Table of Contents

Introduction
C. A. Ramsden .. 1

<table>
<thead>
<tr>
<th>Section</th>
<th>Product Class</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>31.1</td>
<td>Fluoroarenes</td>
<td>G. Sandford 21</td>
</tr>
<tr>
<td>31.2</td>
<td>Chloroarenes</td>
<td>S. P. Stanforth 79</td>
</tr>
<tr>
<td>31.3</td>
<td>Bromoarenes</td>
<td>S. P. Stanforth 121</td>
</tr>
<tr>
<td>31.4</td>
<td>Aryl Iodine Compounds</td>
<td></td>
</tr>
<tr>
<td>31.4.1</td>
<td>Hypervalent Iodoarenes and Aryliodonium Salts</td>
<td>V. V. Zhdankin 161</td>
</tr>
<tr>
<td>31.4.2</td>
<td>Iodoarenes</td>
<td>S. R. Waldvogel and K. M. Wehming 235</td>
</tr>
<tr>
<td>31.5</td>
<td>Phenols and Phenolates</td>
<td></td>
</tr>
<tr>
<td>31.5.1</td>
<td>Monohydric Phenols and Corresponding Phenolates</td>
<td>C. González-Bello and L. Castedo 275</td>
</tr>
<tr>
<td>31.5.1.1 Synthesis by Substitution</td>
<td>C. González-Bello and L. Castedo 277</td>
<td></td>
</tr>
<tr>
<td>31.5.1.2 Synthesis by Elimination</td>
<td>C. González-Bello and L. Castedo 305</td>
<td></td>
</tr>
<tr>
<td>31.5.1.3 Synthesis by Rearrangement</td>
<td>C. González-Bello and L. Castedo 319</td>
<td></td>
</tr>
<tr>
<td>31.5.1.4 Synthesis with Retention of the Functional Group</td>
<td>C. González-Bello and L. Castedo 331</td>
<td></td>
</tr>
<tr>
<td>31.5.1.5 Synthesis from Nonaromatic Precursors</td>
<td>A. W. Thomas 337</td>
<td></td>
</tr>
</tbody>
</table>
31.5.2 Product Subclass 2: Polyhydric Phenols and Corresponding Phenolates
M. A. Marsini and T. R. R. Pettus ... 403

31.5.2.1 Synthesis by Substitution
M. A. Marsini and T. R. R. Pettus ... 405

31.5.2.2 Synthesis by Elimination
M. A. Marsini and T. R. R. Pettus ... 415

31.5.2.3 Synthesis by Addition
M. A. Marsini and T. R. R. Pettus ... 421

31.5.2.4 Synthesis by Rearrangement
M. A. Marsini and T. R. R. Pettus ... 431

31.5.2.5 Synthesis with Retention of the Functional Group
M. A. Marsini and T. R. R. Pettus ... 441

31.6 Product Class 6: Aryl Ethers

31.6.1 Product Subclass 1: Diaryl Ethers
A. W. Thomas .. 469

31.6.2 Product Subclass 2: Alkyl Aryl Ethers
C. M. R. Low ... 545

31.6.2.1 Synthesis by Substitution
C. M. R. Low ... 547

31.6.2.2 Synthesis by Elimination
C. M. R. Low ... 627

31.6.2.3 Synthesis by Rearrangement
C. M. R. Low ... 633

31.6.2.4 Synthesis with Retention of the Functional Group
C. M. R. Low ... 637

31.6.2.5 Synthesis from Nonaromatic Precursors
M. Gerster and A. W. Thomas .. 643

31.7 Product Class 7: Aryl Hypohalites, Aryl Peroxides,
and Aryloxy Sulfur Compounds
J. Chen and C. K.-F. Chiu ... 665

31.8 Product Class 8: Cyclic Aryl Ethers
D. Craig .. 705
<table>
<thead>
<tr>
<th>Product Class</th>
<th>Title</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Arenesulfonic Acids and Derivatives</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Arenesulfonic Acids and Arenesulfonate Salts</td>
<td>B. Fravel, R. Murugan, and E. F. V. Scriven</td>
<td>739</td>
</tr>
<tr>
<td>2</td>
<td>Arenesulfonic Acid Derivatives</td>
<td>I. Shcherbakova</td>
<td>775</td>
</tr>
<tr>
<td>10</td>
<td>Aryl Sulfones and Nitrogen Derivatives</td>
<td>S. Nakamura and T. Toru</td>
<td>833</td>
</tr>
<tr>
<td>11</td>
<td>Arenesulfonic Acids and Derivatives</td>
<td>S. Nakamura and T. Toru</td>
<td>879</td>
</tr>
<tr>
<td>12</td>
<td>Aryl Sulfoxides and S-Arylsulfimides</td>
<td>S. G. Collins and A. R. Maguire</td>
<td>907</td>
</tr>
<tr>
<td>13</td>
<td>Arenethiols and Arenethiolates</td>
<td>O. A. Rakitin</td>
<td>949</td>
</tr>
<tr>
<td>14</td>
<td>Aryl Sulfides</td>
<td>O. A. Rakitin</td>
<td>975</td>
</tr>
<tr>
<td>15</td>
<td>Arylsulfonium Salts and Derivatives</td>
<td>I. Fernández and N. Khiar</td>
<td>1001</td>
</tr>
<tr>
<td>16</td>
<td>Arenesulfenic Acids and Derivatives</td>
<td>S. Perrio, V. Reboul, and P. Metzner</td>
<td>1041</td>
</tr>
<tr>
<td>17</td>
<td>Aryl Polysulfides</td>
<td>O. A. Rakitin</td>
<td>1085</td>
</tr>
<tr>
<td>18</td>
<td>Cyclic Aryl Sulfides</td>
<td>O. A. Rakitin</td>
<td>1097</td>
</tr>
<tr>
<td>19</td>
<td>Aryl Selenium Compounds</td>
<td>S. Watanabe and T. Kataoka</td>
<td>1107</td>
</tr>
<tr>
<td>20</td>
<td>Aryl Tellurium Compounds</td>
<td>T. Kataoka and S. Watanabe</td>
<td>1159</td>
</tr>
</tbody>
</table>

Keyword Index | i |
Author Index | lxv |
Abbreviations | cxxv |
Table of Contents

Introduction
C. A. Ramsden

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>31.1</td>
<td>Product Class 1: Fluoroarenes</td>
<td>21</td>
</tr>
<tr>
<td>31.1.1</td>
<td>Synthesis of Product Class 1</td>
<td>24</td>
</tr>
<tr>
<td>31.1.1.1</td>
<td>Method 1: Direct Fluorination with Elemental Fluorine</td>
<td>24</td>
</tr>
<tr>
<td>31.1.1.2</td>
<td>Method 2: Reaction with Electrophilic N–F Reagents</td>
<td>31</td>
</tr>
<tr>
<td>31.1.1.2.1</td>
<td>Variation 1: With 1-Fluoropyridinium Salts</td>
<td>31</td>
</tr>
<tr>
<td>31.1.1.2.2</td>
<td>Variation 2: With 1-(Chloromethyl)-4-fluoro-1,4-diazo-4-1,4-diazo-2,4,7-tricyclo[2.2.2.0^2_5,0^1_8]octane Bis(tetrafluoroborate)</td>
<td>34</td>
</tr>
<tr>
<td>31.1.1.2.3</td>
<td>Variation 3: With Other Electrophilic N–F Reagents</td>
<td>35</td>
</tr>
<tr>
<td>31.1.1.3</td>
<td>Method 3: Reaction with Xenon Difluoride</td>
<td>36</td>
</tr>
<tr>
<td>31.1.1.4</td>
<td>Method 4: Reaction with Organic Hypofluorites</td>
<td>37</td>
</tr>
<tr>
<td>31.1.1.5</td>
<td>Method 5: Reaction with Cesium Fluoroxysulfate</td>
<td>41</td>
</tr>
<tr>
<td>31.1.2</td>
<td>Synthesis by Substitution of Organometallic Groups</td>
<td>42</td>
</tr>
<tr>
<td>31.1.2.1</td>
<td>Method 1: Reaction of Aryllithium Derivatives</td>
<td>42</td>
</tr>
<tr>
<td>31.1.2.2</td>
<td>Method 2: Reaction of Phenylmagnesium Halides</td>
<td>43</td>
</tr>
<tr>
<td>31.1.2.3</td>
<td>Method 3: Reactions of Aryl–Group 14 Derivatives</td>
<td>44</td>
</tr>
<tr>
<td>31.1.3</td>
<td>Synthesis by Substitution of Halogen Atoms</td>
<td>45</td>
</tr>
<tr>
<td>31.1.3.1</td>
<td>Method 1: Reaction with Alkali Metal Fluorides</td>
<td>46</td>
</tr>
<tr>
<td>31.1.4</td>
<td>Synthesis by Substitution of Sulfur</td>
<td>52</td>
</tr>
<tr>
<td>31.1.4.1</td>
<td>Method 4: Reaction of Sulfonyl Derivatives</td>
<td>52</td>
</tr>
<tr>
<td>31.1.5</td>
<td>Synthesis by Substitution of Nitrogen</td>
<td>53</td>
</tr>
<tr>
<td>31.1.5.1</td>
<td>Method 1: Replacement of Nitro Groups</td>
<td>53</td>
</tr>
<tr>
<td>31.1.5.1.1</td>
<td>Variation 1: Reaction with Potassium Fluoride</td>
<td>53</td>
</tr>
<tr>
<td>31.1.5.1.2</td>
<td>Variation 2: Reaction with Tetraalkylammonium Fluorides</td>
<td>56</td>
</tr>
<tr>
<td>31.1.5.2</td>
<td>Method 2: Replacement of Diazo Groups</td>
<td>56</td>
</tr>
<tr>
<td>31.1.5.2.1</td>
<td>Variation 1: Reaction with Hydrogen Fluoride</td>
<td>57</td>
</tr>
<tr>
<td>31.1.5.2.2</td>
<td>Variation 2: Reaction with Hydrogen Fluoride/Pyridine Mixtures</td>
<td>58</td>
</tr>
<tr>
<td>31.1.5.2.3</td>
<td>Variation 3: Reaction of Diazonium Tetrafluoroborates</td>
<td>61</td>
</tr>
<tr>
<td>31.1.5.2.4</td>
<td>Variation 4: Reaction of Diazonium Hexafluoroantimonates</td>
<td>63</td>
</tr>
<tr>
<td>31.1.5.2.5</td>
<td>Variation 5: Reaction with Nitrosonium Tetrafluoroborate</td>
<td>64</td>
</tr>
<tr>
<td>31.1.5.2.6</td>
<td>Variation 6: Reaction of Triazenes</td>
<td>65</td>
</tr>
<tr>
<td>31.1.6</td>
<td>Synthesis by Elimination</td>
<td>66</td>
</tr>
<tr>
<td>31.1.6.1</td>
<td>Method 1: Elimination of Hydrogen Fluoride</td>
<td>66</td>
</tr>
</tbody>
</table>
31.1.6.2 Method 2: Elimination of Fluorine ... 66
31.1.17 Synthesis with Retention of Fluorine ... 68
31.1.17.1 Method 1: Reactions of Fluoroarenes 68
31.1.17.2 Method 2: Reactions of Perfluoroarenes 70

31.2 Product Class 2: Chloroarenes
S. P. Stanforth

31.2.1 Synthesis of Product Class 2 .. 79
31.2.1.1 Synthesis by Substitution .. 79
31.2.1.1.1 Method 1: Electrophilic Chlorination 80
31.2.1.1.1.1 Variation 1: Of Phenols and Anisoles 80
31.2.1.1.1.2 Variation 2: Of Anilines and Acetanilides 82
31.2.1.1.1.3 Variation 3: Of Alkylbenzenes 84
31.2.1.1.1.4 Variation 4: Of Polycyclic Aromatics 85
31.2.1.1.2 Method 2: The Sandmeyer Reaction 86
31.2.1.1.3 Method 3: Substitution of a Nitro Group 87
31.2.1.1.4 Method 4: Substitution of a Phenolic Hydroxy Group 88
31.2.1.2 Synthesis by Elimination .. 89
31.2.1.2.1 Method 1: Dehydrohalogenation 89
31.2.1.2.2 Method 2: Dehalogenation .. 90
31.2.1.2.3 Method 3: Pyrolytic Loss of a Small Molecule 91
31.2.1.2.4 Method 4: Transition-Metal-Catalyzed Decarbonylation 92
31.2.1.3 Synthesis by Cycloaddition .. 93
31.2.1.3.1 Method 1: Cycloadditions Reactions of Tetrachlorothiophene Dioxide 94
31.2.1.3.2 Method 2: Cobalt-Catalyzed Reactions 95
31.2.1.4 Synthesis by Rearrangement .. 95
31.2.1.4.1 Method 1: Rearrangement During Chlorination 95
31.2.1.5 Applications of Product Class 2 in Organic Synthesis 96
31.2.1.5.1 Method 1: Cross-Coupling Reactions 96
31.2.1.5.2 Variation 1: Synthesis of Biaryls 97
31.2.1.5.3 Variation 2: Synthesis of Arylalkenes 106
31.2.1.5.4 Variation 3: Synthesis of Arylalkynes 108
31.2.1.5.5 Variation 4: Synthesis of Arylalkanes 109
31.2.1.5.6 Variation 5: Carbonylation and Cyanation Reactions 110
31.2.1.5.7 Variation 6: Metal-Catalyzed Heterosubstitution Reactions 111
31.2.1.5.8 Method 2: Nucleophilic Substitution Reactions 114
31.2.1.5.9 Method 3: The S_NAr Reaction 114
31.2.1.5.10 Method 2: The S_RN1 Reaction 115
31.2.1.5.11 Method 3: Substitution via Benzyne Intermediates 115
31.2.1.5.12 Method 3: Enzymatic Oxidation Reactions 117
31.3 Product Class 3: Bromoarenes
S. P. Stanforth

