<tr>
<td>29.9.1.2.2.7</td>
<td>Variation 7:</td>
<td>Asymmetric Oxy selanylation</td>
<td></td>
<td>Synthesis by Formation of One C—O Bond</td>
</tr>
<tr>
<td>29.9.1.2.3</td>
<td>Method 3:</td>
<td>Hetero-Diels–Alder Reactions</td>
<td></td>
<td>Synthesis by Formation of One C—O Bond</td>
</tr>
<tr>
<td>29.9.1.2.4</td>
<td>Method 4:</td>
<td>Silyl-Modified Sakurai Reactions</td>
<td></td>
<td>Synthesis by Formation of One C—O Bond</td>
</tr>
<tr>
<td>29.9.1.3</td>
<td>Method 1:</td>
<td>Hydroboration–Cyclization</td>
<td></td>
<td>Synthesis by Formation of One C—O Bond</td>
</tr>
<tr>
<td>29.9.1.3.2</td>
<td>Method 2:</td>
<td>Rearrangement of Bicyclic Acetals</td>
<td></td>
<td>Synthesis by Formation of One C—O Bond</td>
</tr>
<tr>
<td>29.9.1.3.3</td>
<td>Method 3:</td>
<td>Synthesis Using Hemiacetals Derived from Oxidation of Furans</td>
<td></td>
<td>Synthesis by Formation of One C—O Bond</td>
</tr>
<tr>
<td>29.9.1.3.4</td>
<td>Method 4:</td>
<td>Intramolecular Epoxyde Ring Opening</td>
<td></td>
<td>Synthesis by Formation of One C—C Bond</td>
</tr>
<tr>
<td>29.9.1.3.5</td>
<td>Method 5:</td>
<td>Intramolecular Conjugate Addition</td>
<td></td>
<td>Synthesis by Formation of One C—C Bond</td>
</tr>
<tr>
<td>29.9.1.3.5.1</td>
<td>Variation 1:</td>
<td>Using α,β-Unsaturated Sulfoxides</td>
<td></td>
<td>Synthesis by Formation of One C—C Bond</td>
</tr>
<tr>
<td>29.9.1.3.5.2</td>
<td>Variation 2:</td>
<td>Using α,β-Unsaturated Ketones</td>
<td></td>
<td>Synthesis by Formation of One C—C Bond</td>
</tr>
<tr>
<td>29.9.1.3.6</td>
<td>Method 6:</td>
<td>Ring Expansion</td>
<td></td>
<td>Synthesis by Formation of One C—C Bond</td>
</tr>
<tr>
<td>29.9.1.3.7</td>
<td>Method 7:</td>
<td>Oxidative Insertion Reactions</td>
<td></td>
<td>Synthesis by Formation of One C—C Bond</td>
</tr>
<tr>
<td>29.9.1.4</td>
<td>Method 1:</td>
<td>Norrish Type II Photochemical Reactions</td>
<td></td>
<td>Synthesis by Formation of One C—C Bond</td>
</tr>
<tr>
<td>29.9.1.4.1</td>
<td>Method 2:</td>
<td>Synthesis from Alkylidenecarbene Complexes</td>
<td></td>
<td>Synthesis by Formation of One C—C Bond</td>
</tr>
<tr>
<td>29.9.1.4.3</td>
<td>Method 3:</td>
<td>Stereoselective Ketal-Tethered Intramolecular Diels–Alder Reaction</td>
<td></td>
<td>Synthesis by Formation of One C—C Bond</td>
</tr>
<tr>
<td>29.9.1.4.4</td>
<td>Method 4:</td>
<td>Ring-Closing Metathesis</td>
<td></td>
<td>Synthesis by Formation of One C—C Bond</td>
</tr>
<tr>
<td>29.9.1.5</td>
<td>Method 1:</td>
<td>Sulfone–Lactone Coupling Reactions</td>
<td></td>
<td>Synthesis by Formation of Trioxadispiroketalts</td>
</tr>
<tr>
<td>29.9.1.5.1</td>
<td>Method 2:</td>
<td>Radical Cyclization of Pyran Derivatives Using Hypervalent Iodine</td>
<td></td>
<td>Synthesis by Formation of Trioxadispiroketalts</td>
</tr>
<tr>
<td>29.9.1.5.3</td>
<td>Method 3:</td>
<td>Acid-Catalyzed Carbonyl Cascade Process</td>
<td></td>
<td>Synthesis by Formation of Trioxadispiroketalts</td>
</tr>
</tbody>
</table>

29.10

Product Class 10: O/O Acetals with Functionalization Attached to the Acetal Carbon
H. Yorimitsu and K. Oshima

29.10

Product Class 10: O/O Acetals with Functionalization Attached to the Acetal Carbon

29.10.1

Product Subclass 1: Halogenated O/O Acetals
29.10.1.1 Synthesis of Product Subclass 1 .. 692
29.10.1.1.1 Method 1: Haloetherification ... 692
29.10.1.1.1.1 Variation 1: Of Alkenes .. 692
29.10.1.1.1.2 Variation 2: Of Alkynes .. 694

29.10.2 Product Subclass 2: Chalcogenated O/O Acetals 696
29.10.2.1 Synthesis of Product Subclass 2 .. 696
29.10.2.1.1 Method 1: Chalcogenous etherification of Alkenes 696
29.10.2.1.2 Method 2: Addition of an Alcohol to a 1,2-Dialkoxyalkene 697

29.10.3 Product Subclass 3: Nitrated O/O Acetals 697
29.10.3.1 Synthesis of Product Subclass 3 .. 697
29.10.3.1.1 Method 1: Addition of Alcohols to Nitroalkenes 697

29.10.4 Product Subclass 4: Metalated O/O Acetals 698
29.10.4.1 Synthesis of Product Subclass 4 .. 698
29.10.4.1.1 Method 1: Alkoxymercuration of Alk-1-enyl Ethers 698
29.10.4.1.2 Method 2: Nucleophilic Substitution Reactions of Halogenated
O/O Acetals with a Cobalt-Centered Anion 699

29.10.5 Product Subclass 5: O/O Acetals with Alkenyl Functionality 699
29.10.5.1 Synthesis of Product Subclass 5 .. 699
29.10.5.1.1 Method 1: Elimination Reactions from Selanyl Acetals 699
29.10.5.1.2 Method 2: Hetero-Diels–Alder Reactions of Alka-1,3-dienyl Ethers with
Carbonyl Compounds .. 700
29.10.5.1.3 Method 3: Mercury-Mediated Addition of Alcohols to Enynes 700

29.10.6 Product Subclass 6: O/O Acetals with Alkynyl Functionality 700
29.10.6.1 Synthesis of Product Subclass 6 .. 701
29.10.6.1.1 Method 1: Base-Mediated Rearrangement of gem-Dihalocyclopropyl
Ethers Followed by Elimination ... 701
29.10.6.1.2 Method 2: Reaction of Orthoformates with Alkynylmagnesium
Compounds ... 701
29.10.6.1.3 Method 3: Reaction of Orthoformates with Alk-1-ynes under Zinc Salt
Catalysis .. 702

29.10.7 Product Subclass 7: O/O Acetals with Carbonyl Functionality 702
29.10.7.1 Synthesis of Product Subclass 7 .. 702
29.10.7.1.1 Method 1: 1,4-Addition of Alcohols to β-Halo or β-Alkoxy α,β-Unsaturated Carbonyl Compounds 702
29.10.7.1.2 Method 2: Sequential 1,4-Addition of Alcohols to Electron-Deficient
Alkynes .. 703
29.10.7.1.3 Method 3: Reaction of Enolates or Enamines with Orthoformates 703

29.11 Product Class 11: OR₁/OX Acetals

29.11.1 Product Class 11: OR₁/OX Acetals 707
29.11.1 Product Subclass 1: OR¹/ON Acetals: Open-Chain Compounds 707
29.11.1.1 Synthesis of Product Subclass 1 707
29.11.1.1.1 Method 1: Synthesis from N—OH Compounds 707
29.11.1.1.1.1 Variation 1: From Oximes 707
29.11.1.1.1.2 Variation 2: From Hydroxylamines 709
29.11.1.1.3 Variation 3: From Hydroxamic Acids and Imides 711
29.11.1.1.2 Method 2: Synthesis from Diazonium Diolates 714
29.11.1.2 Applications of Product Subclass 1 in Organic Synthesis 715
29.11.1.2.1 Method 1: Use as a N—O Protecting Group 715
29.11.1.2.2 Method 2: Use as Nitric Oxide Releasing Compounds 716
29.11.2 Product Subclass 2: OR¹/ON Acetals: 5-Alkoxyisoxazoles and -isoxazolidines 717
29.11.2.1 Synthesis of Product Subclass 2 717
29.11.2.1.1 Method 1: Synthesis by Cycloaddition Reactions 717
29.11.2.1.1.1 Variation 1: From Nitrile Oxides 717
29.11.2.1.1.2 Variation 2: From Nitrones 721
29.11.2.2 Applications of Product Subclass 2 in Organic Synthesis ... 731
29.11.2.2.1 Method 1: Use as Synthetic Intermediates 731
29.11.3 Product Subclass 3: OR¹/ON Acetals: 6-Alkoxy-3H-1,2-oxazines and Related Compounds 732
29.11.3.1 Synthesis of Product Subclass 3 732
29.11.3.1.1 Method 1: Synthesis from Nitroso Compounds and N—OH Derivatives .. 732
29.11.3.2 Applications of Product Subclass 3 in Organic Synthesis ... 737
29.11.3.2.1 Method 1: Use as Synthetic Intermediates 737
29.11.4 Product Subclass 4: OR¹/ON Acetals: 1-Aminooxy Carbohydrates and Related Compounds 739
29.11.4.1 Synthesis of Product Subclass 4 739
29.11.4.1.1 Method 1: Glycosylation with Imides 739
29.11.4.1.2 Method 2: Formation of Glycosyl Nitrates 744
29.11.4.2 Applications of Product Subclass 4 in Organic Synthesis ... 747
29.11.4.2.1 Method 1: Synthesis of Carbohydrates 747
29.11.5 Product Subclass 5: OR¹/ON Acetals: 1,3,4-Dioxazolidines and Related Cyclic Compounds 749
29.11.5.1 Synthesis of Product Subclass 5 749
29.11.5.1.1 Method 1: Synthesis from N—O Containing Compounds 749
29.11.5.2 Applications of Product Subclass 5 in Organic Synthesis ... 752
29.11.5.2.1 Method 1: Use as Protecting Groups 752
29.11.6 Product Subclass 6: OR¹/OS Acetals: 1-Alkoxy sulfonates 754
29.11.6.1 Synthesis of Product Subclass 6 754
29.11.6.1.1 Method 1: Synthesis from Sulfonyl Derivatives 754
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>29.11.6.2</td>
<td>Applications of Product Subclass 6 in Organic Synthesis</td>
<td>758</td>
</tr>
<tr>
<td>29.11.7</td>
<td>Product Subclass 7: OR(^1)/OO Acetals: 1,2,4-Trioxolanes</td>
<td>760</td>
</tr>
<tr>
<td>29.11.7.1</td>
<td>Synthesis of Product Subclass 7</td>
<td>760</td>
</tr>
<tr>
<td>29.11.7.1.1</td>
<td>Method 1: Ozonolysis</td>
<td>760</td>
</tr>
<tr>
<td>29.11.7.1.1.1</td>
<td>Variation 1: In Pratic and Nonparticipating Solvents</td>
<td>760</td>
</tr>
<tr>
<td>29.11.7.1.1.2</td>
<td>Variation 2: In the Presence of Carbonyl Compounds</td>
<td>764</td>
</tr>
<tr>
<td>29.11.7.1.1.3</td>
<td>Variation 3: In Unconventional Media</td>
<td>767</td>
</tr>
<tr>
<td>29.11.7.1.2</td>
<td>Method 2: Photooxygenation</td>
<td>769</td>
</tr>
<tr>
<td>29.11.7.1.3</td>
<td>Method 3: Cyclization of Hydroperoxides</td>
<td>771</td>
</tr>
<tr>
<td>29.11.7.1.4</td>
<td>Method 4: Synthesis of Artemisinin and Related Compounds</td>
<td>773</td>
</tr>
<tr>
<td>29.11.7.2</td>
<td>Applications of Product Subclass 7 in Organic Synthesis</td>
<td>776</td>
</tr>
<tr>
<td>29.11.7.2.1</td>
<td>Method 1: Synthesis of Carbonyl Compounds</td>
<td>776</td>
</tr>
<tr>
<td>29.11.7.2.2</td>
<td>Methods 2: Other Synthetic Applications</td>
<td>777</td>
</tr>
<tr>
<td>29.11.8</td>
<td>Product Subclass 8: OR(^1)/OSi Acetals: Alkyl Silyl Acetals</td>
<td>779</td>
</tr>
<tr>
<td>29.11.8.1</td>
<td>Synthesis of Product Subclass 8</td>
<td>779</td>
</tr>
<tr>
<td>29.11.8.1.1</td>
<td>Method 1: Direct Silylation of Alcohols</td>
<td>779</td>
</tr>
<tr>
<td>29.11.8.1.2</td>
<td>Method 2: Synthesis from Enolates and Related Compounds</td>
<td>781</td>
</tr>
<tr>
<td>29.11.8.1.3</td>
<td>Methods 3: Other Methods</td>
<td>784</td>
</tr>
<tr>
<td>29.11.8.2</td>
<td>Applications of Product Subclass 8 in Organic Synthesis</td>
<td>787</td>
</tr>
<tr>
<td>29.11.8.2.1</td>
<td>Method 1: Use as Protecting Groups</td>
<td>787</td>
</tr>
<tr>
<td>29.11.9</td>
<td>Product Subclass 9: OR(^1)/OSi Acetals: Oxasilacycles and Related Compounds</td>
<td>788</td>
</tr>
<tr>
<td>29.11.9.1</td>
<td>Synthesis of Product Subclass 9</td>
<td>788</td>
</tr>
<tr>
<td>29.11.9.1.1</td>
<td>Method 1: Synthesis from Carbonyl Compounds</td>
<td>788</td>
</tr>
<tr>
<td>29.11.9.2</td>
<td>Applications of Product Subclass 9 in Organic Synthesis</td>
<td>790</td>
</tr>
<tr>
<td>29.11.9.2.1</td>
<td>Method 1: Synthesis of 1,3-Diols</td>
<td>790</td>
</tr>
<tr>
<td>29.12</td>
<td>Product Class 12: O/S, O/Se, and O/Te Acetals</td>
<td>801</td>
</tr>
<tr>
<td>29.12.1</td>
<td>Product Subclass 1: OH/SR(^1) Acetals</td>
<td>801</td>
</tr>
<tr>
<td>29.12.1.1</td>
<td>Synthesis of Product Subclass 1</td>
<td>801</td>
</tr>
<tr>
<td>29.12.1.1.1</td>
<td>Method 1: Oxidation of 1,3-Thiazolidines</td>
<td>801</td>
</tr>
<tr>
<td>29.12.1.1.2</td>
<td>Method 2: Synthesis from OR(^1)/SR(^2) Acetals</td>
<td>801</td>
</tr>
<tr>
<td>29.12.1.1.3</td>
<td>Method 3: Synthesis from Vinyl Thioethers</td>
<td>802</td>
</tr>
<tr>
<td>29.12.1.1.4</td>
<td>Method 4: Synthesis from Aldehydes or Ketones</td>
<td>803</td>
</tr>
<tr>
<td>29.12.1.1.5</td>
<td>Method 5: Pummerer Reaction</td>
<td>804</td>
</tr>
<tr>
<td>29.12.1.1.6</td>
<td>Method 6: Synthesis from Thiolaclones</td>
<td>804</td>
</tr>
<tr>
<td>29.12.1.2</td>
<td>Applications of Product Subclass 1 in Organic Synthesis</td>
<td>805</td>
</tr>
<tr>
<td>29.12.2</td>
<td>Product Subclass 2: OR(^1)/SH Acetals</td>
<td>806</td>
</tr>
</tbody>
</table>
29.12.2.1 Synthesis of Product Subclass 2 .. 806
29.12.2.1.1 Method 1: Synthesis from Aldehydes and Ketones 806