31.3.1 Synthesis of Product Class 3

121
31.3.1.1 Synthesis by Substitution

121
31.3.1.1.1 Method 1: Electrophilic Bromination

121
31.3.1.1.1 Variation 1: Of Phenols and Anisoles

122
31.3.1.1.1 Variation 2: Of Anilines

125
31.3.1.1.3 Variation 3: Of Benzene and Alkylbenzenes

126
31.3.1.1.4 Variation 4: Of Deactivated Benzenes

128
31.3.1.1.5 Variation 5: Of Polycyclic Aromatics

129
31.3.1.2 Method 2: Synthesis from Organometallics

130
31.3.1.2.1 Variation 1: From Aryllithiums

130
31.3.1.2.2 Variation 2: From Arylsilanes

131
31.3.1.2.3 Variation 3: From Arylstannanes

132
31.3.1.3 Method 3: The Sandmeyer Reaction

132
31.3.1.4 Method 4: Substitution of a Phenolic Group

134

31.3.2 Synthesis by Elimination

134
31.3.2.1 Method 1: Dehydrohalogenation

135
31.3.2.2 Method 2: Dehalogenation

135
31.3.2.3 Method 3: Transition-Metal-Catalyzed Decarbonylation

136
31.3.2.4 Method 4: The Cristol–Firth–Hunsdiecker Reaction

136
31.3.2.5 Synthesis by Cycloaddition

137

31.3.2 Applications of Product Class 3 in Organic Synthesis

139
31.3.2.1 Cross-Coupling Reactions

139
31.3.2.1.1 Method 1: Synthesis of Biaryls

139
31.3.2.1.2 Method 2: Synthesis of Arylalkenes

144
31.3.2.1.3 Method 3: Synthesis of Arylalkynes

146
31.3.2.1.4 Method 4: Synthesis of Arylalkanes

147
31.3.2.1.5 Method 5: Carbonylation and Cyanation Reactions

149
31.3.2.1.6 Method 6: Metal-Catalyzed Heterosubstitution Reactions

150
31.3.2.2 Nucleophilic Substitution Reactions

153
31.3.2.2.1 Method 1: The S_Ar Reaction

153
31.3.2.2.2 Method 2: The S_N1 Reaction

153
31.3.2.2.3 Method 3: Substitution via Benzyne Intermediates

154
31.3.2.3 Generation of Aryl Radicals

155
31.3.2.4 Generation of Organometallic Reagents

156
31.3.2.5 Enzymatic Oxidation Reactions

156
31.4 Product Class 4: Aryl Iodine Compounds

31.4.1 Product Subclass 1: Hypervalent Iodoarenes and Aryliodonium Salts

V. V. Zhdankin

31.4.1.1 Synthesis of Product Subclass 1 ... 162
31.4.1.1.1 Synthesis by Oxidative Addition to Iodoarenes 162
31.4.1.1.2 Method 1: Iodylarenes by Oxidation of Iodoarenes 162
31.4.1.1.2.1 Variation 1: Fluorination by Powerful Fluorinating Reagents 164
31.4.1.1.2.2 Variation 2: Electrochemical Fluorination 165
31.4.1.1.3 Method 2: (Difluoroiodo)arenes by Fluorination of Iodoarenes 164
31.4.1.1.3.1 Variation 1: Fluorination by Powerful Fluorinating Reagents 164
31.4.1.1.3.2 Variation 2: Electrochemical Fluorination 165
31.4.1.1.4 Method 3: (Dichloroiodo)arenes by Chlorination of Iodoarenes 165
31.4.1.1.4.1 Variation 1: Chlorination by Powerful Chlorinating Agents 165
31.4.1.1.4.2 Variation 2: Electrochemical Chlorination 166
31.4.1.1.5 Method 4: (Diacyloxyiodo)arenes by the Oxidation of Iodoarenes in the Presence of a Carboxylic Acid 166
31.4.1.1.6 Method 5: Benziodazoles by Oxidation of 2-Iodobenzamides 168
31.4.1.1.7 Synthesis by Ligand Exchange of Hypervalent Iodine Compounds 169
31.4.1.1.7.1 Method 1: Aryliodine(V) Carboxylates from Iodylarenes 169
31.4.1.1.7.2 Method 2: (Diacyloxyiodo)arenes from (Diacetoxyiodo)benzene by Ligand Exchange with a Carboxylic Acid 170
31.4.1.1.7.3 Method 3: Aryliodine(III) Peroxides by Exchange with tert-Butyl Hydroperoxide 171
31.4.1.1.7.4 Method 4: Aryliodine(III) Sulfonates from Arenes 172
31.4.1.1.7.4.1 Variation 1: [Hydroxy(organosulfonyloxy)iodo]arenes from (Diacetoxyiodo)arenes 172
31.4.1.1.7.4.2 Variation 2: Oxygen-Bridged Derivatives from (Diacetoxyiodo)benzene or iodosylbenzene 173
31.4.1.1.7.4.3 Variation 3: (Organosulfonyloxy)benziodoxoles from 1-Hydroxybenziodoxoles .. 174
31.4.1.1.7.4.5 Variation 4: (Difluoroiodo)iodonium Salts from Hypervalent Iodoarenes 175
31.4.1.1.7.4.6 Variation 5: Alkynyl(aryl)iodonium Salts from Hypervalent Iodoarenes 179
31.4.1.1.7.4.7 Variation 6: Alkynyl(aryl)iodonium Tetrafluoroborates 179
31.4.1.1.7.4.8 Variation 7: Alkynyl(aryl)iodonium Arenesulfonates 179
31.4.1.1.7.4.9 Variation 8: Alkynyl(aryl)iodonium Trifluoromethanesulfonates 180
31.4.1.1.7.4.10 Variation 9: Alkynyl(aryl)iodonium Tetrafluoroborates 183
31.4.1.1.7.4.11 Variation 10: Aryl- and Hetaryliodonium Salts from Hypervalent Iodoarenes 183
31.4.1.1.7.4.12 Variation 11: Diaryliodonium Tetrafluoroborates 183
31.4.1.1.7.4.13 Variation 12: Aryl- and Hetaryliodonium Sulfates and Sulfonates 184
31.4.1.1.7.4.14 Variation 13: Aryl- and Hetaryliodonium Halides 188
31.4.1.1.7.4.15 Variation 14: Alkenyl(aryl)iodonium Salts from Hypervalent Iodoarenes 189
31.4.1.1.7.4.16 Variation 15: Alkenyl(aryl)iodonium Tetrafluoroborates 189
31.4.1.2.1 Variation 2: Alkenyl(aryl)iodonium Organosulfonates 190
31.4.1.2.12 Method 12: Synthesis of Alkyl(aryl)iodonium Salts 192
31.4.1.2.12.1 Variation 1: Aryl(polyfluoroalkyl)iodonium Organosulfonates 193
31.4.1.2.12.2 Variation 2: [(Arylsulfonyl)methyl](phenyl)iodonium Trifluoromethane-
sulfonates .. 194
31.4.1.2.13 Method 13: Aryl(cyano)iodonium Derivatives from Hypervalent Iodoarenes 195
31.4.1.2.13.1 Variation 1: Aryl(cyano)iodonium Organosulfonates 195
31.4.1.2.13.2 Variation 2: Cyanobenziodoxoles .. 195
31.4.1.2.14 Method 14: Aryliodonium Ylides from Hypervalent Iodoarenes 196
31.4.1.2.15 Method 15: Aryliodonium Imides from Hypervalent Iodoarenes 197
31.4.1.2 Applications of Product Subclass 1 in Organic Synthesis 198
31.4.1.2.1 Method 1: Reactions of Alkynyl(aryl)iodonium Salts 199
31.4.1.2.1.1 Variation 1: Preparation of Substituted Alkynes 199
31.4.1.2.1.2 Variation 2: Synthesis of Substituted Cyclopentenes via Intramolecular Carbene Insertion 201
31.4.1.2.1.3 Variation 3: Synthesis of Nitrogen and Oxygen Heterocycles via Carbene Cyclizations 202
31.4.1.2.1.2 Method 2: Reactions of Diaryliodonium Salts 204
31.4.1.2.1.2.1 Variation 1: Reactions via a Benzyne Intermediate 204
31.4.1.2.1.2.2 Variation 2: Arylations .. 205
31.4.1.2.1.3 Method 3: Reactions of Alkenyl(aryl)iodonium Salts 206
31.4.1.2.1.3.1 Variation 1: Alkenylations .. 206
31.4.1.2.1.3.2 Variation 2: Reactions via Alkylidenecarbene Intermediates 208
31.4.1.2.1.4 Method 4: Reactions of Aryliodonium Derivatives 208
31.4.1.2.1.4.1 Variation 1: Fluoroalkylations with Aryl(polyfluoroalkyl)iodonium Organosulfonates .. 208
31.4.1.2.1.4.2 Variation 2: Reactions of [(Arylsulfonyl)methyl](phenyl)iodonium Trifluoromethanesulfonates with Nucleophiles 209
31.4.1.2.1.4.3 Variation 3: Reactions of (β-Oxoalkyl)phenyliodonium Salts 210
31.4.1.2.1.5 Method 5: Reactions of Aryliodonium Ylides 210
31.4.1.2.1.5.1 Variation 1: Reactions via Carbene Intermediates 210
31.4.1.2.1.5.2 Variation 2: Cycloadditions ... 211
31.4.1.2.1.2 Preparation of Products with a New C—F Bond 211
31.4.1.2.1.2.1 Method 1: Fluorination with (Difluoroiodo)arenes 211
31.4.1.2.1.2.2.1 Variation 1: α-Fluorination of Carbonyl Compounds 211
31.4.1.2.1.2.2.2 Variation 2: Fluorination of Alkenes .. 212
31.4.1.2.1.2.3 Preparation of Products with a New C—Cl Bond 212
31.4.1.2.1.2.3.1 Method 1: Chlorination with (Dichloroiodo)arenes 212
31.4.1.2.1.2.4 Preparation of Products with a New C—I Bond 213
31.4.1.2.1.2.4.1 Method 1: Oxidative Iodination Using Hypervalent Iodoarenes 213
31.4.1.2.1.2.5 Oxidations and Oxidative Rearrangements 214
31.4.1.2.1.2.5.1 Method 1: Oxidations with Iodylarenes and Aryliodine(V) Carboxylates 214
31.4.1.2.5.1.1 Variation 1: Oxidation of Alcohols to Aldehydes .. 214
31.4.1.2.5.1.2 Variation 2: Oxidation at a Benzylic Position ... 214
31.4.1.2.5.1.3 Variation 3: Oxidative Cyclizations .. 215
31.4.1.2.5.1.4 Variation 4: Oxidation of Sulfides to Sulfoxides .. 215
31.4.1.2.5.2 Method 2: Oxidations with (Acyloxyiodo)arenes .. 216
31.4.1.2.5.2.1 Variation 1: Hydroxylation of Enolizable Ketones .. 216
31.4.1.2.5.2.2 Variation 2: Oxidation of Phenols and Phenol Ethers 217
31.4.1.2.5.3 Method 3: Oxidations with Peroxybenziodoxole ... 218
31.4.1.2.5.4 Method 4: Oxidations with [Hydroxy(organosulfonyloxy)iodo]benzenes 219
31.4.1.2.5.4.1 Variation 1: Tosyloxylation of Enolizable Ketones ... 219
31.4.1.2.5.4.2 Variation 2: Oxidative Rearrangements .. 220
31.4.1.2.5.5 Method 5: Oxidations with Iodosylarenes ... 221
31.4.1.2.5.5.1 Variation 1: Oxidation of Alcohols ... 221
31.4.1.2.5.5.2 Variation 2: α-Hydroxylation and α-Alkoxylation of Carbonyl Compounds 221
31.4.1.2.5.5.3 Variation 3: Transition-Metal-Catalyzed Oxygenations 221
31.4.1.2.6 Preparation of Products with a New C—S Bond .. 221
31.4.1.2.6.1 Method 1: Oxidative Thiocyanation Using Hypervalent Iodoarenes 221
31.4.1.2.7 Preparation of Products with a New C—N Bond ... 222
31.4.1.2.7.1 Method 1: Reactions of Aryliodine(III) Amides .. 222
31.4.1.2.7.2 Method 2: Reactions of Aryliodine(III) Azides .. 222
31.4.1.2.7.2.1 Variation 1: Azidations with (Diazidoiodo)benzene In Situ 222
31.4.1.2.7.2.2 Variation 2: Azidations with Azidobenziodoxole ... 223
31.4.1.2.7.3 Method 3: Reactions of Aryliodonium Imides .. 223
31.4.1.2.7.3.1 Variation 1: C—H Amidation ... 224
31.4.1.2.7.3.2 Variation 2: Aziridination of Alkenes ... 224
31.4.1.2.7.4 Method 4: Hypervalent Iodoarenes as Reagents for Hofmann Rearrangements 225

31.4.2 Product Subclass 2: Iodoarenes
S. R. Waldvogel and K. M. Wehming

31.4.2 Product Subclass 2: Iodoarenes .. 235
31.4.2.1 Synthesis of Product Subclass 2 .. 235
31.4.2.1.1 Method 1: Electrophilic Iodination .. 235
31.4.2.1.1.1 Variation 1: Of Phenols .. 235
31.4.2.1.1.2 Variation 2: Of Naphthols ... 239
31.4.2.1.1.3 Variation 3: Of Alkoxyarenes .. 240
31.4.2.1.1.4 Variation 4: Of Naphthyl Ethers ... 242
31.4.2.1.1.5 Variation 5: Of Anilines .. 243
31.4.2.1.1.6 Variation 6: Of Benzenes and Their Alkyl Derivatives 245
31.4.2.1.1.7 Variation 7: Of Halobenzenes .. 248
31.4.2.1.1.8 Variation 8: Of Electron-Deficient Arenes ... 250
31.4.2.1.2 Method 2: Iodination by Electrophilic Metalation .. 252
31.4.2.1.2.1 Variation 1: Iododemercuration ... 253
31.4.2.1.2.2 Variation 2: Iododethallation ... 254
<table>
<thead>
<tr>
<th>Section</th>
<th>Method</th>
<th>Variation</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>31.4.2.1.2</td>
<td>Variation 3</td>
<td></td>
<td>Iododepalladation</td>
<td>256</td>
</tr>
<tr>
<td>31.4.2.1.3</td>
<td>Method 3</td>
<td></td>
<td>Iodination by ortho-Lithiation</td>
<td>257</td>
</tr>
<tr>
<td>31.4.2.1.3.1</td>
<td>Variation 1</td>
<td></td>
<td>With ortho-Directing Halogen Substituents</td>
<td>257</td>
</tr>
<tr>
<td>31.4.2.1.3.2</td>
<td>Variation 2</td>
<td></td>
<td>With ortho-Directing Alkoxy Substituents</td>
<td>258</td>
</tr>
<tr>
<td>31.4.2.1.3.3</td>
<td>Variation 3</td>
<td></td>
<td>With Strong Directing Groups for ortho-Metalation</td>
<td>259</td>
</tr>
<tr>
<td>31.4.2.1.4</td>
<td>Method 4</td>
<td></td>
<td>Sandmeyer-Type Reactions</td>
<td>260</td>
</tr>
<tr>
<td>31.4.2.1.4.1</td>
<td>Variation 1</td>
<td></td>
<td>Direct Conversion of Amino Groups or Diazonium Salts</td>
<td>260</td>
</tr>
<tr>
<td>31.4.2.1.4.2</td>
<td>Variation 2</td>
<td></td>
<td>Substitution of Triazenes</td>
<td>262</td>
</tr>
<tr>
<td>31.4.2.1.4.3</td>
<td>Variation 3</td>
<td></td>
<td>Reactions of 2,5-Dimethyl-1H-pyrrole-Substituted Aryls</td>
<td>263</td>
</tr>
<tr>
<td>31.4.2.1.5</td>
<td>Method 5</td>
<td></td>
<td>Replacement of Bromine</td>
<td>263</td>
</tr>
<tr>
<td>31.4.2.1.6</td>
<td>Method 6</td>
<td></td>
<td>Iododesilylation</td>
<td>266</td>
</tr>
<tr>
<td>31.4.2.1.7</td>
<td>Method 7</td>
<td></td>
<td>Iododestannylation</td>
<td>268</td>
</tr>
</tbody>
</table>

31.5 Product Class 5: Phenols and Phenolates

31.5.1 Product Subclass 1: Monohydric Phenols and Corresponding Phenolates

C. González-Bello and L. Castedo

31.5.1.1 Synthesis by Substitution

C. González-Bello and L. Castedo

<table>
<thead>
<tr>
<th>Section</th>
<th>Method</th>
<th>Variation</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>31.5.1.1.1</td>
<td>Method 1</td>
<td>Variation 1</td>
<td>Substitution of Hydrogen via Metal-Catalyzed Oxidation</td>
<td>277</td>
</tr>
<tr>
<td>31.5.1.1.2</td>
<td>Variation 2</td>
<td>Using Oxygen/Air</td>
<td></td>
<td>277</td>
</tr>
<tr>
<td>31.5.1.1.3</td>
<td>Variation 2</td>
<td>Using Nitrous Oxide</td>
<td></td>
<td>278</td>
</tr>
<tr>
<td>31.5.1.1.4</td>
<td>Method 3</td>
<td>Using Hydrogen Peroxide</td>
<td></td>
<td>278</td>
</tr>
<tr>
<td>31.5.1.1.5</td>
<td>Method 3</td>
<td>Substitution of Hydrogen via Reductive Oxidation</td>
<td></td>
<td>280</td>
</tr>
<tr>
<td>31.5.1.1.6</td>
<td>Method 3</td>
<td>Substitution of Hydrogen via Electrochemical Hydroxylation</td>
<td></td>
<td>280</td>
</tr>
<tr>
<td>31.5.1.1.7</td>
<td>Method 4</td>
<td>Substitution of Hydrogen via Electrophilic Hydroxylation</td>
<td></td>
<td>281</td>
</tr>
<tr>
<td>31.5.1.1.8</td>
<td>Variation 1</td>
<td>Using Hydrogen Peroxide and Superacids</td>
<td></td>
<td>281</td>
</tr>
<tr>
<td>31.5.1.1.9</td>
<td>Variation 2</td>
<td>Using Peroxy Acids</td>
<td></td>
<td>283</td>
</tr>
<tr>
<td>31.5.1.1.10</td>
<td>Method 5</td>
<td>Substitution of Hydrogen via Nucleophilic Hydroxylation of Nitroarenes Using Alkyl Peroxides</td>
<td></td>
<td>283</td>
</tr>
<tr>
<td>31.5.1.1.11</td>
<td>Method 6</td>
<td>Substitution of Hydrogen via Biomimetic Processes</td>
<td></td>
<td>285</td>
</tr>
<tr>
<td>31.5.1.1.12</td>
<td>Method 7</td>
<td>Substitution of Organometallic Groups via Direct Oxidation</td>
<td></td>
<td>286</td>
</tr>
<tr>
<td>31.5.1.1.13</td>
<td>Variation 1</td>
<td>Using Oxygen</td>
<td></td>
<td>286</td>
</tr>
<tr>
<td>31.5.1.1.14</td>
<td>Variation 2</td>
<td>Using Hydroperoxides</td>
<td></td>
<td>287</td>
</tr>
<tr>
<td>31.5.1.1.15</td>
<td>Variation 3</td>
<td>Using Molybdenum Peroxides</td>
<td></td>
<td>287</td>
</tr>
<tr>
<td>31.5.1.1.16</td>
<td>Variation 4</td>
<td>Using 2-Sulfonyloxaziridines</td>
<td></td>
<td>288</td>
</tr>
<tr>
<td>31.5.1.1.17</td>
<td>Method 8</td>
<td>Substitution of Organometallic Groups via Indirect Oxidation</td>
<td></td>
<td>288</td>
</tr>
<tr>
<td>31.5.1.1.18</td>
<td>Variation 1</td>
<td>Oxidation of Boronic Esters</td>
<td></td>
<td>288</td>
</tr>
<tr>
<td>31.5.1.1.19</td>
<td>Variation 2</td>
<td>Using Bis(trimethylsilyl) Peroxide</td>
<td></td>
<td>290</td>
</tr>
</tbody>
</table>
31.5.1.9 Method 9: Substitution of Aryl Aldehydes