29.12.3 Product Subclass 3: OR¹/SR² Acetals .. 806
29.12.3.1 Synthesis of Product Subclass 3 .. 806
29.12.3.1.1 Method 1: Oxidation of Sulfides 806
29.12.3.1.2 Method 2: Synthesis from Ethers 807
29.12.3.1.3.1 Variation 1: From Hal/Hal Acetals 809
29.12.3.1.3.2 Variation 2: From Hal/O Acetals 809
29.12.3.1.3.3 Variation 3: From Hal/S Acetals 810
29.12.3.1.3.4 Variation 4: From O/O Acetals 811
29.12.3.1.3.5 Variation 5: From S/S Acetals 813
29.12.3.1.3.6 Variation 6: From O/S Acetals 814
29.12.3.1.4 Method 4: Synthesis from Vinyl Sulfides 815
29.12.3.1.5 Method 5: Synthesis from Aldehydes or Ketones 817
29.12.3.1.6 Method 6: Synthesis from Thiones 820
29.12.3.1.7 Method 7: Synthesis from Vinyl Ethers 821
29.12.3.1.8 Method 8: Synthesis from Thionolactones 824
29.12.3.1.9 Method 9: Synthesis from Oxathiolium Salts 825
29.12.3.1.10 Method 10: Synthesis through Cycloaddition Reactions 825
29.12.3.1.10.1 Variation 1: From Thiones through Dipolar Cycloadditions .. 826
29.12.3.1.10.2 Variation 2: From Thioketones through [4+2] Cycloadditions 826
29.12.3.1.10.3 Variation 3: From Vinyl Sulfides by Cycloaddition Reactions ... 827
29.12.3.1.10.4 Variation 4: From 2-(Alkylsulfanyl)- or 2-(Arylsulfanyl)furan through Cycloadditions ... 829
29.12.3.1.11 Method 11: Synthesis via the Pummerer Reaction 830
29.12.3.1.12 Method 12: Metalation of OR¹/SR² Acetals 836
29.12.3.1.13 Method 13: Synthesis from Metalated OR¹/SR² Acetals 838
29.12.3.1.14 Method 14: Reduction of OR¹/SOR² Acetals Using Tebbe’s Reagent 839
29.12.3.2 Applications of Product Subclass 3 in Organic Synthesis 839

29.12.4 Product Subclass 4: OR¹/SOR² Acetals .. 844
29.12.4.1 Synthesis of Product Subclass 4 .. 844
29.12.4.1.1 Method 1: Oxidation of OR¹/SR² Acetals 844

29.12.5 Product Subclass 5: OH/SO₂R¹ Acetals .. 846
29.12.5.1 Synthesis of Product Subclass 5 .. 846
29.12.5.1.1 Method 1: Synthesis from Aldehydes or Ketones 847
29.12.5.1.2 Method 2: [4+1]-Cycloaddition Reactions 847

29.12.6 Product Subclass 6: OR¹/SO₂R² Acetals .. 847
29.12.6.1 Synthesis of Product Subclass 6 .. 848
29.12.6.1.1 Method 1: Synthesis from OH/SO₂R¹ Acetals 848
<table>
<thead>
<tr>
<th>Section</th>
<th>Method/Variant</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>29.12.6.1.3</td>
<td>Method 3</td>
<td>Synthesis from Unsaturated Sulfones</td>
<td>850</td>
</tr>
<tr>
<td>29.12.6.1.4</td>
<td>Method 4</td>
<td>Synthesis from Enol Ethers</td>
<td>852</td>
</tr>
<tr>
<td>29.12.6.1.5</td>
<td>Method 5</td>
<td>Synthesis from OR(^1)/SR(^2) Acetals by Oxidation</td>
<td>852</td>
</tr>
<tr>
<td>29.12.6.1.6</td>
<td>Method 6</td>
<td>Synthesis by [3 + 2]-Cycloaddition Reactions</td>
<td>853</td>
</tr>
<tr>
<td>29.12.6.1.7</td>
<td>Method 7</td>
<td>Synthesis by Carbone Insertions</td>
<td>854</td>
</tr>
<tr>
<td>29.12.6.1.8</td>
<td>Method 8</td>
<td>Metalation of OR(^1)/SO(^2)R(^2) Acetals</td>
<td>854</td>
</tr>
<tr>
<td>29.12.6.1.9</td>
<td>Method 9</td>
<td>Reactions of Metalated OR(^1)/SO(^2)R(^2) Acetals</td>
<td>856</td>
</tr>
<tr>
<td>29.12.6.1.9.1</td>
<td>Variation 1</td>
<td>With Alkylating Agents</td>
<td>856</td>
</tr>
<tr>
<td>29.12.6.1.9.2</td>
<td>Variation 2</td>
<td>With Carbonyl Compounds</td>
<td>858</td>
</tr>
<tr>
<td>29.12.6.1.9.3</td>
<td>Variation 3</td>
<td>With Acid Derivatives</td>
<td>859</td>
</tr>
<tr>
<td>29.12.6.2</td>
<td>Application of Product Subclass 6 in Organic Synthesis</td>
<td>859</td>
<td></td>
</tr>
<tr>
<td>29.12.7</td>
<td>Product Subclass 7: OR(^1)/SeR(^2) Acetals</td>
<td>862</td>
<td></td>
</tr>
<tr>
<td>29.12.7.1</td>
<td>Synthesis of Product Subclass 7</td>
<td>862</td>
<td></td>
</tr>
<tr>
<td>29.12.7.1.1</td>
<td>Method 1</td>
<td>Oxidation of Selenides</td>
<td>862</td>
</tr>
<tr>
<td>29.12.7.1.2</td>
<td>Method 2</td>
<td>Synthesis from Ethers</td>
<td>863</td>
</tr>
<tr>
<td>29.12.7.1.3</td>
<td>Method 3</td>
<td>Synthesis from Hal/O, Hal/Se, or O/O Acetals</td>
<td>864</td>
</tr>
<tr>
<td>29.12.7.1.3.1</td>
<td>Variation 1</td>
<td>From Hal/OR(^1) Acetals</td>
<td>864</td>
</tr>
<tr>
<td>29.12.7.1.3.2</td>
<td>Variation 2</td>
<td>From Hal/SeR(^2) Acetals</td>
<td>864</td>
</tr>
<tr>
<td>29.12.7.1.3.3</td>
<td>Variation 3</td>
<td>From O/O Acetals</td>
<td>864</td>
</tr>
<tr>
<td>29.12.7.1.4</td>
<td>Method 4</td>
<td>Synthesis from Vinyl Ethers</td>
<td>864</td>
</tr>
<tr>
<td>29.12.7.1.5</td>
<td>Method 5</td>
<td>Synthesis by Cycloaddition Reactions</td>
<td>868</td>
</tr>
<tr>
<td>29.12.7.1.5.1</td>
<td>Variation 1</td>
<td>From Tungsten-Coordinated Selenoaldehydes by [2 + 2] Cycloaddition</td>
<td>868</td>
</tr>
<tr>
<td>29.12.7.1.6</td>
<td>Method 6</td>
<td>Synthesis from Selenoxides by Seleno-Pummerer-Type Reaction</td>
<td>868</td>
</tr>
<tr>
<td>29.12.7.1.7</td>
<td>Method 7</td>
<td>Metalation of OR(^1)/SeR(^2) Acetals</td>
<td>869</td>
</tr>
<tr>
<td>29.12.7.1.8</td>
<td>Method 8</td>
<td>Synthesis from Organometallic Compounds</td>
<td>870</td>
</tr>
<tr>
<td>29.12.7.2</td>
<td>Application of Product Subclass 7 in Organic Synthesis</td>
<td>871</td>
<td></td>
</tr>
</tbody>
</table>