<table>
<thead>
<tr>
<th>Method 10: Substitution of Alkyl Aryl Ketones</th>
<th>293</th>
</tr>
</thead>
<tbody>
<tr>
<td>Method 11: Substitution of Sulfonic Acids via Alkaline Fusion</td>
<td>293</td>
</tr>
<tr>
<td>Method 12: Hydrolysis of Diazonium Salts</td>
<td>293</td>
</tr>
<tr>
<td>Variation 1: Thermal Hydrolysis</td>
<td>294</td>
</tr>
<tr>
<td>Variation 2: Copper–Redox Hydrolysis</td>
<td>294</td>
</tr>
<tr>
<td>Method 13: Hydrolysis of Arylamines</td>
<td>295</td>
</tr>
<tr>
<td>Variation 1: Acidic Hydrolysis</td>
<td>295</td>
</tr>
<tr>
<td>Variation 2: Basic Hydrolysis</td>
<td>295</td>
</tr>
<tr>
<td>Method 14: Substitution of Halides via Alkaline Fusion</td>
<td>296</td>
</tr>
<tr>
<td>Method 15: Substitution of Halides via Metal-Catalyzed Carbon–Oxygen Coupling Reactions</td>
<td>297</td>
</tr>
<tr>
<td>Method 16: Nucleophilic Hydroxylation of Fluoroarenes</td>
<td>299</td>
</tr>
<tr>
<td>Variation 1: Reaction of Fluoronitroarenes with Alkyl Hydroperoxides</td>
<td>299</td>
</tr>
<tr>
<td>Variation 2: Reaction of Fluoroarenes with Alkoxides</td>
<td>299</td>
</tr>
<tr>
<td>Method 17: Reaction of Substituted 1,2-Dichloroarenes with Nitrites</td>
<td>301</td>
</tr>
</tbody>
</table>

31.5.2 Synthesis by Elimination

C. González-Bello and L. Castedo

<table>
<thead>
<tr>
<th>Method 1: Elimination of Esters by Hydrolysis</th>
<th>305</th>
</tr>
</thead>
<tbody>
<tr>
<td>By Alcoholysis/Hydrolysis</td>
<td>305</td>
</tr>
<tr>
<td>By Basic Alcoholysis/Hydrolysis</td>
<td>306</td>
</tr>
<tr>
<td>Method 2: Elimination of Esters by Addition of Metallic Hydrides</td>
<td>307</td>
</tr>
<tr>
<td>Method 3: Elimination of Alkyl Ethers</td>
<td>307</td>
</tr>
<tr>
<td>Reaction with Brønsted Acids</td>
<td>308</td>
</tr>
<tr>
<td>Reaction with Lewis Acids</td>
<td>308</td>
</tr>
<tr>
<td>Reaction with Nucleophiles</td>
<td>309</td>
</tr>
<tr>
<td>Method 4: Elimination from Benzyl Ethers</td>
<td>310</td>
</tr>
<tr>
<td>Hydrogenolysis of Benzyl Ethers</td>
<td>310</td>
</tr>
<tr>
<td>Radical Cleavage of Aryl 4-Methoxybenzyl Ethers</td>
<td>310</td>
</tr>
<tr>
<td>Photocleavage of Nitrobenzyl Ethers</td>
<td>311</td>
</tr>
<tr>
<td>Method 5: Elimination of Sulphonates</td>
<td>312</td>
</tr>
<tr>
<td>By Basic Hydrolysis</td>
<td>312</td>
</tr>
<tr>
<td>By Reaction with Nucleophiles</td>
<td>313</td>
</tr>
<tr>
<td>Method 6: Aromatization of Cyclohexanones and Cyclohexenones</td>
<td>314</td>
</tr>
</tbody>
</table>

31.5.3 Synthesis by Rearrangement

C. González-Bello and L. Castedo

<table>
<thead>
<tr>
<th>Method 1: Rearrangement of Allyl Aryl Ethers</th>
<th>319</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rearrangement of Alkyl Aryl Ethers</td>
<td>319</td>
</tr>
<tr>
<td>Rearrangement of Alkyl and Benzyl Aryl Ethers</td>
<td>322</td>
</tr>
<tr>
<td>Rearrangement of Diaryl Ethers</td>
<td>323</td>
</tr>
<tr>
<td>Rearrangement of Dienones</td>
<td>324</td>
</tr>
<tr>
<td>Rearrangement of Phenolic Esters</td>
<td>326</td>
</tr>
</tbody>
</table>
31.5.4 Synthesis with Retention of the Functional Group
C. González-Bello and L. Castedo

31.5.14 Synthesis with Retention of the Functional Group 331
31.5.14.1 Method 1: Electrophilic Substitution of Phenols 331
31.5.14.2 Method 2: Synthesis of Phenolates 334
31.5.14.2.1 Variation 1: Reaction of Phenols with Alkali Metal Hydrides 334
31.5.14.2.2 Variation 2: Reaction of Phenols with Metal Complexes 334

31.5.15 Synthesis from Nonaromatic Precursors
A. W. Thomas

31.5.15 Synthesis from Nonaromatic Precursors .. 337
31.5.15.1 Method 1: Benzannulation Reactions 337
31.5.15.1.1 Variation 1: Of Vinylketenes Derived from Cyclobutenones 337
31.5.15.1.2 Variation 2: Of Vinylketenes Derived from Diazo Ketones 339
31.5.15.1.3 Variation 3: Of Vinylketenes Derived from Benzo-1,4-quinones 340
31.5.15.1.4 Variation 4: Of Vinylcyclopropanes and Vinylcyclopropenes 341
31.5.15.1.5 Variation 5: Of Chromium Carbenes 343
31.5.15.1.6 Variation 6: Of Chromium Carbynes 343
31.5.15.2 Method 2: Cycloaromatization Reactions 344
31.5.15.2.1 Variation 1: Diels–Alder Reactions 344
31.5.15.2.2 Variation 2: Of Siloxy Dienes .. 356
31.5.15.3 Method 3: Cyclocondensation Reactions 364
31.5.15.3.1 Variation 1: Classical Cyclocondensation Reactions 364
31.5.15.3.2 Variation 2: Other Cyclization Reactions 374
31.5.15.4 Method 4: Free-Radical Methods .. 378
31.5.15.5 Method 5: Synthesis from Heterocyclic Precursors 379
31.5.15.6 Method 6: Synthesis from Cyclohexenones 379
31.5.15.7 Method 7: Synthesis from Cyclohexadienones 383
31.5.15.8 Method 8: Synthesis from Cyclohexene Oxides 387
31.5.15.9 Method 9: Synthesis from Cyclohexanones 389
31.5.15.10 Method 10: Synthesis from Benzo-1,2-quinones or Benzo-1,4-quinones 389
31.5.15.11 Method 11: Synthesis from Polyenes and Related Compounds 393

31.5.2 Product Subclass 2: Polyhydric Phenols and Corresponding Phenolates
M. A. Marsini and T. R. R. Pettus

31.5.2 Product Subclass 2: Polyhydric Phenols and Corresponding Phenolates 403

31.5.2.1 Synthesis by Substitution
M. A. Marsini and T. R. R. Pettus

31.5.2.1 Synthesis by Substitution .. 405
31.5.2.1.1 Method 1: Oxidation of Phenols with 1-Hydroxy-1,2-benziodoxol-3(1H)-one 1-Oxide ... 405
Synthesis by Elimination

Method 1: Condensation–Aromatization of Cyclohexane-1,4-diones

Method 2: Aromatization of myo-2-Insosose

Method 3: Aromatization of 3-Hydroxycyclohex-2-enone Derivatives

Method 4: Oxidation of Cyclohexane-1,3-dione

Method 5: Reductive Aromatization of an Epoxy Enone

Synthesis by Addition

Method 1: Reduction of Quinones

Method 2: Reductive Alkylation of Quinones

Method 3: Photoacylation of Quinones

Method 4: Benzopyran Reduction

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.2.1</td>
<td>Palladium-Catalyzed Substitution of Halides by Hydroxide</td>
<td>408</td>
</tr>
<tr>
<td>1.2.3</td>
<td>Copper(I)-Mediated Phenol Oxidation</td>
<td>409</td>
</tr>
<tr>
<td>1.2.4</td>
<td>Biooxidation of Arenes</td>
<td>409</td>
</tr>
<tr>
<td>1.2.5</td>
<td>Dakin Oxidation</td>
<td>410</td>
</tr>
<tr>
<td>1.2.6</td>
<td>Under Basic Conditions</td>
<td>411</td>
</tr>
<tr>
<td>1.2.7</td>
<td>Using Urea/Hydrogen Peroxide</td>
<td>411</td>
</tr>
<tr>
<td>1.2.8</td>
<td>Using Catalytic Selenium Dioxide</td>
<td>411</td>
</tr>
<tr>
<td>1.2.9</td>
<td>Elb’s Persulfate Oxidation</td>
<td>412</td>
</tr>
<tr>
<td>1.2.10</td>
<td>Oxidation–Reduction with Frémy’s Salt and Sodium Dithionite</td>
<td>412</td>
</tr>
<tr>
<td>1.2.2</td>
<td>Synthesis by Elimination</td>
<td>415</td>
</tr>
<tr>
<td>1.2.3</td>
<td>Synthesis by Addition</td>
<td>421</td>
</tr>
<tr>
<td>1.2.4</td>
<td>Reduction of Quinones</td>
<td>421</td>
</tr>
<tr>
<td>1.2.5</td>
<td>Reduction with Sodium Dithionite</td>
<td>421</td>
</tr>
<tr>
<td>1.2.6</td>
<td>Reduction with Sodium Borohydride</td>
<td>421</td>
</tr>
<tr>
<td>1.2.7</td>
<td>Reduction by Catalytic Hydrogenation</td>
<td>422</td>
</tr>
<tr>
<td>1.2.8</td>
<td>Reduction with Raney Nickel</td>
<td>422</td>
</tr>
<tr>
<td>1.2.9</td>
<td>Reduction with Tin(II) Chloride</td>
<td>423</td>
</tr>
<tr>
<td>1.2.10</td>
<td>Reduction with Chromium(II) Chloride</td>
<td>423</td>
</tr>
<tr>
<td>1.2.11</td>
<td>Reductive Alkylation of Quinones</td>
<td>424</td>
</tr>
<tr>
<td>1.2.12</td>
<td>1,4-Addition of Trialkylboranes</td>
<td>424</td>
</tr>
<tr>
<td>1.2.13</td>
<td>1,4-Addition of Organonickel Reagents</td>
<td>424</td>
</tr>
<tr>
<td>1.2.14</td>
<td>1,4-Addition of Heterocyclic Amines</td>
<td>425</td>
</tr>
<tr>
<td>1.2.15</td>
<td>Addition of Trimethylsilyl Cyanide</td>
<td>425</td>
</tr>
<tr>
<td>1.2.16</td>
<td>Sulfonylation in Ionic Liquids</td>
<td>426</td>
</tr>
<tr>
<td>1.2.17</td>
<td>Addition to an o-Quinomethane</td>
<td>426</td>
</tr>
<tr>
<td>1.2.18</td>
<td>Arene Addition to 2-Formylbenzo-1,4-quinone</td>
<td>427</td>
</tr>
<tr>
<td>1.2.19</td>
<td>Photoacylation of Quinones</td>
<td>428</td>
</tr>
<tr>
<td>1.2.20</td>
<td>Benzopyran Reduction</td>
<td>428</td>
</tr>
</tbody>
</table>
31.5.2.4 Synthesis by Rearrangement
M. A. Marsini and T. R. R. Pettus

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>31.5.2.4.1</td>
<td>Method 1: Claisen Rearrangement</td>
<td>431</td>
</tr>
<tr>
<td>31.5.2.4.1.1</td>
<td>Variation 1: Under Thermal Conditions</td>
<td>431</td>
</tr>
<tr>
<td>31.5.2.4.1.2</td>
<td>Variation 2: Under Lewis Acidic Conditions</td>
<td>432</td>
</tr>
<tr>
<td>31.5.2.4.1.3</td>
<td>Variation 3: Under Basic Conditions</td>
<td>432</td>
</tr>
<tr>
<td>31.5.2.4.1.4</td>
<td>Variation 4: Using a Chiral Reagent</td>
<td>433</td>
</tr>
<tr>
<td>31.5.2.4.2</td>
<td>Method 2: Fries Rearrangement</td>
<td>433</td>
</tr>
<tr>
<td>31.5.2.4.2.1</td>
<td>Variation 1: Using Zinc/Microwave Radiation</td>
<td>433</td>
</tr>
<tr>
<td>31.5.2.4.2.2</td>
<td>Variation 2: Using a Lewis Acid</td>
<td>434</td>
</tr>
<tr>
<td>31.5.2.4.2.3</td>
<td>Variation 3: Photo-Fries Rearrangement</td>
<td>435</td>
</tr>
<tr>
<td>31.5.2.4.3</td>
<td>Method 3: 1,2-Addition with Dienone–Phenol Rearrangement</td>
<td>435</td>
</tr>
<tr>
<td>31.5.2.4.3.1</td>
<td>Variation 1: Using Boron Trifluoride–Diethyl Ether Complex/Allylstannanes</td>
<td>436</td>
</tr>
<tr>
<td>31.5.2.4.3.2</td>
<td>Variation 2: Using Bismuth(III) Trifluoromethanesulfonate/Allylsilanes</td>
<td>437</td>
</tr>
<tr>
<td>31.5.2.4.3.3</td>
<td>Variation 3: By Addition of an Allylindium Reagent</td>
<td>437</td>
</tr>
<tr>
<td>31.5.2.4.3.4</td>
<td>Variation 4: Using Tetrabutylammonium Fluoride/Trifluoro(3-methyl-but-2-ethyl)silane</td>
<td>438</td>
</tr>
<tr>
<td>31.5.2.4.4</td>
<td>Method 4: Base-Induced Benzyol Migration</td>
<td>438</td>
</tr>
</tbody>
</table>

31.5.2.5 Synthesis with Retention of the Functional Group
M. A. Marsini and T. R. R. Pettus

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>31.5.2.5.1</td>
<td>Method 1: Friedel–Crafts Formylation</td>
<td>441</td>
</tr>
<tr>
<td>31.5.2.5.1.1</td>
<td>Variation 1: Under Gattermann Conditions</td>
<td>441</td>
</tr>
<tr>
<td>31.5.2.5.1.2</td>
<td>Variation 2: Under Vilsmeier–Haack Conditions</td>
<td>442</td>
</tr>
<tr>
<td>31.5.2.5.1.3</td>
<td>Variation 3: Under Duff Formylation Conditions</td>
<td>443</td>
</tr>
<tr>
<td>31.5.2.5.2</td>
<td>Method 2: Friedel–Crafts Acylation</td>
<td>443</td>
</tr>
<tr>
<td>31.5.2.5.2.1</td>
<td>Variation 1: By Houben–Hoesch Condensation</td>
<td>444</td>
</tr>
<tr>
<td>31.5.2.5.2.2</td>
<td>Variation 2: Using Boron Trifluoride–Diethyl Ether Complex with</td>
<td>444</td>
</tr>
<tr>
<td>31.5.2.5.2.3</td>
<td>Using an Acid Anhydride or Acid Chloride</td>
<td>446</td>
</tr>
<tr>
<td>31.5.2.5.2.4</td>
<td>Variation 4: Using Aluminum Trichloride/(Trichloromethyl)benzene</td>
<td>447</td>
</tr>
<tr>
<td>31.5.2.5.2.5</td>
<td>Variation 5: Using Zinc Dust with Microwave Irradiation</td>
<td>448</td>
</tr>
<tr>
<td>31.5.2.5.2.6</td>
<td>Variation 6: Using N-Alkynitrilum Salts</td>
<td>448</td>
</tr>
<tr>
<td>31.5.2.5.2.7</td>
<td>Variation 7: Using Protic Acid</td>
<td>449</td>
</tr>
<tr>
<td>31.5.2.5.2.8</td>
<td>Variation 8: Using Zinc(II) Chloride/Phosphoryl Chloride</td>
<td>449</td>
</tr>
<tr>
<td>31.5.2.5.3</td>
<td>Method 3: Friedel–Crafts Alkylation</td>
<td>450</td>
</tr>
<tr>
<td>31.5.2.5.3.1</td>
<td>Variation 1: By Protic Acid Catalyzed Condensation</td>
<td>450</td>
</tr>
<tr>
<td>31.5.2.5.3.2</td>
<td>Variation 2: By Alkylation Catalyzed by Bis(trifluoromethylsulfonyl)amine</td>
<td>451</td>
</tr>
<tr>
<td>31.5.2.5.3.3</td>
<td>Variation 3: Using Solid-Supported Reagents</td>
<td>452</td>
</tr>
<tr>
<td>31.5.2.5.3.4</td>
<td>Variation 4: Using Titanium(IV) Chloride with Imines</td>
<td>453</td>
</tr>
<tr>
<td>31.5.2.5.3.5</td>
<td>Variation 5: By Mannich Reaction</td>
<td>453</td>
</tr>
<tr>
<td>31.5.2.5.4</td>
<td>Method 4: Alkylation of Phenolates</td>
<td>454</td>
</tr>
</tbody>
</table>
31.5.2.5.4.1 Variation 1: By Aldol Reaction with Aldehydes 454
31.5.2.5.4.2 Variation 2: By Michael Reaction with Enones 456
31.5.2.5.4.3 Variation 3: By Prenylation .. 457
31.5.2.5.4.4 Variation 4: By Addition of an Iron–Dienyl Complex 457
31.5.2.5.4.5 Variation 5: By Addition of an Aryllithium Followed by Deprotection 458
31.5.2.5.4.6 Variation 6: By Carboxylation .. 458
31.5.2.5.4.7 Variation 7: By Buffer-Mediated Addition 459
31.5.2.5.4.8 Variation 8: By Glycosylation under Basic Conditions 460
31.5.2.5.4.9 Variation 9: By Glycosylation under Lewis Acidic Conditions 460
31.5.2.5.5 Method 5: Enzymatic Alkylation .. 461
31.5.2.5.6 Method 6: Transition-Metal-Promoted Aryl Coupling 462
31.5.2.5.6.1 Variation 1: Under Heck Conditions 462
31.5.2.5.6.2 Variation 2: Palladium-Catalyzed Allylation 463
31.5.2.5.6.3 Variation 3: Under Stille Coupling Conditions 463
31.5.2.5.6.4 Variation 4: Rhodium(I)-Catalyzed Alkenylation 464
31.5.2.5.6.5 Variation 5: Copper-Mediated Biaryl Formation 464
31.5.2.5.6.6 Variation 6: Ruthenium(III)-Mediated Benzyla tion 465
31.5.2.5.7 Method 7: Decarboxylation .. 465