Product Class 13: Glycosyl Halides

S. J. Gunn, S. L. Warriner, and J. W. White

<table>
<thead>
<tr>
<th>Section</th>
<th>Product Class 13: Glycosyl Halides</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>29.13</td>
<td>Product Class 13: Glycosyl Halides</td>
<td>889</td>
</tr>
<tr>
<td>29.13.1</td>
<td>Product Subclass 1: Glycosyl Fluorides</td>
<td>889</td>
</tr>
<tr>
<td>29.13.1.1</td>
<td>Synthesis of Product Subclass 1</td>
<td>889</td>
</tr>
<tr>
<td>29.13.1.1.1</td>
<td>Method 1</td>
<td>Synthesis from Hemiacetals</td>
</tr>
<tr>
<td>29.13.1.1.2</td>
<td>Method 2</td>
<td>Synthesis from O-Acyl Glycosides</td>
</tr>
<tr>
<td>29.13.1.1.3</td>
<td>Method 3</td>
<td>Synthesis from Other O-Glycosides</td>
</tr>
<tr>
<td>29.13.1.1.4</td>
<td>Method 4</td>
<td>Synthesis from Thio-, Seleno-, and Telluroglycosides</td>
</tr>
<tr>
<td>29.13.1.1.5</td>
<td>Method 5</td>
<td>Synthesis with Migration</td>
</tr>
<tr>
<td>29.13.1.1.6</td>
<td>Method 6</td>
<td>Synthesis from Other Glycosyl Halides</td>
</tr>
<tr>
<td>29.13.1.1.7</td>
<td>Method 7</td>
<td>Synthesis from Glycals</td>
</tr>
<tr>
<td>29.13.2</td>
<td>Product Subclass 2: Glycosyl Chlorides</td>
<td>899</td>
</tr>
<tr>
<td>29.13.2.1</td>
<td>Synthesis of Product Subclass 2</td>
<td>899</td>
</tr>
</tbody>
</table>
29.13.2.1 Method 1: Synthesis from Hemiacetals 899
29.13.2.1.1 Method 2: Synthesis from O-Acyl Glycosides 900
29.13.2.1.2 Method 2: Synthesis Using Dichloromethyl Methyl Ether 901
29.13.2.1.2.1 Method 2: Synthesis Using Hydrogen Chloride 902
29.13.2.1.2.2 Method 3: Synthesis Using Lewis Acids or Chlorinating Agents 903
29.13.2.1.3 Method 4: Synthesis from Thioglycosides 904
29.13.2.1.4 Method 5: Synthesis from Other Glycosyl Halides 905
29.13.2.1.5 Method 6: Synthesis from Glycals 906

29.13.3 Product Subclass 3: Glycosyl Bromides 907
29.13.3.1 Synthesis of Product Subclass 3 .. 908
29.13.3.1.1 Method 1: Synthesis from Hemiacetals 908
29.13.3.1.2 Method 2: Synthesis from O-Acyl Glycosides 909
29.13.3.1.3 Method 3: Synthesis from O-Glycosides 910
29.13.3.1.4 Method 4: Synthesis from Thioglycosides 911
29.13.3.1.5 Method 5: Synthesis from Glycals 912

29.13.4 Product Subclass 4: Glycosyl Iodides 913
29.13.4.1 Synthesis of Product Subclass 4 .. 914
29.13.4.1.1 Method 1: Synthesis from O-Acyl Glycosides 914
29.13.4.1.2 Method 2: Miscellaneous Methods 915

29.14 Product Class 14: Glycosyl Sulfur, Selenium, and Tellurium Compounds

29.14.1 Product Subclass 1: Glycosyl Thiols, Glycosyl Selenols, and Glycosyl Tellurols ... 924
29.14.1.1 Synthesis of Product Subclass 1 ... 924
29.14.1.1.1 Method 1: Formation of the S—H Bond by Substitution of Metals 924
29.14.1.1.4 Method 4: Reduction of Dichalcogenides 926

29.14.2.1 Synthesis of Product Subclass 2 ... 927
29.14.2.1.1 Method 1: Formation of the Glycosyl—Sulfur Bond by Substitution of Halides ... 927

29.14.3 Product Subclass 3: Glycosyl Isothiouronium and Isoselenouronium Salts ... 929
29.14.3.1 Synthesis of Product Subclass 3 ... 929

29.14.4 Product Subclass 4: Glycosyl Thioesters and Selenoesters

29.14.4.1 Synthesis of Product Subclass 4

29.14.4.1.2 Method 2: Formation of the Acyl—Sulfur/Selenium Bond by Substitution of Carbon

29.14.5 Product Subclass 5: 4,5-Dihydroglycopyranos[2,1-d]-1,3-thiazoles

29.14.5.1 Synthesis of Product Subclass 5

29.14.5.1.1 Method 1: Intramolecular Substitution of Oxygen by a Thioacetamido Group

29.14.6 Product Subclass 6: Glycosyl Sulfoines

29.14.6.1 Synthesis of Product Subclass 6

29.14.6.1.1 Method 1: Oxidation of Thioglycosides

29.14.7 Product Subclass 7: Glycosyl Sulfoxides and Selenoxides

29.14.7.1 Synthesis of Product Subclass 7

29.14.7.1.1 Method 1: Oxidation of Thioglycosides and Selenoglycosides

29.14.7.1.2 Method 2: Substitution of Alkyl with Alkenyl Substituents

29.14.8 Product Subclass 8: Glycosylsulfinimides

29.14.8.1 Synthesis of Product Subclass 8

29.14.8.1.1 Method 1: Oxidation of Thioglycosides with Chloramine-T

29.14.9 Product Subclass 9: Alkyl/Aryl Thioglycosides, Selenoglycosides, and Telluroglycosides

29.14.9.1 Synthesis of Product Subclass 9

29.14.9.1.1.1 Variation 1: Reactions with Aryl Fluorides

29.14.9.1.1.2 Variation 2: Palladium(0)-Catalyzed Allylation

29.14.9.1.1.3 Variation 3: From Alkyl Alcohols by the Mitsunobu Reaction

29.14.9.1.3 Method 3: Formation of the S/Se/Te—Aglycone Bond by Reduction of Dichalcogenides and Alkylation of the Products In Situ

29.14.9.1.4 Method 4: Formation of the S/Se/Te—Aglycone Bond by Additions to Alkenes

29.14.9.1.4.1 Variation 1: Michael-Type Conjugate Addition

29.14.9.1.4.2 Variation 2: Free-Radical Additions

Table of Contents XXXIII

Science of Synthesis Original Edition Volume 29
© Georg Thieme Verlag KG
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>29.14.9.1.5.1</td>
<td>Variation 1: With Thiols and Selenols under Biphasic Conditions</td>
<td>945</td>
</tr>
<tr>
<td>29.14.9.1.5.2</td>
<td>Variation 2: With (Alkylsulfanyl)- and (Arylsulfanyl)tributylstannanes and Trimethylsilanes</td>
<td>945</td>
</tr>
<tr>
<td>29.14.9.1.5.3</td>
<td>Variation 3: With Reduction of Dichalcogenides In Situ</td>
<td>946</td>
</tr>
<tr>
<td>29.14.9.1.6.1</td>
<td>Variation 1: Reactions of Reducing Sugars with Tertiary Alkanethiols in 90% Trifluoroacetic Acid</td>
<td>947</td>
</tr>
<tr>
<td>29.14.9.1.6.2</td>
<td>Variation 2: Reactions of Glycosyl Esters or Thioesters in the Presence of Lewis Acids</td>
<td>948</td>
</tr>
<tr>
<td>29.14.9.1.6.3</td>
<td>Variation 3: Reactions of O-Glycosylphosphine Oxides Generated In Situ</td>
<td>950</td>
</tr>
<tr>
<td>29.14.9.1.7</td>
<td>Method 7: Formation of the Glycosyl—S/Se/Te Bond by Addition to Glycals</td>
<td>950</td>
</tr>
<tr>
<td>29.14.9.1.7.1</td>
<td>Variation 1: Via 1,2-Anhydroglycopyranoses</td>
<td>950</td>
</tr>
<tr>
<td>29.14.9.1.7.2</td>
<td>Variation 2: Azidophenyl selanylation</td>
<td>951</td>
</tr>
<tr>
<td>29.14.10</td>
<td>Product Subclass 10: Glycosylsulfonyl Halides</td>
<td>952</td>
</tr>
<tr>
<td>29.14.10.1</td>
<td>Synthesis of Product Subclass 10</td>
<td>952</td>
</tr>
<tr>
<td>29.14.10.1.1</td>
<td>Method 1: Formation of the Sulfur—Halogen Bond by Substitution of Carbon</td>
<td>952</td>
</tr>
<tr>
<td>29.14.11</td>
<td>Product Subclass 11: Glycosylsulfonates and Glycosylsulfonates</td>
<td>953</td>
</tr>
<tr>
<td>29.14.11.1</td>
<td>Synthesis of Product Subclass 11</td>
<td>953</td>
</tr>
<tr>
<td>29.14.11.1.1</td>
<td>Method 1: Oxidation of 4,5-Dihydroglycopyranose[2,1-d]-1,3-thiazoles and Thioacetates</td>
<td>953</td>
</tr>
<tr>
<td>29.14.12.1</td>
<td>Synthesis of Product Subclass 12</td>
<td>955</td>
</tr>
<tr>
<td>29.14.13.1.1</td>
<td>Method 1: Air Oxidation of Thiols, Selenols, and Tellurols</td>
<td>958</td>
</tr>
<tr>
<td>29.14.13.1.2</td>
<td>Method 2: Reactions of Sulfenyl/Selenenyl Halides with Thiols/Thiolates</td>
<td>958</td>
</tr>
<tr>
<td>29.14.13.1.4</td>
<td>Method 4: Reductive Elimination of Tungsten/Molybdenum Disulfides</td>
<td>960</td>
</tr>
<tr>
<td>29.14.13.1.5</td>
<td>Method 5: Dichalcogenide Exchange</td>
<td>961</td>
</tr>
<tr>
<td>29.14.14</td>
<td>Product Subclass 14: Glycosylsulfinamides and Glycosylsulfonamides</td>
<td>962</td>
</tr>
<tr>
<td>29.14.15</td>
<td>Product Subclass 15: Glycosylsulfenamides</td>
<td>963</td>
</tr>
<tr>
<td>29.14.15.1</td>
<td>Synthesis of Product Subclass 15</td>
<td>963</td>
</tr>
</tbody>
</table>
29.14.15.1.1 Method 1: Substitution of Halide Ion from Glycosylselenenyl Halides Generated In Situ ... 963
29.14.15.1.2 Method 2: Substitution of Sulfur in Disulfides and Thiosulfonates 964
29.14.16 Product Subclass 16: O,O-Dialkyl S-/Se-/Te-Glycosyl Phosphorothioates/ selenoates/-telluroates/-thioselenoates/-dithioates .. 964
29.14.16.1 Synthesis of Product Subclass 16 .. 964
29.14.16.1.2 Method 2: Formation of the S/Se/Te—PBond 965

29.15 Product Class 15: Glycosyl Oxygen Compounds (Except Di- and Oligosaccharides)
B. Kryczka, J. Lewkowski, and A. Zawisza

29.15 Product Class 15: Glycosyl Oxygen Compounds (Except Di- and Oligosaccharides) ... 971
29.15.1 Product Subclass 1: 1-O-Methyl Glycosides 972
29.15.1.1 Synthesis of Product Subclass 1 ... 972
29.15.1.1.1 Method 1: Synthesis from Free Sugars 972
29.15.1.1.2 Method 2: Synthesis from Glycosyl Halides 973
29.15.1.1.3 Method 3: Synthesis from 1-O-Acetyl Glycosides 975
29.15.1.1.4 Method 4: Synthesis from 1,2-Epoxides 976
29.15.1.1.5 Method 5: Synthesis from Glycals 976
29.15.1.1.6 Method 6: Synthesis from 1-Thioglycosides 977
29.15.1.1.7 Method 7: Synthesis from 1-Phosphoramidates 978
29.15.1.1.8 Method 8: Synthesis from 1-Selenopyranoses 979
29.15.1.2 Applications of Product Subclass 1 in Organic Synthesis 979
29.15.1.2.1 Method 1: Hydrolysis .. 979
29.15.1.2.1.1 Variation 1: Acid Hydrolysis ... 979
29.15.1.2.1.2 Variation 2: Enzymatic Hydrolysis 980
29.15.1.2.2 Method 2: Conversion of Methyl Glycosides into Glycosyl Halides ... 981
29.15.1.2.3 Method 3: Thiolysis of 1-O-Methyl Glycosides 981
29.15.1.2.4 Method 4: Transglycosidation 981