31.6

Product Class 6: Aryl Ethers

31.6.1

Product Subclass 1: Diaryl Ethers
A. W. Thomas

31.6.1

Product Subclass 1: Diaryl Ethers ... 469
31.6.1.1 Synthesis of Product Subclass 1 ... 469
31.6.1.1.1 Method 1: Reaction of Phenols with Arylbismuth Compounds 469
31.6.1.1.2 Method 2: Reaction of Phenols with Arylboron Compounds 471
31.6.1.1.3 Method 3: Reaction of Phenols with Thallium(III) Nitrate and
Some Related Oxidative Coupling Reactions 480
31.6.1.1.4 Method 4: Reaction of Phenols with Aryl Halides 486
31.6.1.1.4.1 Variation 1: With Aryl Fluorides 486
31.6.1.1.4.2 Variation 2: With Aryl Chlorides 496
31.6.1.1.4.3 Variation 3: With Aryl Bromides 499
31.6.1.1.4.4 Variation 4: With Aryl Iodides 505
31.6.1.1.4.5 Variation 5: With Hypervalent Aryliodine Compounds 509
31.6.1.1.5 Method 5: Reaction of Phenols with Aryl Sulphides 512
31.6.1.1.6 Method 6: Reactions of Sulfonyl- or Silicon-Activated Phenols 512
31.6.1.1.7 Method 7: Synthesis Using Metal–Arene Complexes 517
31.6.1.1.8 Method 8: Pummerer-Type Rearrangements 522
31.6.1.1.9 Method 9: Benzannulation Methods 523
31.6.1.1.9.1 Variation 1: Chromium Carbene Induced Benzannulation 523
31.6.1.1.9.2 Variation 2: Robinson Annulation 525
31.6.1.1.9.3 Variation 3: Other Benzannulation Methods 525
31.6.1.1.10 Method 10: Diels–Alder and Related Cycloaddition Reactions 526
31.6.1.11 Method 11: Reactions of Benzo-1,2-quinones with Aryl Grignard and Other Reagents ... 529
31.6.1.12 Method 12: Synthesis from Benzo-1,4-quinones 531
31.6.1.13 Method 13: Synthesis from Cyclohexenones and Their Derivatives 534

31.6.2 Product Subclass 2: Alkyl Aryl Ethers
C. M. R. Low

31.6.2.1 Synthesis by Substitution
C. M. R. Low

31.6.2.1 Synthesis by Substitution ... 547
31.6.2.1.1 Method 1: Synthesis by Substitution of Hydrogen 547
31.6.2.1.1.1 Variation 1: Oxidation of Arenes 547
31.6.2.1.1.2 Variation 2: Methylation of Phenols 550
31.6.2.1.1.3 Variation 3: Alkylation of Phenols 559
31.6.2.1.1.4 Variation 4: Addition of Phenols to Alkenes 576
31.6.2.1.1.5 Variation 5: Arylation of Alcohols 578
31.6.2.1.2 Method 2: Synthesis by Substitution of Organometallic Groups 579
31.6.2.1.2.1 Variation 1: Copper-Catalyzed Cross Coupling 579
31.6.2.1.2.2 Variation 2: The Ullmann Ether Synthesis 581
31.6.2.1.2.3 Variation 3: The Hartwig–Buchwald Reaction 588
31.6.2.1.2.4 Variation 4: π-Allylpalladium Reactions (Trost Reaction) 594
31.6.2.1.2.5 Variation 5: Reactions with Other Metals 603
31.6.2.1.3 Method 3: Synthesis by Substitution of Heteroatoms 609
31.6.2.1.3.1 Variation 1: Nucleophilic Aromatic Substitution of Fluorine 609
31.6.2.1.3.2 Variation 2: Nucleophilic Aromatic Substitution of Chlorine 617
31.6.2.1.3.3 Variation 3: Nucleophilic Aromatic Substitution of a Nitro Group .. 619
31.6.2.1.3.4 Variation 4: Cleavage of a Siloxy Group (Si–O Bond Cleavage) 620
31.6.2.1.3.5 Variation 5: Nucleophilic Aromatic Substitution of a Trifluoroacetoxy Group 621

31.6.2.2 Synthesis by Elimination
C. M. R. Low

31.6.2.2 Synthesis by Elimination ... 627
31.6.2.2.1 Method 1: Synthesis of Anisole from Cyclohexanone 627
31.6.2.2.2 Method 2: Synthesis of (Aryloxy)alkynes from Trihaloethenes and Phenols and of Halogenated (Aryloxy)alkenals and Derivatives 627
31.6.2.2.3 Method 3: 1-(Aryloxy)perfluoroalk-1-ynes from Phosphoranes 630
31.6.2.3 Synthesis by Rearrangement
C. M. R. Low

31.6.2.3 Synthesis by Rearrangement .. 633
31.6.2.3.1 Method 1: Synthesis from Alkynyl(phenyl)iodonium salts 633
31.6.2.3.2 Method 2: Synthesis by Enyne–Diyne Benzannulation 635

31.6.2.4 Synthesis with Retention of the Functional Group
C. M. R. Low

31.6.2.4 Synthesis with Retention of the Functional Group 637
31.6.2.4.1 Method 1: Elimination of Hydrogen Halides from the Alkyl Group 637
31.6.2.4.2 Method 2: Addition of an Aluminate to an Epoxide 638
31.6.2.4.3 Method 3: Cleavage from a Polymer-Supported Reagent 638
31.6.2.4.4 Method 4: Synthesis by Dimerization 640

31.6.2.5 Synthesis from Nonaromatic Precursors
M. Gerster and A. W. Thomas

31.6.2.5 Synthesis from Nonaromatic Precursors 643
31.6.2.5.1 Method 1: Synthesis from Cyclohex-2-enones 643
31.6.2.5.1.1 Variation 1: Aromatization of Cyclohex-2-enones Using Iodine in Methanol 643
31.6.2.5.1.2 Variation 2: Aromatization of Cyclohex-2-enones Using Iodine and Ammonium Cerium(IV) Nitrate in an Alcohol 644
31.6.2.5.1.3 Variation 3: Aromatization of Cyclohex-2-enones Using Oxovanadium Reagents in an Alcohol 645
31.6.2.5.1.4 Variation 4: Oxidation of 3-Methoxycyclohex-2-enones 646
31.6.2.5.1.5 Variation 5: Oxidative Rearrangement of Isophorone 647
31.6.2.5.1.6 Variation 6: Isomerization of α-Alkenyl-Substituted Cyclohexane-1,3-dione Enols .. 647
31.6.2.5.2 Method 2: Synthesis from Cyclohexadienones 648
31.6.2.5.2.1 Variation 1: Photorearrangement of Cyclohexa-2,5-dienones 648
31.6.2.5.2.2 Variation 2: Reaction of 6-Acetoxy cyclohexa-2,4-dienone with Organometallic Reagents .. 648
31.6.2.5.3 Method 3: Synthesis from Benzoquinones 649
31.6.2.5.3.1 Variation 1: Synthesis from Benzo-1,4-quinones by Cycloaddition 649
31.6.2.5.3.2 Variation 2: Synthesis from Benzo-1,4-quinones by Radical Addition 649
31.6.2.5.3.3 Variation 3: Synthesis from Benzo-1,2-quinones by [4 + 2] Cycloaddition with Sinapyl Alcohol Derivatives 650
31.6.2.5.3.4 Variation 4: Synthesis from 4,5-Dimethoxybenzo-1,2-quinone 650
31.6.2.5.4 Method 4: Synthesis from Cyclohexadienes 651
31.6.2.5.4.1 Variation 1: Oxidation of Cyclohexa-1,3- and Cyclohexa-1,4-dienes 651
31.6.2.5.4.2 Variation 2: Reductive Aromatization of 4,4-Dimethoxycyclohexa-2,5-dienols 652
31.6.2.5.5 Method 5: Benzannulation Methods 652
31.6.2.5.5.1 Variation 1: Synthesis of Resorcinol Derivatives by Diels–Alder Reactions 652
31.6.2.5.5.2 Variation 2: Other Cycloaromatizations 653
31.6.2.5.5.3 Variation 3: From Vinylketenes Derived from Cyclobutenones 655
31.6.2.5.5.4 Variation 4: From Vinylketenes Derived from Tricarbonyliron Complexes 656
31.6.2.5.5.5 Variation 5: From Vinylketenes Derived from \(\alpha,\beta \)-Unsaturated \(\alpha'\)-Diazoo'\(-\)silyl Ketones 656
31.6.2.5.5.6 Variation 6: Synthesis from Vinylvynloclobutenones 657
31.6.2.5.6 Method 6: Synthesis from Chromium–Carbene Complexes 658
31.6.2.5.6.1 Variation 1: Dötz Benzannulation of \(\alpha,\beta \)-Unsaturated Fischer Carbene Complexes with Alkynes 658
31.6.2.5.6.2 Variation 2: Dötz Benzannulation of \(\alpha,\beta \)-Unsaturated Fischer Carbene Complexes with Ketene Acetals 659
31.6.2.5.6.3 Variation 3: Dötz Benzannulation of Chromium–Arylcarbene Complexes with Alkynes 660
31.6.2.5.6.4 Variation 4: Cycloaddition/Benzannulation Reactions of Chromium–Alkynylcarbene Complexes with Dienes 661
31.6.2.5.6.5 Variation 5: [5 + 5] Cycloadditions of Chromium–(Alkynylaryl)carbene Complexes with Enyne Aldehydes 662
31.6.2.5.6.6 Variation 6: Intramolecular Dötz Reactions 662

31.7 Product Class 7: Aryl Hypohalites, Aryl Peroxides, and Aryloxy Sulfur Compounds
J. Chen and C. K.-F. Chiu

31.7 Product Class 7: Aryl Hypohalites, Aryl Peroxides, and Aryloxy Sulfur Compounds 665

31.7.1 Product Subclass 1: Aryl Hypohalites 665

31.7.1.1 Synthesis of Product Subclass 1 665

31.7.1.1.1 Method 1: Synthesis by Formation of the Ar–O–Hal Bond 665

31.7.2 Product Subclass 2: Aryl Peroxides 666

31.7.2.1 Synthesis of Product Subclass 2 666

31.7.2.1.1 Method 1: Synthesis by Formation of the Ar–O–OR Bond 666

31.7.2.1.1.1 Variation 1: Air Oxidation 666

31.7.2.1.1.2 Variation 2: Photo-Oxygenation 667

31.7.2.1.1.3 Variation 3: Oxidation with 3-Chloroperoxybenzoic Acid 668

31.7.2.1.1.4 Variation 4: S\(_\text{N}2\) Displacement of Activated Aryl Halides by Hydroperoxides 668

31.7.2.1.2 Method 2: Synthesis by Formation of the Ar–O–OR Bond 670

31.7.3 Product Subclass 3: (Aryloxy)sulfur Polyhalides 671

31.7.3.1 Synthesis of Product Subclass 3 671

31.7.3.1.1 Method 1: Synthesis by Formation of the Ar–O–SH Bond 671

31.7.3.1.2 Method 2: Synthesis by Formation of the Ar–O–SH Bond 671

31.7.4 Product Subclass 4: Aryl Halosulfonates 672

31.7.4.1 Synthesis of Product Subclass 4 673
31.7.4.1.1 Method 1: Synthesis by Formation of the ArOSO₂Hal Bond 673
31.7.4.1.1 Variation 1: Via Arenediazonium Salts 673
31.7.4.1.1 Variation 2: Via Oxidation of Arenes 673
31.7.4.1.2 Method 2: Synthesis by Formation of the ArO—SO₂Hal Bond 674

31.7.4.2 Applications of Product Subclass 4 in Organic Synthesis 676

31.7.4.2.1 Method 1: Palladium-Mediated Cross Coupling 676
31.7.4.2.2 Method 2: Palladium-Mediated Alkoxycarbonylation 677
31.7.4.2.3 Method 3: Synthesis of Diaryl Sulfates and O-Aryl Sulfamates 678

31.7.5 Product Subclass 5: Aryl Sulfates .. 679

31.7.5.1 Synthesis of Product Subclass 5 .. 679
31.7.5.1.1 Method 1: Synthesis by Formation of the ArOSO₂OR Bond 679
31.7.5.1.2 Method 2: Synthesis by Formation of the ArO—SO₂OR Bond 680
31.7.5.1.2.1 Variation 1: Via an Amine–Sulfur Trioxide Complex 680
31.7.5.1.2.2 Variation 2: Via Alkyl Chlorosulfonates 681
31.7.5.1.2.3 Variation 3: Via Sulfonyl Chloride 684
31.7.5.1.3 Method 3: Synthesis by Formation of the ArOSO₂—OR Bond 685
31.7.5.2 Applications of Product Subclass 5 in Organic Synthesis 685
31.7.5.2.1 Method 1: Synthesis of Sulfamates Using Catechol Sulfate 686
31.7.5.2.2 Method 2: Synthesis of 5¢-Aminoadenosines Using Bis(1H-benzotriazol-1-yl) Sulfate 686

31.7.6 Product Subclass 6: Aryl Thiosulfates 687

31.7.7 Product Subclass 7: Aryl Sulfamates ... 687

31.7.7.1 Synthesis of Product Subclass 7 .. 688
31.7.7.1.1 Method 1: Synthesis by Formation of the ArOS(O)₂—NR Bond 688
31.7.7.1.2 Variation 1: O-4-Nitrophenyl Sulfamates from 4-Nitrophenyl Chlorosulfonate 688
31.7.7.1.2 Variation 2: O-2-Hydroxyphenyl Sulfamates from Catechol Sulfate 689
31.7.7.1.3 Variation 3: O-Aryl Sulfamates from O-Aryl Chlorosulfonates:
Lewis Acid Catalyzed Amination .. 689
31.7.7.1.2 Method 2: Synthesis by Formation of the ArO—S(O)₂NR Bond 690
31.7.7.1.2.1 Variation 1: O-Aryl Sulfamates via Reaction of Phenols with Sulfamoyl Chloride 690
31.7.7.1.2.2 Variation 2: O-Aryl Sulfamates via Reaction of Phenols with Chlorosulfonyl Isocyanate Followed by Hydrolysis 691
31.7.7.1.2.3 Variation 3: O-Aryl Sulfamates via Aryloxy sulfonyl Azides 691
31.7.7.2 Applications of Product Subclass 7 in Organic Synthesis 691
31.7.7.2.1 Method 1: Synthesis of Hydroxyaryl Sulfonamides via Fries-Type Rearrangement of N,N-Dialkylsulfamates 692
31.7.7.2.2 Method 2: Synthesis of Sulfamates and Sulfamides via Nucleophilic Displacement of O-Aryl Sulfamates 692
31.7.7.2.3 Method 3: O-Aryl Sulfamates as Precursors of Nitrenes for C—H Bond Insertion: Elaboration of Complex O-Aryl Sulfamates 693
31.7.8 Product Subclass 8: (Aryloxy)trifluorooxo-α-Sulfanes .. 694
31.7.8.1 Synthesis of Product Subclass 8 .. 694
31.7.8.1.1 Method 1: Formation of the Ar1O=S(O)Hal Bond 694
31.7.9 Product Subclass 9: Aryl Halosulfites .. 695
31.7.9.1 Synthesis of Product Subclass 9 .. 695
31.7.9.1.1 Method 1: Synthesis by Formation of the Ar1O=S(O)Hal Bond 695
31.7.9.1.2 Method 2: Synthesis by Formation of the Ar1OS(O)=Hal Bond 695
31.7.9.1.3 Method 3: Synthesis by Formation of the Ar1OS(=O)Hal Bond 696
31.7.9.2 Applications of Product Subclass 9 in Organic Synthesis 696
31.7.9.2.1 Method 1: Activation of Dimethyl Sulfoxide by Phenyl Chlorosulfite Leading to Selective ortho-(Methylsulfanyl)methylation of the Parent Phenol ... 696
31.7.10 Product Subclass 10: Aryl Sulfites ... 697
31.7.10.1 Synthesis of Product Subclass 10 .. 698
31.7.10.1.1 Method 1: Symmetrical Diaryl Sulfites by Formation of (Ar1O)2=S(O) Bonds ... 698
31.7.10.2 Applications of Product Subclass 10 in Organic Synthesis 699
31.7.10.2.1 Method 1: Use of Di(2-pyridyl) Sulfite in Dehydration Reactions 699
31.7.10.2.2 Method 2: Use of Di(2-pyridyl) Sulfite in Condensation Reactions 699
31.7.11 Product Subclass 11: O-Aryl Thiosulfites ... 700
31.7.11.1 Synthesis of Product Subclass 11 .. 700
31.7.11.1.1 Method 1: Synthesis by Formation of the Ar1OS(O)−SR1 Bond 700
31.7.11.1.1.1 Variation 1: Reaction of Aryl Halosulfites with Alkanethiols 700
31.7.11.1.1.2 Variation 2: Reaction of an Aryl Halosulfite with a Thiocarboxylic Acid 701
31.7.12 Product Subclass 12: Aryl Amidosulfites ... 701
31.7.12.1 Synthesis of Product Subclass 12 .. 701
31.7.12.1.1 Method 1: Synthesis by Formation of the Ar1OS(O)−NR12 Bond 701
31.8 Product Class 8: Cyclic Aryl Ethers
D. Craig