29.15.2 Product Subclass 2: 1-O-Nitro Glycosides 982
29.15.2.1 Synthesis of Product Subclass 2 .. 982
29.15.2.1.1 Method 1: Nitration of 1,2-Deoxy Pyranoses with Ammonium Cerium(IV) Nitrate .. 982
29.15.2.1.2 Method 2: Nitration of 1-Bromo Pyranoses with Silver(I) Nitrate 984
29.15.2.2 Applications of Product Subclass 2 in Organic Synthesis 984
29.15.2.2.1 Method 1: 1-O-Alkylation of 1-O-Nitro Glycosides 984
29.15.2.2.2 Method 2: 1-O-Acetylation of 1-O-Nitro Glycosides 985
29.15.2.2.3 Method 3: 1-Halogenation of 2-Azido-1-O-nitro Glycosides 986
29.15.2.2.4 Method 4: 1-O-Phosphorylation of 1-O-Nitro Glycosides 987
29.15.2.2.5 Method 5: 1-O-Denitration of 1-O-Nitro Glycosides 988
29.15.2.2.6 Method 6: Formation of 1-S-Glycosides from Azido Nitrates 988
29.15.3 **Product Subclass 3: 1-O-Acetyl Glycosides** ... 989
29.15.3.1 Synthesis of Product Subclass 3 ... 989
29.15.3.1.1 Method 1: Acetylation of Pyranoses with Acetic Anhydride 989
29.15.3.1.1.1 Variation 1: O-Acetylation of 1-Hydroxy Pyranoses 989
29.15.3.1.1.2 Variation 2: Acetylation of 1-O-Methyl Pyranoses 990
29.15.3.1.2 Method 2: Acetylation of 1-Halo Pyranoses with Metal Acetates 991
29.15.3.1.3 Method 3: Acetylation of 1-O-Nitro Glycosides 991
29.15.3.2 Applications of Product Subclass 3 in Organic Synthesis 992
29.15.3.2.1 Method 1: Hydrolysis of 1-O-Acetyl Glycosides 992
29.15.3.2.2 Method 2: 1-Halogenation of 1-O-Acetyl Glycosides 992
29.15.3.2.3 Method 3: 1-O-Alkylation/Arylation of 1-O-Acetyl Glycosides 993
29.15.3.2.3.1 Variation 1: Formation of 1-O-Phenyl Glycosides 993
29.15.3.2.3.2 Variation 2: Formation of 1-O-Allyl Glycosides 994
29.15.3.2.4 Method 4: Synthesis of 1-Thioglycosides from 1-O-Acetyl Glycosides 995
29.15.3.2.5 Method 5: Synthesis of N-Glycosides from 1-O-Acetyl Glycosides 996
29.15.3.2.6 Method 6: Synthesis of C-Glycosides from 1-O-Acetyl Glycosides 997
29.15.3.2.7 Method 7: Synthesis of 1,2-Ortho Esters from 1-O-Acetyl Glycosides 997
29.15.3.2.8 Method 8: Cyclization Reactions .. 998
29.15.3.2.9 Method 9: Formation of 1-Azido Pyranoses 999
29.15.3.2.10 Method 10: Synthesis of 1-Selenopyranosyl from 1-O-Acetyl Glycosides 1000

29.15.4 **Product Subclass 4: 1-O-Vinyl Glycosides** .. 1000
29.15.4.1 Synthesis of Product Subclass 4 ... 1000
29.15.4.1.1 Method 1: Tranetherification and Related Reactions 1001
29.15.4.1.2 Method 2: Reactions of Pyranoses with Organometallic Vinyl Group Carriers ... 1002
29.15.4.1.3 Method 3: Isomerization of 1-O-Allyl Glycosides 1003
29.15.4.2 Applications of Product Subclass 4 in Organic Synthesis 1003
29.15.4.2.1 Method 1: Additions to the Vinylic Double Bond 1003
29.15.4.2.2 Method 2: Substitution Reactions Using the Oxyvinyl Unit as a Leaving Group ... 1004

29.15.5 **Product Subclass 5: 1-O-Allyl Glycosides** .. 1004
29.15.5.1 Synthesis of Product Subclass 5 .. 1004
29.15.5.1.1 Method 1: Reactions of Free Pyranoses .. 1004
29.15.5.1.2 Method 2: Reactions of 1-Halo Pyranoses with Allyl Alcohol 1005
29.15.5.1.3 Method 3: Reactions of 1-O-Trichloroacetimidyl Pyranoses with Allyl Alcohol ... 1006
29.15.5.1.4 Method 4: Reactions of 1-Azido Pyranoses with Allyl Alcohol 1007
29.15.5.1.5 Method 5: Reactions of 1,3-Dioxolanes .. 1008
29.15.5.1.6 Method 6: Reactions of 1,6-Anhydro Pyranoses with Allyl Alcohol Derivatives ... 1008
29.15.5.1.7 Method 7: Reactions of Dihydrooxazole Derivatives 1009
29.15.5.1.8 Method 8: Alkenylation of Free Pyranoses in the Presence of Palladium(0) Complexes ... 1009
29.15.5.2 Applications of Product Subclass 5 in Organic Synthesis 1010
29.15.5.2.1 Method 1: Hydrogenation of the Double Bond of an Allyl Group