31.8 Product Class 8: Cyclic Aryl Ethers .. 705
31.8.1 Product Subclass 1: Cyclic Aryl Ethers with One sp²-Carbon—Oxygen Bond and One sp³-Carbon—Oxygen Bond ... 706
31.8.1.1 Synthesis of Product Subclass 1 .. 706
31.8.1.1.1 Method 1: Synthesis by Noncatalytic Ring Closure via Formation of an sp²-Carbon—Oxygen Bond ... 706
31.8.1.1.1.1 Variation 1: Intramolecular Addition of Alcohols to Benzyne Intermediates 706
31.8.1.1.1.2 Variation 2: Intramolecular Nucleophilic Aromatic Substitution Reactions 707
31.8.1.1.2 Method 2: Synthesis by Catalytic Ring Closure via Formation of an sp²-Carbon—Oxygen Bond ... 709
31.8.1.2.1 Variation 1: Palladium-Catalyzed Reactions .. 709
31.8.1.2.2 Variation 2: Copper-Catalyzed Reactions .. 711
31.8.1.3 Method 3: Synthesis by Ring Closure via Formation of an sp³-Carbon—Oxygen Bond .. 712
31.8.1.3.1 Variation 1: Intramolecular Nucleophilic Substitution .. 712
31.8.1.4 Method 4: Synthesis by Ring Closure via Formation of an Aryl Carbon—Non-Aryl Carbon Bond .. 718
31.8.1.4.1 Variation 1: Metal-Catalyzed Cyclization .. 718
31.8.1.4.2 Variation 2: Heck Reaction .. 719
31.8.1.4.3 Variation 3: Radical Cyclization .. 720
31.8.1.5 Method 5: Synthesis by Ring Closure via Formation of a Non-Aryl Carbon—Non-Aryl Carbon Bond .. 720
31.8.1.5.1 Variation 1: Ring-Closing Alkene Metathesis .. 720
31.8.1.6 Method 6: Synthesis by Cycloaddition .. 721

31.8.2 Product Subclass 2: Cyclic Aryl Ethers with Two sp²-Carbon—Oxygen Bonds .. 722
31.8.2.1 Synthesis of Product Subclass 2 .. 722
31.8.2.1.1 Method 1: Synthesis by Ring Closure via Formation of a Carbon—Oxygen Bond .. 722
31.8.2.1.2 Method 2: Synthesis by Ring Closure via Formation of an Aryl Carbon—Non-Aryl Carbon Bond .. 724
31.8.2.1.2.1 Variation 1: Aromatic Substitution .. 725
31.8.2.1.2.2 Variation 2: Metal-Assisted Processes .. 725
31.8.2.1.3 Method 3: Synthesis by Ring Closure via Formation of a Non-Aryl Carbon—Non-Aryl Carbon Bond .. 726
31.8.2.1.4 Method 4: Synthesis by Reduction .. 726

31.8.3 Product Subclass 3: Cyclic Aryl Ethers with Two sp²-Carbon—Oxygen Bonds and Two sp³-Carbon—Oxygen Bonds .. 727
31.8.3.1 Synthesis of Product Subclass 3 .. 727
31.8.3.1.1 Method 1: Synthesis by Ring Closure via Formation of an sp²-Carbon—Oxygen Bond .. 727
31.8.3.1.2 Method 2: Synthesis by Ring Closure via Formation of an sp³-Carbon—Oxygen Bond .. 729

31.8.4 Product Subclass 4: Cyclic Aryl Ethers with Three sp²-Carbon—Oxygen Bonds and One sp³-Carbon—Oxygen Bond .. 732
31.8.4.1 Synthesis of Product Subclass 4 .. 732
31.8.4.1.1 Method 1: Synthesis by Ring Closure via Formation of an sp²-Carbon—Oxygen Bond .. 732
31.8.4.1.2 Method 2: Synthesis by Ring Closure via Formation of an sp³-Carbon—Oxygen Bond .. 733

31.8.5 Product Subclass 5: Cyclic Aryl Ethers with One sp²-Carbon—Oxygen Bond and Three sp³-Carbon—Oxygen Bonds .. 733
31.8.5.1 Synthesis of Product Subclass 5 .. 733
31.8.5.1.1 Method 1: Synthesis by Ring Closure via Formation of an sp³-Carbon—Oxygen Bond .. 733
31.9

Product Class 9: Arenesulfonic Acids and Derivatives

31.9.1

Product Subclass 1: Arenesulfonic Acids and Arenesulfonate Salts

B. Fravel, R. Murugan, and E. F. V. Scriven

31.9.1.1

Synthesis of Product Subclass 1 ... 741

31.9.1.1.1

Method 1:

Sulfonation

741

31.9.1.1.1.1

Variation 1:

With Sulfur Trioxide

741

31.9.1.1.1.2

Variation 2:

With Sulfur Trioxide Complexes

742

31.9.1.1.1.3

Variation 3:

With Oleum

744

31.9.1.1.1.4

Variation 4:

With Fuming Sulfuric Acid

745

31.9.1.1.1.5

Variation 5:

With Concentrated Sulfuric Acid or Chlorosulfonic Acid

745

31.9.1.1.1.6

Variation 6:

With Sulfamic Acid

751

31.9.1.1.2

Method 2:

Substitution of Halogen by Sulfite Ions

751

31.9.1.1.3

Method 3:

The Jacobsen Reaction

752

31.9.1.1.4

Method 4:

Oxidation of Sulfur-Containing Substituents

753

31.9.1.1.4.1

Variation 1:

Of Thiols

754

31.9.1.1.4.2

Variation 2:

Of Sulfides

757

31.9.1.1.4.3

Variation 3:

Of Disulfides

758

31.9.1.1.4.4

Variation 4:

Of Sulfoxides

760

31.9.1.1.4.5

Variation 5:

Of Sulfones

760

31.9.1.1.4.6

Variation 6:

Of Sulfonic Acids

760

31.9.1.1.5

Method 5:

Hydrolysis of Sulfonic Acid Chlorides, Esters, and Amides

761

31.9.1.1.6

Method 6:

Removal of Halogens by Reduction

762

31.9.1.1.7

Method 7:

Removal of Amino Groups

763

31.9.1.1.8

Method 8:

Synthesis of Haloarenesulfonic Acids by Diazo Reaction

763

31.9.1.1.9

Method 9:

Synthesis Mediated by Diazonium Salts

764

31.9.1.1.9.1

Variation 1:

Of Hydroxyarenesulfonic Acids

764

31.9.1.1.9.2

Variation 2:

Of Alkoxyarenesulfonic Acids

765

31.9.1.1.10

Method 10:

Synthesis from Organometallic Compounds

765

31.9.1.2

Applications of Product Subclass 1 in Organic Synthesis

766

31.9.1.2.1

Method 1:

Without Any Transformation

767

31.9.1.2.2

Method 2:

With Further Transformation

768

31.9.2

Product Subclass 2: Arenesulfonic Acid Derivatives

I. Shcherbakova

31.9.2.1

Synthesis of Product Subclass 2 ... 775

31.9.2.1.1

Arylsulfur Pentahalides

775

31.9.2.1.1.1

Method 1:

Synthesis via Fluorination of Diaryl Disulfides

775

31.9.2.1.1.1.1

Variation 1:

Oxidative Fluorination with Silver(II) Fluoride

776

31.9.2.1.1.1.2

Variation 2:

Oxidative Fluorination with Fluorine

777
<table>
<thead>
<tr>
<th>Section</th>
<th>Method</th>
<th>Synthesis/Reaction</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>31.9.2.1.2</td>
<td>Method 2:</td>
<td>Synthesis from Cyclohexylsulfur Pentafluorides or Cyclohexa-1,4-dienylsulfur Pentafluorides</td>
<td>777</td>
</tr>
<tr>
<td>31.9.2.1.2.1</td>
<td>Variation 1:</td>
<td>Dehydrohalogenation of 2,4,5-Trihalocyclohexylsulfur Pentafluorides</td>
<td>777</td>
</tr>
<tr>
<td>31.9.2.1.2.2</td>
<td>Variation 2:</td>
<td>Dehydrogenation of Cyclohexa-1,4-dienylsulfur Pentafluorides</td>
<td>778</td>
</tr>
<tr>
<td>31.9.2.1.2</td>
<td>Arenesulfonyl Halides</td>
<td></td>
<td>779</td>
</tr>
<tr>
<td>31.9.2.1.2.1</td>
<td>Method 1:</td>
<td>Synthesis from Arenes via Electrophilic Aromatic Substitution of Hydrogen</td>
<td>779</td>
</tr>
<tr>
<td>31.9.2.1.2.1.1</td>
<td>Variation 1:</td>
<td>Reaction with Halosulfonic Acids</td>
<td>780</td>
</tr>
<tr>
<td>31.9.2.1.2.1.2</td>
<td>Variation 2:</td>
<td>Reaction with Chlorosulfonic Acid and Sodium Chloride</td>
<td>781</td>
</tr>
<tr>
<td>31.9.2.1.2.2</td>
<td>Method 2:</td>
<td>Synthesis from Arenes via Electrophilic Substitution of Aryl Organometallic Compounds</td>
<td>781</td>
</tr>
<tr>
<td>31.9.2.1.2.2.1</td>
<td>Variation 1:</td>
<td>Synthesis from Aryltrimethylsilanes and Trimethylsilyl Chlorosulfonate</td>
<td>781</td>
</tr>
<tr>
<td>31.9.2.1.2.2.2</td>
<td>Variation 2:</td>
<td>Synthesis from Aryl Grignard Reagents, Sulfur Dioxide, and Sulfuryl Chloride</td>
<td>782</td>
</tr>
<tr>
<td>31.9.2.1.2.2.3</td>
<td>Variation 3:</td>
<td>Synthesis from Aryllithium Reagents and Sulfuryl Chloride</td>
<td>783</td>
</tr>
<tr>
<td>31.9.2.1.2.2.4</td>
<td>Variation 4:</td>
<td>Synthesis from Aryllithium Reagents, Sulfur Dioxide, and Sulfuryl Chloride</td>
<td>783</td>
</tr>
<tr>
<td>31.9.2.1.2.2.5</td>
<td>Variation 5:</td>
<td>Synthesis from Aryllithium Reagents, Sulfur Dioxide, and N-Chlorosuccinimide</td>
<td>784</td>
</tr>
<tr>
<td>31.9.2.1.2.3</td>
<td>Method 3:</td>
<td>Electrophilic Substitution of Trialkyl(aryl)stannanes with Sulfuryl Chloride</td>
<td>785</td>
</tr>
<tr>
<td>31.9.2.1.2.4</td>
<td>Method 4:</td>
<td>Synthesis from Arenediazonium Halides (Meerwein Reaction)</td>
<td>786</td>
</tr>
<tr>
<td>31.9.2.1.2.5</td>
<td>Method 5:</td>
<td>Halogenation of Arenesulfonic Acids</td>
<td>788</td>
</tr>
<tr>
<td>31.9.2.1.2.5.1</td>
<td>Variation 1:</td>
<td>Reaction with Chlorosulfonic Acid and Thionyl Chloride</td>
<td>788</td>
</tr>
<tr>
<td>31.9.2.1.2.5.2</td>
<td>Variation 2:</td>
<td>Reaction with Phosphorus Pentachloride</td>
<td>789</td>
</tr>
<tr>
<td>31.9.2.1.2.6</td>
<td>Method 6:</td>
<td>Halogenation of Arenesulfonic Acid Salts</td>
<td>789</td>
</tr>
<tr>
<td>31.9.2.1.2.6.1</td>
<td>Variation 1:</td>
<td>Reaction with Halosulfonic Acids</td>
<td>789</td>
</tr>
<tr>
<td>31.9.2.1.2.6.2</td>
<td>Variation 2:</td>
<td>Reaction with Phosphorus Pentachloride</td>
<td>790</td>
</tr>
<tr>
<td>31.9.2.1.2.6.3</td>
<td>Variation 3:</td>
<td>Reaction with Phosphoryl Chloride</td>
<td>790</td>
</tr>
<tr>
<td>31.9.2.1.2.7</td>
<td>Method 7:</td>
<td>Halogenation of Arenesulfonfonylhydrazides</td>
<td>791</td>
</tr>
<tr>
<td>31.9.2.1.2.8</td>
<td>Method 8:</td>
<td>Oxidative Halogenation of Arenenethiols</td>
<td>792</td>
</tr>
<tr>
<td>31.9.2.1.2.9</td>
<td>Method 9:</td>
<td>Oxidative Cleavage of Aryl Sulfides and Diaryl Disulfides</td>
<td>792</td>
</tr>
<tr>
<td>31.9.2.1.2.9.1</td>
<td>Variation 1:</td>
<td>Reaction with Chlorine</td>
<td>792</td>
</tr>
<tr>
<td>31.9.2.1.2.9.2</td>
<td>Variation 2:</td>
<td>Reaction with N-Chlorosuccinimide</td>
<td>793</td>
</tr>
<tr>
<td>31.9.2.1.2.9.3</td>
<td>Variation 3:</td>
<td>Reaction with Iodosobenzene, Hydrogen Chloride, and Silica Gel</td>
<td>793</td>
</tr>
<tr>
<td>31.9.2.1.10</td>
<td>Method 10:</td>
<td>Oxidative Halogenation of Arenesulfonic Acids or Arenesulfonic Acid Salts</td>
<td>794</td>
</tr>
<tr>
<td>31.9.2.1.10.1</td>
<td>Variation 1:</td>
<td>Reaction with Halogens</td>
<td>794</td>
</tr>
<tr>
<td>31.9.2.1.10.2</td>
<td>Variation 2:</td>
<td>Reaction with N-Chlorosuccinimide</td>
<td>794</td>
</tr>
<tr>
<td>31.9.2.1.11</td>
<td>Method 11:</td>
<td>Halogen Exchange of Arenesulfonaryl Chlorides</td>
<td>795</td>
</tr>
<tr>
<td>31.9.2.1.11.1</td>
<td>Variation 1:</td>
<td>Chlorine–Fluorine Exchange</td>
<td>795</td>
</tr>
<tr>
<td>31.9.2.1.11.2</td>
<td>Variation 2:</td>
<td>Chlorine–Bromine Exchange</td>
<td>796</td>
</tr>
<tr>
<td>31.9.2.1.3</td>
<td>Arenesulfonates, Arenesulfonic Anhydrides, and Arenesulfonyl Peroxides</td>
<td>796</td>
<td></td>
</tr>
</tbody>
</table>
31.9.2.1.3.1 Method 1: Arenesulfonates from Arenesulfonyl Halides 796
31.9.2.1.3.2 Method 2: Arenesulfonates via Alkylation of Arenesulfonic Acids 797
31.9.2.1.3.2.1 Variation 1: Reaction with Diazooalkanes 798
31.9.2.1.3.2.2 Variation 2: Reaction with Resin-Bound Primary N-Alkyltriazenes 798
31.9.2.1.3.2.3 Variation 3: Reaction with Ortho Esters 799
31.9.2.1.3.2.4 Variation 4: Reaction with Diethyl Carbonate 799
31.9.2.1.3.2.5 Variation 5: Reaction with Trialkyl Phosphates 800
31.9.2.1.3.2.6 Variation 6: Reaction with Dialkyl Acylphosphonates 800
31.9.2.1.3.3 Method 3: Arenesulfonates via Reaction of Arenesulfonic Acids with Alcohols .. 801
31.9.2.1.3.3.1 Variation 1: Synthesis Catalyzed by Silica Chloride 801
31.9.2.1.3.3.2 Variation 2: Synthesis Catalyzed by Iron(III)-Exchanged Montmorillonite Clay .. 802
31.9.2.1.3.4 Method 4: Arenesulfonates from Arenesulfonic Acid Salts 802
31.9.2.1.3.4.1 Variation 1: Reaction with Alkyl Halides 802
31.9.2.1.3.4.2 Variation 2: Reaction with Pentafluorophenol 803
31.9.2.1.3.5 Method 5: Arenesulfonates from Arenesulfonic Anhydrides 803
31.9.2.1.3.6 Method 6: Arenesulfonates from Arenesulfonamides 804
31.9.2.1.3.7 Method 7: Arenesulfonates via Oxidation of Arenesulfonates 805
31.9.2.1.3.8 Method 8: Arenesulfonic Anhydrides from Arenes 805
31.9.2.1.3.9 Method 9: Arenesulfonic Anhydrides from Arenesulfonic Acids 806
31.9.2.1.3.10 Method 10: Arenesulfonic Anhydrides via Oxidation of Diaryl Disulfides 806
31.9.2.1.3.11 Method 11: Arenesulfonaryl Peroxides via Oxidation of Arenesulfonaryl Chlorides .. 807
31.9.2.1.4 Arenesulfonamides, N-Haloarenesulfonamides, N-Hydroxyarenesulfonamides, and N-Oxoarenesulfonamides 807
31.9.2.1.4.1 Method 1: Arenesulfonamides from Arenes via Electrophilic Substitution of Hydrogen .. 808
31.9.2.1.4.1.1 Variation 1: Reaction with Sulfamoyl Chlorides 808
31.9.2.1.4.1.2 Variation 2: Thia-Fries Rearrangement of Phenyl Dialkylsulfamates 809
31.9.2.1.4.2 Method 2: Electrophilic Substitution of Aryltrimethylsilanes with Sulfamoyl Chloride .. 810
31.9.2.1.4.3 Method 3: Electrophilic Substitution of Trialkyl(aryl)stannanes with Chlorosulfonaryl Isocyanate 810
31.9.2.1.4.4 Method 4: Arenesulfonamides from Arenesulfinic Acid Salts 811
31.9.2.1.4.4.1 Variation 1: Reaction with N-Chlorodialkylamines 811
31.9.2.1.4.4.2 Variation 2: Reaction with Hydroxylamine-O-sulfonic Acid 811
31.9.2.1.4.5 Method 5: Arenesulfonamides from Arenesulfonyl Halides 812
31.9.2.1.4.5.1 Variation 1: Reaction with Ammonia 812
31.9.2.1.4.5.2 Variation 2: Reaction with Amino-Functionalized Resins 813
31.9.2.1.4.5.3 Variation 3: Reaction with Primary Amines 813
31.9.2.1.4.5.4 Variation 4: Reaction with Resin-Bound Secondary Amines 814
31.9.2.1.4.5.5 Variation 5: Reaction with Secondary Amines 814
31.9.2.1.4.6 Method 6: Arenesulfonamides from Arenesulfonic Acid Salts 815
31.9.2.1.4.7 Method 7: Arenesulfonamides via Reduction of Arenesulfonyl Azides 815
31.9.2.1.4.8 Method 8: N-Substituted Arenesulfonamides from Arenesulfonamides 817
31.9.2.1.4.8.1 Variation 1: N-Alkylation with Alkyl Halides 817
31.9.2.1.4.8.2 Variation 2: N-Alkylation with Alcohols 817
31.9.2.1.4.8.3 Variation 3: N-Arylation with Trimethylsilylaryl Trifluoromethanesulfonates 818
31.9.2.1.4.8.4 Variation 4: N-Arylation with Arylboronic Acids 819
31.9.2.1.4.8.5 Variation 5: N-Arylation with Bromoarenes 820
31.9.2.1.4.9 Method 9: Arenesulfonamides from N-Substituted Arenesulfonamides 820
31.9.2.1.4.9.1 Variation 1: N-Dealkylation of N-Alkylarenensulfonamides 821
31.9.2.1.4.9.2 Variation 2: Reaction of 1-(Phenylsulfonyl)-1H-Benzotriazole or 1-(Arylsulfonyl)-3-methylimidazolium Chlorides with Amines 821
31.9.2.1.4.10 Method 10: N-Haloarenensulfonamides via N-Halogenation of Arenesulfonamides 821
31.9.2.1.4.10.1 Variation 1: Reaction with Halogens 821
31.9.2.1.4.10.2 Variation 2: Reaction with Hypohalites 822
31.9.2.1.4.11 Method 11: N-Hydroxyarenensulfonamides via Reaction of Arenesulfonyl Chlorides with Hydroxylamines 823
31.9.2.1.4.12 Method 12: N-Oxoarenensulfonamides via Reaction of Arenesulfonic Acids with Dinitrogen Tetroxide 823