29.15.5.2.2 Method 2: Removal of the Allyl Group and the Synthesis of 1-Hydroxy Pyranoses

29.15.5.2.3 Methods 3: Other Transformations

29.15.6 **Product Subclass 6: 1-O-Phenyl Glycosides**

29.15.6.1 Synthesis of Product Subclass 6

29.15.6.1.1 Method 1: Reactions of 1-Hydroxy Pyranoses with Phenols

29.15.6.1.2 Method 2: Reactions of 1-Halo Pyranoses with Phenol

29.15.6.1.3 Method 3: Reactions of 1-O-Acetyl Pyranoses with Phenoxides

29.15.6.1.4 Method 4: Reactions of 1,2-Anhydro Pyranoses with Phenols

29.15.6.1.5 Method 5: Reactions of 1,6-Lactones with Either Phenol or Trimethylsilyl Phenoxide

29.15.6.1.6 Method 6: Reactions of 1-O-Silyl Pyranoses with Silyl Ethers

29.15.6.2 Applications of Product Subclass 6 in Organic Synthesis

29.15.6.2.1 Method 1: Hydrolysis of 1-O-Phenyl Glycosides

29.15.6.2.2 Method 2: Formation of 1,6-Anhydro Pyranoses

29.15.6.2.3 Method 3: Substitution Reactions of the Phenyl Group

29.15.6.2.4 Method 4: Transglycosidation

29.15.7 **Product Subclass 7: 1-O-Pent-4-enyl Glycosides**

29.15.7.1 Synthesis of Product Subclass 7

29.15.7.1.1 Method 1: Reactions of Pyranoses with Pent-4-en-1-ol

29.15.7.1.2 Method 2: Reactions of 1-O-Acetyl Pyranoses with Pent-4-en-1-ol

29.15.7.1.3 Method 3: Reactions of 1-Halo Pyranoses with Pent-4-en-1-ol

29.15.7.1.4 Method 4: Reactions of 2-Deoxy Pyranoses with Pent-4-en-1-ol

29.15.7.1.5 Method 5: Reactions of 1-O-Nitro Pyranoses with Pent-4-en-1-ol

29.15.7.1.6 Method 6: Reactions of 1-O-Trichloroacetimidyl Pyranoses with Pent-4-en-1-ol

29.15.7.2 Applications of Product Subclass 7 in Organic Synthesis

29.15.7.2.1 Method 1: Substitutions in which the Pent-4-enyloxy Unit Acts as a Leaving Group

29.15.7.2.2 Method 2: Reactions at the Double Bond of 1-O-Pent-4-enyl Glycosides

29.15.8 **Product Subclass 8: 1-O-Trichloroacetimidyl Glycosides**

29.15.8.1 Synthesis of Product Subclass 8

29.15.8.1.1 Method 1: Reactions of 1-Hydroxy Pyranoses with Trichloroacetanitriile

29.15.8.1.2 Method 2: Reactions of 1-O-Acetyl Pyranoses with Trichloroacetanitriile

29.15.8.1.3 Method 3: Reactions of 1-Thioglycosides with Trichloroacetanitriile

29.15.8.2 Applications of Product Subclass 8 in Organic Synthesis

29.15.8.2.1 Method 1: Reactions with Alcohols

29.15.8.2.2 Method 2: Reactions with Phenols

29.15.8.2.3 Method 3: Reactions with Phosphoric Acid Derivatives

29.15.8.2.4 Method 4: Reactions with Silyl Enol Ethers
Product Subclass 9: 1,2-O-Methylene Pyranoses

Method 1: Synthesis from Pyranoses

Method 2: Synthesis from 1-Halo-2-O-acyl Pyranoses

Method 3: Synthesis from 3,4,6-Tri-O-acetyl-2-O-(alkoxy carbonyl)-α-D-glucopyranosyl Bromides

Method 4: Synthesis from 1,2-Unsaturated Pyranoses

Method 5: Synthesis from 1-O-Trichloroacetimidyl Pyranoses

Method 6: Synthesis from Glycosyl Phosphites

Applications of Product Subclass 9 in Organic Synthesis

Method 1: Cleavage of 1,2-O-Methylene Pyranoses

Variation 1: Formation of 1-Hydroxy Pyranoses

Variation 2: Formation of 1-O-Acetyl Pyranoses

Variation 3: Reactions with Carboxylic Acids

Variation 4: Formation of 1-Halo Pyranoses

Variation 5: Formation of 1-Cyano Pyranoses

Variation 6: Formation of 1-Azido Pyranoses

Variation 7: Formation of 1-Thioglycosides

Product Class 16: Glycosyl Oxygen Compounds (Di- and Oligosaccharides)

Product Subclass 1: Disaccharides

Method 1: Synthesis from Anomeric Halides

Variation 1: From Fluorides

Variation 2: From Chlorides and Bromides

Variation 3: From Iodides

Method 2: Synthesis from 1-Oxygen-Substituted Derivatives

Variation 1: From Hemiacetals

Variation 2: From O-Acyl, O-Carbonyl, and Related Compounds

Variation 3: From O-Imidates

Variation 4: From Phosphites, Phosphates, and Other O—P Derivatives

Variation 5: From O-Sulfonyl Derivatives

Variation 6: By O-Transglycosidation

Method 3: Synthesis from 1-Sulfur-Substituted Derivatives

Variation 1: From Alkylsulfanyl and Arylsulfanyl Glycosides (Thioglycosides)

Variation 2: From Thioidimides

Variation 3: From Sulfoxides, Sulflimides, and Sulfones

Variation 4: From Xanthates and Related Derivatives
29.16.1.3.5 Variation 5: From Thiocyanates and Other Thio Derivatives 1086
29.16.1.4 Method 4: Synthesis from Miscellaneous Glycosyl Donors 1087
29.16.1.4.1 Variation 1: From Ortho Esters and Dihydrooxazoles 1087
29.16.1.4.2 Variation 2: From 1,2-Dehydro and 1,2-Anhydro Derivatives 1090
29.16.1.4.3 Variation 3: From Seleno- and Telluroglycosides 1092
29.16.1.4.4 Variation 4: From 1-Diazirine Derivatives 1094
29.16.1.5 Method 5: Synthesis by Intramolecular and Indirect Methods 1095

29.16.2 Product Subclass 2: Oligosaccharides 1098
29.16.2.1 Synthesis of Product Subclass 2 1099
29.16.2.1.1 Method 1: Linear Synthesis 1099
29.16.2.1.2 Method 2: Block Synthesis 1102
29.16.2.1.3 Method 3: Synthesis by Selective Activation 1104
29.16.2.1.4 Method 4: Synthesis by Two-Step Activation and In Situ Preactivation ... 1106
29.16.2.1.5 Method 5: Armed–Disarmed and Related Chemoselective Approaches 1110
29.16.2.1.6 Method 6: The Active–Latent Approach 1112
29.16.2.1.7 Method 7: Steric Hindrance and Temporary Deactivation 1115
29.16.2.1.8 Method 8: Orthogonal and Semi-Orthogonal Strategies 1118
29.16.2.1.9 Method 9: One-Pot Strategies 1120
29.16.2.1.10 Method 10: Regioselective and Other Acceptor-Reactivity-Based Concepts .. 1125
29.16.2.1.11 Method 11: Polymer-Supported Synthesis 1131
29.16.2.1.12 Method 12: Enzymatic Synthesis 1137
29.16.2.1.12.1 Variation 1: Using Glycosyltransferases 1137
29.16.2.1.12.2 Variation 2: Using Glycosidases (Hydrolases) 1141

Keyword Index ... 1149
Author Index ... 1203
Abbreviations ... 1281