31.9.2.1.5 Arenesulfonylhydrazides, N-Nitrosoarenensulfonamides, and N-Nitroarenensulfonamides 824
31.9.2.1.5.1 Method 1: Arenesulfonylhydrazides from Arenesulfonyl Halides 824
31.9.2.1.5.2 Method 2: N-Nitrosoarenensulfonamides via Nitrosation of Arenesulfonamides with Nitrous Acid 825
31.9.2.1.5.3 Method 3: N-Nitroarenensulfonamides via Nitration of Arenesulfonamides with Nitric Acid 825
31.9.2.1.6 Arenesulfonyl Azides 826
31.9.2.1.6.1 Method 1: Synthesis from Arenesulfonyl Chlorides and Sodium Azide 826
31.9.2.1.6.2 Method 2: Synthesis from Arenesulfonylhydrazides and Nitrous Acid 827

31.10 Product Class 10: Aryl Sulfones and Nitrogen Derivatives
S. Nakamura and T. Toru

31.10 Product Class 10: Aryl Sulfones and Nitrogen Derivatives 833
31.10.1 Product Subclass 1: Aryl Sulfones 833
31.10.1.1 Synthesis of Product Subclass 1 833
31.10.1.1.1 Method 1: Synthesis by Formation of the C—S Bond 833
31.10.1.1.1.1 Variation 1: Addition of Arenesulfonic Acids to Alkenes and Alkynes 833
31.10.1.1.1.2 Variation 2: Nucleophilic Displacement with Arenesulfinates 834
31.10.1.1.1.3 Variation 3: Addition of Arenesulfonyl Radicals to Alkenes and Alkynes 836
31.10.1.1.1.4 Variation 4: Reaction of Arenesulfonic Esters or Arenesulfonyl Halides with Nucleophiles 837
31.10.1.1.1.5 Variation 5: Rearrangement of Arenesulfonic Esters 839
31.10.1.1.2 Method 2: Oxidation of Aryl Sulfides and Sulfoxides 840
31.10.1.1.3 Method 3: Synthesis from α,β- Unsaturated Sulfones 841
31.10.1.1.3.1 Variation 1: Nucleophilic Addition to α,β-Unsaturated Sulfones 841
31.10.1.1.3.2 Variation 2: Radical Addition to α,β-Unsaturated Sulfones 843
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>31.10.1.3.3</td>
<td>Variation 3: Cycloaddition of (\alpha,\beta)-Unsaturated Sulfones</td>
<td>844</td>
</tr>
<tr>
<td>31.10.1.2</td>
<td>Applications of Product Subclass 1 in Organic Synthesis</td>
<td>849</td>
</tr>
<tr>
<td>31.10.1.2.1</td>
<td>Method 1: Reaction of (\alpha)-Arylsulfonyl Carbanions</td>
<td>849</td>
</tr>
<tr>
<td>31.10.1.2.1.1</td>
<td>Variation 1: Protonation of (\alpha)-Arylsulfonyl Carbanions</td>
<td>850</td>
</tr>
<tr>
<td>31.10.1.2.1.2</td>
<td>Variation 2: Alkylation of (\alpha)-Arylsulfonyl Carbanions</td>
<td>851</td>
</tr>
<tr>
<td>31.10.1.2.1.3</td>
<td>Variation 3: Michael Addition of (\alpha)-Arylsulfonyl Carbanions</td>
<td>853</td>
</tr>
<tr>
<td>31.10.1.2.1.4</td>
<td>Variation 4: Reaction of (\alpha)-Arylsulfonyl Carbanions with Carbonyl Compounds</td>
<td>855</td>
</tr>
<tr>
<td>31.10.1.2.2</td>
<td>Method 2: Elimination of Arylsulfonyl Groups To Give Alkenes</td>
<td>856</td>
</tr>
<tr>
<td>31.10.1.2.3</td>
<td>Method 3: Reductive Elimination of Arylsulfonyl Groups</td>
<td>859</td>
</tr>
<tr>
<td>31.10.2</td>
<td>Product Subclass 2: (S)-Arylsulfoximides</td>
<td>860</td>
</tr>
<tr>
<td>31.10.2.1</td>
<td>Synthesis of Product Subclass 2</td>
<td>860</td>
</tr>
<tr>
<td>31.10.2.1.1</td>
<td>Method 1: Nucleophilic Substitution of Arenesulfinimidoyl Halides and Sulfonimidates</td>
<td>861</td>
</tr>
<tr>
<td>31.10.2.1.2</td>
<td>Method 2: Oxidation of (S)-Arylsulfimides</td>
<td>861</td>
</tr>
<tr>
<td>31.10.2.1.3</td>
<td>Method 3: Imination of Aryl Sulfoxides</td>
<td>862</td>
</tr>
<tr>
<td>31.10.2.1.4</td>
<td>Method 4: N-Alkylation and N-Arylation of (S)-Arylsulfoximides</td>
<td>864</td>
</tr>
<tr>
<td>31.10.2.1.5</td>
<td>Method 5: Optical Resolution of Chiral (S)-Arylsulfoximides</td>
<td>865</td>
</tr>
<tr>
<td>31.10.2.2</td>
<td>Applications of Product Subclass 2 in Organic Synthesis</td>
<td>865</td>
</tr>
<tr>
<td>31.10.2.2.1</td>
<td>Method 1: Reactions of (\alpha)-Carbanions Derived from (S)-Arylsulfoximides</td>
<td>866</td>
</tr>
<tr>
<td>31.10.2.2.2</td>
<td>Method 2: Reductive Elimination of (S)-Arylsulfoximides</td>
<td>867</td>
</tr>
<tr>
<td>31.10.2.2.3</td>
<td>Method 3: Catalytic Enantioselective Reactions Using Chiral (S)-Arylsulfoximides</td>
<td>868</td>
</tr>
<tr>
<td>31.10.3</td>
<td>Product Subclass 3: Arylsulfonediimines</td>
<td>869</td>
</tr>
<tr>
<td>31.10.3.1</td>
<td>Synthesis of Product Subclass 3</td>
<td>869</td>
</tr>
<tr>
<td>31.10.3.1.1</td>
<td>Method 1: Imination of (S)-Arylsulfimides</td>
<td>869</td>
</tr>
<tr>
<td>31.10.3.2</td>
<td>Applications of Product Subclass 3 in Organic Synthesis</td>
<td>870</td>
</tr>
<tr>
<td>31.10.3.2.1</td>
<td>Method 1: Reactions of Arylsulfonediimines</td>
<td>870</td>
</tr>
</tbody>
</table>

31.11

Product Class 11: Arenesulfonic Acids and Derivatives
S. Nakamura and T. Toru

31.11

Product Class 11: Arenesulfonic Acids and Derivatives | 879 |
31.11.1	Product Subclass 1: Arenesulfinyl Chlorides	879
31.11.1.1	Synthesis of Product Subclass 1	879
31.11.1.1.1	Method 1: Synthesis from Arenesulfonic Acids and Their Derivatives	879
31.11.1.1.2	Method 2: Chlorination of Diaryl Disulfides	880
31.11.1.1.3	Method 3: Sulfination of Aromatic Compounds	881
31.11.1.2	Applications of Product Subclass 1 in Organic Synthesis	882
31.11.1.2.1	Method 1: Reaction of Arenesulfinyl Chlorides with Nucleophiles	882
31.11.2	Product Subclass 2: Arenesulfonic Acids	883
31.11.2.1	Synthesis of Product Subclass 2	883
31.11.2.1 Method 1: Reduction of Arenesulfonyl Halides 883
31.11.2.1.1 Method 1: Reduction of Arenesulfonyl Halides 883
31.11.2.2 Method 2: Hydrolysis of Arenesulfinic Acid Esters and
Arenesulfinyl Halides 884
31.11.2.1.2 Method 2: Oxidation and Reduction of Arenesulfinic Acids 886
31.11.2.2.1 Method 1: Nucleophilic Reaction of Arenesulfinic Acids and
Their Salts with Electrophiles 884
31.11.2.2.2 Method 2: Oxidation and Reduction of Arenesulfinic Acids 886
31.11.3 Product Subclass 3: Arenesulfinic Acid Esters 887
31.11.3.1 Synthesis of Product Subclass 3 ... 887
31.11.3.1.1 Method 1: Condensation of Arenesulfinic Acids and Alcohols 887
31.11.3.1.2 Method 2: Oxidation of Arenethiols or Aryl Disulfides 888
31.11.3.1.3 Method 3: Reaction of Aregesulfenyl Chlorides with Alcohols 888
31.11.3.1.3.1 Variation 1: Reaction of Aregesulfenyl Chlorides with Menthol 888
31.11.3.1.3.2 Variation 2: Reaction of Aregesulfenyl Chlorides with Other Chiral Alcohols 889
31.11.3.1.3.3 Variation 3: Reaction of Aregesulfenyl Chlorides with Chiral Alcohols through Reduction of Arenesulfonyl Chlorides 890
31.11.3.1.3.4 Variation 4: Enantioselective Reaction of Aregesulfenyl Chlorides and Alcohols with Chiral Bases 891
31.11.3.1.4 Method 4: Ring Opening of Chiral Sulfites 893
31.11.3.2 Applications of Product Subclass 3 in Organic Synthesis 894
31.11.3.2.1 Method 1: Reaction with Organometallic Reagents 894
31.11.4 Product Subclass 4: Arenesulfinamides 896
31.11.4.1 Synthesis of Product Subclass 4 ... 896
31.11.4.1.1 Method 1: Reaction of Aregesulfenyl Chlorides with Amines 896
31.11.4.1.2 Method 2: Substitution Reactions of Various Aregesulfenyl Derivatives 898
31.11.4.1.3 Method 3: Oxidation of Arenesulfenamides 899
31.11.4.1.4 Method 4: Nucleophilic Addition of Grignard Reagents to
N-Thionylanilines .. 900
31.11.4.2 Applications of Product Subclass 4 in Organic Synthesis 900
31.11.4.2.1 Method 1: Reaction with Nucleophiles 900
31.11.4.2.2 Method 2: Reaction with Alcohols and Thiols 901
31.11.4.2.3 Method 3: Oxidation of Arenesulfenamides to Arenesulfonylides 902
31.11.4.2.4 Method 4: Desulfenylation of Arenesulfenamides 902
31.11.4.2.5 Method 5: Direct ortho-Lithiation of Arenesulfenamides 902
31.11.4.2.6 Method 6: Thermal Treatment of Arenesulfenamides 903

31.11. Product Class 12: Aryl Sulfoxides and S-Arylsulfimides
S. G. Collins and A. R. Maguire

31.12 Product Class 12: Aryl Sulfoxides and S-Arylsulfimides 907
31.12.1 Product Subclass 1: Symmetrical and Racemic Aryl Sulfoxides 907
31.12.1.1 Synthesis of Product Subclass 1 ... 907
31.12.1.1 Method 1: Reactions of Arene Derivatives .. 907
31.12.1.1.1 Variation 1: With Thionyl Chloride .. 907
31.12.1.1.2 Variation 2: With Sulfanyl Chlorides 909
31.12.1.1.3 Variation 3: With Sulfur Dioxide 911
31.12.1.1.4 Variation 4: With Sodium Sulfinates 912
31.12.1.2 Method 2: Reduction of Sulfones .. 912
31.12.1.2.1 Variation 1: By Hydride Reduction 912
31.12.1.2.2 Variation 2: Using Titanium(IV) Oxide 913
31.12.1.3 Method 3: Reactions of Organometallic Compounds 913
31.12.1.3.1 Variation 1: With Sulfurous Acid Derivatives 914
31.12.1.3.2 Variation 2: With Sulfinic Acid Derivatives 915
31.12.1.3.3 Variation 3: With Sulfonyl Chlorides 916
31.12.1.4 Method 4: Oxidation of Sulfides .. 916
31.12.1.4.1 Variation 1: Using Hydrogen Peroxide 916
31.12.1.4.2 Variation 2: Using Organic Peroxides 918
31.12.1.4.3 Variation 3: Using Organic Peracids 919
31.12.1.4.4 Variation 4: Using Sodium Perborate 920
31.12.1.4.5 Variation 5: Using Nitrogen-Containing Oxidants 920
31.12.1.4.6 Variation 6: Using Molecular Halogens 921
31.12.1.4.7 Variation 7: Using Hypochlorites 923
31.12.1.4.8 Variation 8: Using Chlorites ... 923
31.12.1.4.9 Variation 9: Using Iodine-Containing Oxidants 924
31.12.1.4.10 Variation 10: Using Periodates ... 925
31.12.1.4.11 Variation 11: Using N-Halo Compounds 926
31.12.1.5 Methods 5: Miscellaneous Methods .. 927
31.12.1.2 Applications of Product Subclass 1 in Organic Synthesis 927
31.12.1.2.1 Method 1: α-Halogenation of Sulfoxides 927
31.12.1.2.2 Method 2: Modification of the α-Heteroatom Substituent of α-Heteroatom-Substituted Sulfoxides .. 928
31.12.1.2.3 Method 3: Substitution Reactions of Aryl Sulfoxides 928
31.12.1.2.4 Method 4: Generation and Reactions of α-Sulfinyl Carbanions ... 929
31.12.2 Product Subclass 2: Optically Active Aryl Sulfoxides 929
31.12.2.1 Synthesis of Product Subclass 2 ... 929
31.12.2.1.1 Method 1: Nucleophilic Displacement at Sulfur 929
31.12.2.1.2 Variation 1: Nucleophilic Substitutions of Chiral Acyclic Sulfinylating Agents .. 929
31.12.2.1.2 Variation 2: Nucleophilic Substitution on Chiral, Diastereomerically Pure Cyclic Sulfinylating Agents .. 931
31.12.2.1.2 Variation 3: Oxidation of Sulfides Bearing a Removable Chiral Auxiliary 935
31.12.2.1.3 Method 3: Optical Resolution ... 937
31.12.2.1.3 Variation 1: Using Classical Methods 937
31.12.2.1.3 Variation 2: Using Nonclassical Methods 937
31.12.2.1.4 Method 4: Kinetic Resolution of Sulfoxides .. 937
31.12.2.2 Applications of Product Subclass 2 in Organic Synthesis 938
31.12.3 Product Subclass 3: S-Arylsulfimides .. 939
31.12.3.1 Synthesis of Product Subclass 3 .. 939
31.12.3.1.1 Method 1: Reaction of Dialkoxy(diaryl)-\(\lambda^5\)-sulfanes with Amines and Amides .. 939
31.12.3.1.2 Method 2: Reactions of Aryl Sulfoxides with \(N\)-Sulfinylsulfonamides 939
31.12.3.1.3 Method 3: Reaction of Sulfides with \(N\)-Halo Compounds 940
31.12.3.1.4 Method 4: Preparation of \(N\)-Unsubstituted Sulfimides 941
31.12.3.1.5 Method 5: Asymmetric Sulfimidation ... 941
31.12.3.2 Applications of Product Subclass 3 in Organic Synthesis 942

31.13 Product Class 13: Arenethiols and Arenethiolates
O. A. Rakitin

31.13.1 Synthesis of Product Class 13 .. 949
31.13.1.1 Method 1: Lithiation of Arenes Followed by Sulfur Addition 949
31.13.1.2 Method 2: Reduction of Thiocyanates Formed by the Reaction of Arenes with Bromine and Inorganic Thiocyanates 950
31.13.1.3 Method 3: Reaction of Activated Aryl Halides with Sodium Sulfide, Sodium Hydrosulfide, or Disodium Disulfide 951
31.13.1.4 Method 4: Reaction of Aryl Iodides with Thiourea and a Nickel Catalyst 952
31.13.1.5 Method 5: Reaction of Grignard Reagents with Sulfur 952
31.13.1.6 Method 6: Newman–Kwart Rearrangement of Phenols 953
31.13.1.7 Method 7: Diazotization of Anilines Followed by Reaction with Potassium Ethyl Dithiocarbonate ... 954
31.13.1.8 Method 8: Hydrolysis of Aryl Trialkysilyl Sulfides 955
31.13.1.9 Method 9: Dealkylation of Alkyl Aryl Sulfides 956
31.13.1.10 Method 10: Debenzylation of Aryl Benzyl Sulfides with Lewis Acids 957
31.13.1.11 Method 11: Hydrolysis of tert-Butyl or Acetoxyethyl Aryl Sulfides 957
31.13.1.12 Method 12: Hydrolysis of Alkoxyaryl or Carbamoyl Sulfides by Hydrolysis .. 958
31.13.1.13 Method 13: Hydrolysis of Acyl Aryl Sulfides 958
31.13.1.14 Method 14: Debenzylation of S-Aryl Thiobenzoates with Titanium(IV) Chloride and Zinc ... 959
31.13.1.15 Method 15: Reduction of Arenesulfonyl Chlorides 960
31.13.1.15.1 Variation 1: Reduction with Lithium Aluminum Hydride 960
31.13.1.15.2 Variation 2: Reduction with Zinc ... 960
31.13.1.16 Method 16: Reduction of Arenesulfonic Acids with a Triphenylphosphine/Iodine Mixture ... 961
31.13.1.17 Method 17: Reduction of Sodium Arenesulfinates with Tin 962
31.13.1.18 Method 18: Reduction of Diaryl Disulfides ... 962
31.13.1.18.1 Variation 1: Reduction with Zinc in Acids 963
31.13.1.18.2 Variation 2: Reduction with Sodium Sulfide 963
31.13.18.3 Variation 3: Reduction with Lithium Tri-tert-butoxyaluminum Hydride 964
31.13.18.4 Variation 4: Reduction with Sodium Borohydride 965
31.13.19 Method 19: Reduction of N-(Arylsulfanyl)phthalimides with Lithium Aluminum Hydride 965
31.13.20 Method 20: Ring Opening of Benzothiazoles 966
31.13.20.1 Variation 1: Hydrolysis with Sodium Hydroxide 966
31.13.20.2 Variation 2: Ring Opening Accompanied by Ring-Forming Reactions of N-Acetylenbenzothiazol-2-ones with Aliphatic Amines 967
31.13.21 Method 21: Ring Opening of Benzodithiazolium Chlorides (Herz Reaction) 968
31.13.22 Method 22: Ring Opening of Benzothiophenes and Dibenzo(thiophenes 969
31.13.22.1 Variation 1: Reductive Cleavage of Benzo[b]thiophene 969
31.13.22.2 Variation 2: Reaction of Dibenzo(thiophenes with Grignard Reagents 970
31.13.23 Method 23: Ring Opening of 1,4,2-Benzodithiazin-3-amine 1,1-Dioxides by Hydrolysis with Hydrazine Hydrate 971

31.14 Product Class 14: Aryl Sulfides
O. A. Rakitin

31.14 Synthesis of Product Class 14 975
31.14.1 Method 1: Reaction of Arenes with Sulfur and Aluminum Trichloride 975
31.14.2 Method 2: Reaction of Arenes with Sulfur Chlorides 975
31.14.3 Method 3: Reaction of Arenes with Dialkyl Disulfides 976
31.14.4 Method 4: Reaction of Arylboronic Acids with Alkanethiols 977
31.14.5 Method 5: Reaction of Arylboronic Acids with N-Sulfanylated Succinimides 978
31.14.6 Method 6: Reaction of Arylboronic Acids with Diaryl Disulfides 979
31.14.7 Method 7: Synthesis of Symmetrical Aryl Sulfides by Reaction of Aryl Halides with Sodium Sulfide 980
31.14.8 Method 8: Synthesis of Alkyl Aryl Sulfides by Reaction of Aryl Halides with Alkanethiolates 980
31.14.9 Method 9: Reaction of Haloarenes with Thiolates under Copper or Nickel Catalysis 981
31.14.10 Method 10: Reaction of Haloarenes with Dialkyl Disulfides 982
31.14.16 Method 16: Reaction of Arenethiols with Diazo Compounds 985
31.14.17 Method 17: Reaction of Arenethiols with Quinones 986
31.14.18 Method 18: Oxidative Coupling Reactions between Arenethiols and Arenes 987
31.14.1.20 Method 20: Radical Additions of Arenethiols to Alkenes 988
31.14.1.21 Method 21: Reaction of Aryl Trimethylsilyl Sulfides and Haloarenes 989
31.14.1.22 Method 22: Reduction of Sulfoxides 990
31.14.1.22.1 Variation 1: With Zinc .. 990
31.14.1.22.2 Variation 2: With Phosphites ... 990
31.14.1.22.3 Variation 3: With Sodium Borohydride 991
31.14.1.23 Method 23: Reduction of Sulfones 992
31.14.1.24 Method 24: Reaction of Aryl Thiocyanates with Haloarenes 992
31.14.1.25 Method 25: Reaction of N-(Arylsulfanyl)phthalimides with Arenes 993
31.14.1.26 Method 26: Reaction between Arenesulfenyl Chlorides and Arenes 994
31.14.1.27 Method 27: Reaction of Diaryl Disulfides with Arenes 994
31.14.1.27.1 Variation 1: Sulfenylation of Arenes with Diaryl Disulfides Catalyzed by Lewis Acids .. 995
31.14.1.27.2 Variation 2: Sulfenylation of Arenes with Diaryl Disulfides in the Presence of a Butyllithium .. 995
31.14.1.28 Method 28: Reaction of Diaryl Disulfides with Haloalkanes or Haloarenes 996
31.14.1.28.1 Variation 1: Synthesis of Aryl Sulfides from Grignard Reagents and Diaryl Disulfides .. 996
31.14.1.28.2 Variation 2: Synthesis of Aryl Sulfides from Aryl Iodides, Butyllithium, and Diaryl Disulfides 996
31.14.1.29 Method 29: Reaction of Diaryl Disulfides with Organoboron Compounds 997
31.14.1.30 Method 30: Reaction of Diaryl Disulfides with Alkyl 4-Toluenesulfonates 997

31.15 Product Class 15: Arylsulfonium Salts and Derivatives
I. Fernández and N. Khiar

31.15 Product Class 15: Arylsulfonium Salts and Derivatives 1001
31.15.1 Product Subclass 1: Triarylsulfonium Salts 1001
31.15.1.1 Synthesis of Product Subclass 1 1001
31.15.1.1 Method 1: Reactions of Arenethiols with Diaryliodonium Salts 1001
31.15.1.1.2 Method 2: Synthesis from Phenols and Thionyl Chloride 1002
31.15.1.1.3 Method 3: Synthesis from Arenes and Sulfur Monochloride 1003
31.15.1.1.4 Method 4: Synthesis from Arenes and Diaryl(halo)sulfonium Salts 1003
31.15.1.1.5 Method 5: Synthesis from Activated Diaryl Sulfoxides by Electrophilic Aromatic Substitution .. 1004
31.15.1.1.5.1 Variation 1: Using Sulfuric Acid as the Activator 1004
31.15.1.1.5.2 Variation 2: Using a Lewis Acid as the Activator 1004
31.15.1.1.5.3 Variation 3: Using Phosphorus Pentoxide/Methanesulfonic Acid as the Activators ... 1005
31.15.1.1.5.4 Variation 4: Using Acetic Anhydride and Sulfuric Acid as the Activators ... 1006
31.15.1.1.6 Method 6: Synthesis from Activated Diaryl Sulfoxides by Reactions with Grignard Reagents ... 1006
31.15.1.1.7 Method 7: Synthesis from Diaryl(ethoxy)sulfonium Salts by Reactions with Grignard Reagents ... 1007
31.15.1.1.8 Method 8: Synthesis from Sulfinimides 1007
31.15.1.1.8.1 Variation 1: By Treatment with Arenes and Aluminum Trichloride 1007
31.15.1.8.2 Variation 2: By Reactions with Grignard Reagents ... 1008
31.15.1.9 Method 9: Arylation of Diaryl Sulfides .. 1009
31.15.2 Product Subclass 2: Alkyl- and Alkenyl(diaryl)sulfonium Salts 1009
31.15.2.1 Synthesis of Product Subclass 2 ... 1009
31.15.2.1.1 Method 1: Synthesis from Alkyl(aryl)(halo)sulfonium Salts by
Electrophilic Aromatic Substitution ... 1009
31.15.2.1.2 Method 2: Synthesis from Sodium Methanesulfinate by
Electrophilic Aromatic Substitution ... 1010
31.15.2.1.3 Method 3: Synthesis from Activated Sulfoxides by Reactions with
Alkenes Using Trifluoromethanesulfonic Anhydride .. 1011
31.15.2.1.4 Method 4: Synthesis from Alkoxysulfonium Salts by Reactions with
Grignard Reagents .. 1011
31.15.2.1.5 Method 5: Arylation of Aryl Sulfides Using Activated Quinones 1011
31.15.2.1.6 Method 6: Alkylation of Diaryl Sulfides ... 1012
31.15.2.1.6.1 Variation 1: Using Alkyl Halides in the Presence of Silver(I) Salts 1012
31.15.2.1.6.2 Variation 2: Intramolecular Cyclization of Diazo Ketones 1013
31.15.2.1.7 Method 7: Synthesis from Sulfonium Salts via Sulfonium Ylides
(C-Alkylation) .. 1013
31.15.3 Product Subclass 3: Dialkyl(aryl)sulfonium Salts ... 1014
31.15.3.1 Synthesis of Product Subclass 3 ... 1014
31.15.3.1.1 Method 1: Synthesis from Arenes and Dialkyl(halo)sulfonium Salts 1014
31.15.3.1.2 Method 2: Synthesis from Benzo-1,4-quinone, a Dialkyl Sulfide,
and Perchloric Acid .. 1014
31.15.3.1.3 Method 3: Synthesis from Arenes and Dialkyl Sulfoxides 1015
31.15.3.1.3.1 Variation 1: Using Hydrogen Chloride .. 1015
31.15.3.1.3.2 Variation 2: Using Phosphorus Pentoxide/Methanesulfonic Acid 1016
31.15.3.1.4 Method 4: Synthesis from Dialkyl Sulfoxides Using Nitrilium Salts 1017
31.15.3.1.5 Method 5: Synthesis from Alkoxysulfonium Salts by Reactions with
Grignard Reagents .. 1017
31.15.3.1.6 Method 6: Synthesis from Arenes or Hetarenes and Azasulfonium Salts 1018
31.15.3.1.7 Method 7: Synthesis from Dialkyl(nitrosyl)sulfonium Salts and Arenes 1018
31.15.3.1.8 Method 8: Arylation of Dialkyl Sulfides with 4-Nitrophenyl
4-Toluenesulfonate ... 1019
31.15.3.1.9 Method 9: S-Alkylation of Alkyl Aryl Sulfides ... 1019
31.15.3.1.9.1 Variation 1: Using Alkyl Halides .. 1019
31.15.3.1.9.2 Variation 2: Using Dialkyl Sulfates ... 1020
31.15.3.1.10 Method 10: Reactions of Sulfides with Diazoc Ketones 1021
31.15.3.1.11 Method 11: Synthesis via Sulfonium Ylides by Reactions of
Dialkyl Sulfides with Benzyne .. 1021
31.15.4 Product Subclass 4: Arylsulfonium Derivatives ... 1021
31.15.4.1 Synthesis of Product Subclass 4 ... 1021
31.15.4.1.1 Halosulfonium Salts ... 1021
31.15.4.1.1.1 Method 1: Reactions between Sulfides and Halides 1022
31.15.4.1.2 Alkoxy(diaryl)sulfonium Salts ... 1022
<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1.2.1</td>
<td>Synthesis from Alkoxyalted Sulfuranes</td>
<td>1022</td>
</tr>
<tr>
<td>1.1.2.2</td>
<td>Synthesis via the O-Alkylation of Sulfoxides</td>
<td>1023</td>
</tr>
<tr>
<td>1.1.2.2.1</td>
<td>Variation 1: Using Trialkyloxonium Salts</td>
<td>1023</td>
</tr>
<tr>
<td>1.1.2.2.2</td>
<td>Variation 2: Using Dialkoxycarbenium Salts</td>
<td>1023</td>
</tr>
<tr>
<td>1.1.3</td>
<td>Diaryl(aza)sulfonium Salts</td>
<td>1023</td>
</tr>
<tr>
<td>1.1.3.1</td>
<td>Method 1: Reactions of Sulfoxides with (N)-Ethyl-(N)-sulfinylethanaminium Tetrafluoroborate</td>
<td>1023</td>
</tr>
<tr>
<td>1.1.3.2</td>
<td>Method 2: Synthesis from Dialkoxy(diaryl)sulfuranes</td>
<td>1024</td>
</tr>
<tr>
<td>1.1.3.3</td>
<td>Method 3: Synthesis from (N)-Alkylsulfimides</td>
<td>1024</td>
</tr>
<tr>
<td>1.1.3.4</td>
<td>Method 4: Synthesis from (N)-Tosylsulfimides</td>
<td>1025</td>
</tr>
<tr>
<td>1.1.3.5</td>
<td>Method 5: Synthesis from (N)-Chlorosulfimides</td>
<td>1026</td>
</tr>
<tr>
<td>1.1.3.6</td>
<td>Method 6: Reactions between Sulfides and (O)-(Mesitylsulfonyl)hydroxylamine</td>
<td>1026</td>
</tr>
<tr>
<td>1.1.3.7</td>
<td>Method 7: Modification of Existing Azasulfonium Salts</td>
<td>1027</td>
</tr>
<tr>
<td>1.1.4</td>
<td>Alkyl(aryl)(halo)sulfonium Salts</td>
<td>1028</td>
</tr>
<tr>
<td>1.1.4.1</td>
<td>Method 1: Reactions of Sulfoxides with Hydrobromic Acid</td>
<td>1028</td>
</tr>
<tr>
<td>1.1.4.2</td>
<td>Method 2: Reactions of Sulfides with Halogens</td>
<td>1028</td>
</tr>
<tr>
<td>1.1.5</td>
<td>Alkoxy(alkyl)arylsulfonium Salts</td>
<td>1029</td>
</tr>
<tr>
<td>1.1.5.1</td>
<td>Method 1: Reactions of Sulfoxides with Alkyl Halides</td>
<td>1029</td>
</tr>
<tr>
<td>1.1.5.2</td>
<td>Method 2: Reactions of Sulfoxides with Trialkyloxonium Salts</td>
<td>1029</td>
</tr>
<tr>
<td>1.1.5.3</td>
<td>Method 3: S-Alkylation of Arenesulfenic Esters</td>
<td>1030</td>
</tr>
<tr>
<td>1.1.5.4</td>
<td>Method 4: Synthesis from Sulfides via Sulfuranes</td>
<td>1030</td>
</tr>
<tr>
<td>1.1.6</td>
<td>Alkyl(aryl)(aza)sulfonium Salts</td>
<td>1030</td>
</tr>
<tr>
<td>1.1.6.1</td>
<td>Method 1: Reactions between Sulfoxides and Dialkyl(sulfinyl)ammonium Salts</td>
<td>1030</td>
</tr>
<tr>
<td>1.1.6.2</td>
<td>Method 2: Reactions between Sulfides and (O)-(Mesitylsulfonyl)hydroxylamine</td>
<td>1031</td>
</tr>
<tr>
<td>1.1.6.3</td>
<td>Method 3: Reactions between Sulfides, 1-Chlorobenzotriazole, and an Amine</td>
<td>1031</td>
</tr>
<tr>
<td>1.1.7</td>
<td>Dialkoxy(aryl)sulfonium Salts</td>
<td>1032</td>
</tr>
<tr>
<td>1.1.7.1</td>
<td>Method 1: Synthesis from Arenesulfinate Esters</td>
<td>1032</td>
</tr>
<tr>
<td>1.1.7.2</td>
<td>Method 2: Synthesis from Sulfuranes</td>
<td>1032</td>
</tr>
<tr>
<td>1.1.8</td>
<td>Alkoxy(aryl)(aza)sulfonium Salts</td>
<td>1033</td>
</tr>
<tr>
<td>1.1.8.1</td>
<td>Method 1: Synthesis from Arenesulfinamides</td>
<td>1033</td>
</tr>
<tr>
<td>1.1.8.2</td>
<td>Method 2: Synthesis from Arenesulfenamides</td>
<td>1034</td>
</tr>
<tr>
<td>1.1.9</td>
<td>Diaza(aryl)sulfonium Salts</td>
<td>1035</td>
</tr>
<tr>
<td>1.1.9.1</td>
<td>Method 1: Synthesis from Alkoxy(amo)(aryl)sulfonium Salts</td>
<td>1035</td>
</tr>
<tr>
<td>1.1.9.2</td>
<td>Method 2: Synthesis from Arenesulfenamides</td>
<td>1036</td>
</tr>
<tr>
<td>1.1.9.3</td>
<td>Method 3: Synthesis from Arenesulfenamides via Sulfinimidamides</td>
<td>1036</td>
</tr>
<tr>
<td>1.1.9.4</td>
<td>Method 4: Modification of Existing Arylsulfonium Salts</td>
<td>1037</td>
</tr>
</tbody>
</table>
Product Class 16: Arenesulfenic Acids and Derivatives

S. Perrio, V. Reboul, and P. Metzner

Product Subclass 1: Arenesulfenyl Chlorides

Method 1: Synthesis from Thiols
Variation 1: By Reaction with Chlorine
Variation 2: By Reaction with Sulfuryl Chloride
Variation 3: By Reaction with N-Chlorosuccinimide
Variation 4: By Reaction with (Dichloroiodo)benzene

Method 2: Synthesis from Thioesters and Sulfuryl Chloride

Method 3: Synthesis from Sulfides

Method 4: Synthesis from Disulfides

Product Subclass 2: Arenesulfenyl Bromides

Synthesis from Disulfides and Bromine

Product Subclass 3: Arenesulfenyl Iodides

Reaction of Thiols with Iodine

Product Subclass 4: Arenesulfenic Acids

Method 1: Oxidation of Thiols
Method 2: Alkaline Hydrolysis of Sulfenic Acid Esters
Method 3: Thermolysis of Sulfoxides
Method 4: Thermolysis of N-(Sulfinyl)phenylmethanimines

Product Subclass 5: Arenesulfenic Acid Salts

Oxidation of Thiols
Synthesis from Silylated Sulfenic Acid Esters and Tetrabutylammonium Fluoride
Addition/Elimination Reactions of Sulfoxides
Deprotonation/Elimination Reactions of Sulfoxides
Synthesis from a 4-Tolylsulfinylacetylene by Transmetalation with Diethylzinc and a Palladium Catalyst

Product Subclass 6: Arenesulfenic Acid Esters

Reactions of Sulfenic Acid Salts with Hard Electrophiles
31.16.6.1.2 Method 2: Synthesis from Sulfenyl Chlorides 1055
31.16.6.1.2.1 Variation 1: By Reaction with Alcohols 1055
31.16.6.1.2.2 Variation 2: By Reaction with Alkoxides 1056
31.16.6.1.3 Method 3: Reaction of Sulfenic Acid Esters with Alcohols 1057
31.16.6 Product Subclass 7: Arenesulfenamides .. 1057
31.16.6.7.1 Synthesis of Product Subclass 7 .. 1057
31.16.6.7.1.1 Method 1: Synthesis from Thiols 1057
31.16.6.7.1.1.1 Variation 1: By Reaction with Hydroxylamine-\(\text{O}\)-sulfonic Acids 1057
31.16.6.7.1.1.2 Variation 2: By Reaction with \(N\)-Chlorosuccinimide or \(N\)-Bromophthalimide .. 1058
31.16.6.7.1.2 Method 2: Synthesis from Sulfenyl Chlorides 1059
31.16.6.7.1.2.1 Variation 1: By Reaction with Amines 1059
31.16.6.7.1.2.2 Variation 2: By Reaction with Amides or Lactams 1061
31.16.6.7.1.3 Method 3: Reactions of Sulfenic Acid Esters with Amines 1061
31.16.6.7.1.4 Method 4: Synthesis from Disulfides 1062
31.16.6.7.1.4.1 Variation 1: By Reaction with Amines 1062
31.16.6.7.1.4.2 Variation 2: By Reaction with Lithium Amides 1063
31.16.6.7.1.4.3 Variation 3: By Electrosynthesis 1064
31.16.6.7.1.4.4 Variation 4: By Reaction with \(N\)-Chloro- or \(N\)-Bromosuccinimide or \(N\)-Bromophthalimide .. 1064
31.16.6.7.1.5 Method 5: Reaction of Thiosulfonates with Amines 1065
31.16.6.7.1.6 Method 6: Reaction of \(N\)-Sulfanylated Imines with Organolithiums ... 1065
31.16.6.7.1.7 Method 7: 2,3-Sigmatropic Rearrangements of Sulfimides 1066
31.16.6.7.1.8 Method 8: Pummerer Rearrangement of \(\beta\)-Sufinylated Amines 1067
31.16.6.7.1.9 Method 9: Synthesis from Sulfenamides 1068
31.16.6.7.1.9.1 Variation 1: By Acylation ... 1068
31.16.6.7.1.9.2 Variation 2: By Amino Transfer .. 1069
31.16.6.8 Product Subclass 8: \(N\)-(Arylsulfanyl)imines 1071
31.16.6.8.1 Synthesis of Product Subclass 8 .. 1071
31.16.6.8.1.1 Method 1: Synthesis from Sulfenic Acid Chlorides 1071
31.16.6.8.1.1.1 Variation 1: By Reaction with Amines 1071
31.16.6.8.1.1.2 Variation 2: By Reaction with Imines 1072
31.16.6.8.1.2 Method 2: Synthesis from Disulfides 1073
31.16.6.8.1.2.1 Variation 1: By Reaction with Ammonia and Carbonyl Compounds or with Imines .. 1073
31.16.6.8.1.2.2 Variation 2: By Reaction with Oximes 1074
31.16.6.8.1.2.3 Variation 3: From \(\alpha\)-Aminoalkanoates 1075
31.16.6.8.1.3 Method 3: Synthesis from Sulfenamides 1075
31.16.6.8.1.3.1 Variation 1: By Reaction with Carbonyl Compounds 1075
31.16.6.8.1.3.2 Variation 2: By Oxidation ... 1076
31.16.6.8.1.3.3 Variation 3: By Fluoride-Catalyzed Reactions 1076
31.16.6.8.1.4 Method 4: Reaction of a Sulfenamide Enolate Equivalent with Electrophiles .. 1077
31.16.6.8.1.5 Method 5: Synthesis from Tris(phenylsulfanyl)amine 1078
Product Subclass 9: S-Nitrosoarenethiols

31.16.9.1 Synthesis of Product Subclass 9

31.16.9.1.1 Method 1: Nitrosation of Thiols

Product Subclass 10: S-Nitroarenethiols

31.16.10 Synthesis of Product Subclass 10

31.16.10.1 Method 1: Oxidation of Arenethiols

31.16.10.2 Method 2: Oxidation of S-Nitrosoarenethiols

Product Subclass 11: (Arylsulfanyl)diazenes

31.16.11 Synthesis of Product Subclass 11

31.16.11.1 Method 1: Reaction of Thiols with Anilines

Product Class 17: Aryl Polysulfides

31.17 Synthesis of Product Subclass 1

31.17.1 Method 1: Synthesis of Aryl Hydrodisulfides by Hydrolysis of Acetyl Aryl Disulfides

31.17.2 Product Subclass 2: Diaryl Disulfides

31.17.2.1 Synthesis of Product Subclass 2

31.17.2.1.1 Method 1: Symmetrical Diaryl Disulfides by Oxidation of Arenethiols

31.17.2.1.2 Method 2: Symmetrical Diaryl Disulfides by Reduction of Arenesulfonyle Chlorides

31.17.2.2 Method 4: Unsymmetrical Diaryl Disulfides by Reaction of Arenediazonium Salts with Disodium Disulfide

Table of Contents
Product Subclass 3: Diaryl Polysulfides

31.17.3

Synthesis of Product Subclass 3

31.17.3.1

Method 1: Synthesis of Aryl Tri- and Tetrasulfides from Arenethiols

31.18

Product Class 18: Cyclic Aryl Sulfides

O. A. Rakitin

Product Subclass 1: 2,3-Dihydrobenzo[b]thiophenes

31.18.1

Synthesis of Product Subclass 1

31.18.1.1

Method 1: Cyclization of S-Substituted 2-Arylethyl Sulfides

31.18.1.2

Method 2: Friedel–Crafts Reaction of (Arylsulfanyl)acetyl Chlorides

31.18.1.3

Method 3: Dehydration of (Arylsulfanyl)acetic Acids

31.18.1.4

Method 4: Cyclization of N,N-Diethyl-2-(methylsulfanyl)-arenecarboxamides

31.18.1.5

Method 5: Diazotization of 2-Substituted Ethylanilines

Product Subclass 2: 3,4-Dihydro-2H-1-benzothiopyrans

31.18.2

Synthesis of Product Subclass 2

31.18.2.1

Method 1: Oxidative Cyclization of Aryl Benzyl Polysulfides

31.18.2.2

Method 2: Friedel–Crafts Reactions of (Arylsulfanyl)propanoyl Chlorides

31.18.2.3

Method 3: Dehydration of (Arylsulfanyl)propanoic Acids

Product Subclass 3: 2,3,4,5-Tetrahydro-1-benzothiepins

31.18.3

Synthesis of Product Subclass 3

31.18.3.1

Method 1: Dehydration of 4-(2-Sulfanylphenyl)butan-1-ols

31.18.3.2

Method 2: Reaction of Arenethiols with γ-Butyrolactone

Product Subclass 4: 1,2,3,4,5-Benzopentathiepins and Related Compounds

31.18.4

Synthesis of Product Subclass 4

31.18.4.1

Method 1: Reaction of Arene-1,2-dithiols with Sulfur

31.18.4.2

Method 2: Reaction of Nucleophilic Heterocycles with Sulfur Monochloride

Product Class 19: Aryl Selenium Compounds

S. Watanabe and T. Kataoka

Product Subclass 1: Areneselenonic Acids and Derivatives

31.19.1

Synthesis of Product Subclass 1

31.19.1.1

Method 1: Areneselenonic Acids by Oxidation of the Selenium Atom

31.19.1.2

Method 2: Synthesis of Areneselenonic Acid Derivatives from Areneselenonic Acids
31.19.2 Applications of Product Subclass 1 in Organic Synthesis

31.19.2 Product Subclass 2: Aryl Selenones and Their Nitrogen Derivatives

31.19.2.1 Synthesis of Product Subclass 2

31.19.2.1.1 Method 1: Aryl Selenones by Oxidation of the Selenium Atom

31.19.2.1.2 Method 2: Se-Arylselenoximides by Addition of N-Sulfinyl-4-toluene sulfonamide to Selenones

31.19.2.2 Applications of Product Subclass 2 in Organic Synthesis

31.19.2.2.1 Method 1: Synthesis of Small-Ring Compounds

31.19.2.2.2 Method 2: Alkylation

31.19.2.3 Product Subclass 3: Areneseleninic Acids and Derivatives

31.19.2.3.1 Synthesis of Product Subclass 3

31.19.2.3.1.1 Method 1: Areneseleninic Acids and Derivatives by Oxidation of the Selenium Atom

31.19.2.3.1.2 Variation 1: Synthesis of Areneseleninic Acids

31.19.2.3.1.3 Variation 2: Synthesis of Areneseleninic Anhydrides

31.19.2.3.1.4 Variation 3: Synthesis of Areneperoxyseleninic Acids

31.19.2.3.2 Applications of Product Subclass 3 in Organic Synthesis

31.19.2.4 Product Subclass 4: Aryl Selenoxides and Their Nitrogen Derivatives

31.19.2.4.1 Synthesis of Product Subclass 4

31.19.2.4.1.1 Method 1: Aryl Selenoxides by Oxidation of the Selenium Atom

31.19.2.4.1.2 Variation 1: Using 3-Chloroperoxybenzoic Acid

31.19.2.4.1.3 Variation 2: Using Hydrogen Peroxide

31.19.2.4.1.4 Variation 3: Using Sodium Periodate

31.19.2.4.1.5 Variation 4: Using tert-Butyl Hypochlorite

31.19.2.4.1.6 Variation 5: Using Other Oxidants

31.19.2.4.2 Method 2: Se-Arylselenimides by Addition of 4-Toluene sulfonamide to Selenoxides

31.19.2.4.3 Method 3: Se-Arylselenimides by Addition of Chloramine-T to Selenides

31.19.2.4.4 Applications of Product Subclass 4 in Organic Synthesis

31.19.2.4.4.1 Method 1: Selenoxide Elimination

31.19.2.4.4.2 Method 2: [2,3]-Sigmatropic Rearrangement

31.19.2.5 Product Subclass 5: Areneselenols and Areneselenolates

31.19.2.5.1 Synthesis of Product Subclass 5

31.19.2.5.1.1 Method 1: Areneselenols and Areneselenolates by Substitution

31.19.2.5.1.2 Variation 1: Synthesis of Areneselenols

31.19.2.5.1.3 Variation 2: Synthesis of Areneselenolates

31.19.2.5.1.4 Method 2: Areneselenol by Addition of Metal Carbanions

31.19.2.5.2 Applications of Product Subclass 5 in Organic Synthesis

31.19.2.5.2.1 Method 1: Synthesis of Aryl Silyl Selenides

31.19.2.5.2.2 Method 2: Synthesis of Areneselenol Esters
31.19.6 **Product Subclass 6: Aryl Selenides** .. 1132
31.19.6.1 Synthesis of Product Subclass 6 .. 1133
31.19.6.1.1 Method 1: Synthesis of Diaryl Selenides by Substitution 1133
31.19.6.1.2 Method 2: Synthesis of Alkyl Aryl Selenides by Substitution 1135
31.19.6.1.3 Method 3: Synthesis of Diaryl Selenides by Elimination 1138
31.19.6.2 Applications of Product Subclass 6 in Organic Synthesis 1138
31.19.6.2.1 Method 1: Utilization of Aryl Selenides as Catalysts 1138
31.19.7 **Product Subclass 7: Arylselenonium Salts** 1139
31.19.7.1 Synthesis of Product Subclass 7 1139
31.19.7.1.1 Method 1: Synthesis of Arylselenonium Salts by Substitution ... 1139
31.19.7.1.2 Method 2: Synthesis of Arylselenonium Salts by Addition Reactions ... 1140
31.19.7.2 Applications of Product Subclass 7 in Organic Synthesis 1141
31.19.7.2.1 Method 1: Vinylselenonium Ylide Formation 1141
31.19.8 **Product Subclass 8: Areneselenenic Acids and Derivatives** 1141
31.19.8.1 Synthesis of Product Subclass 8 1142
31.19.8.1.1 Method 1: Areneselenenic Acids by Oxidation of the Selenium Atom 1142
31.19.8.1.2 Method 2: Areneselenenamides by Substitution 1143
31.19.8.2 Applications of Product Subclass 8 in Organic Synthesis 1144
31.19.8.2.1 Method 1: Synthesis of β-Hydroxy Selenides Using Diselenides ... 1145
31.19.9 **Product Subclass 9: Areneselenenyl Halides** 1145
31.19.9.1 Synthesis of Product Subclass 9 1145
31.19.9.1.1 Method 1: Areneselenenyl Halides by Substitution Reactions 1145
31.19.9.2 Applications of Product Subclass 9 in Organic Synthesis 1147
31.19.10 **Product Subclass 10: Diaryl Diselenides** 1147
31.19.10.1 Synthesis of Product Subclass 10 1148
31.19.10.1.1 Method 1: Diaryl Diselenides by Substitution Reactions 1148
31.19.10.2 Applications of Product Subclass 10 in Organic Synthesis 1149

31.20 **Product Class 20: Aryl Tellurium Compounds**
T. Kataoka and S. Watanabe

31.20 **Product Class 20: Aryl Tellurium Compounds** 1159
31.20.1 **Product Subclass 1: Aryl Tellurones** 1159
31.20.1.1 Synthesis of Product Subclass 1 1159
31.20.1.1.1 Method 1: Tellurones by Oxidation of the Tellurium Atom 1160
31.20.2 **Product Subclass 2: Arenetellurinic Acids and Derivatives** 1160
31.20.2.1 Synthesis of Product Subclass 2 1160
31.20.2.1.1 Method 1: Synthesis by Oxidation 1161