<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Authors</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>40.2</td>
<td>Product Class 2: Nitroxyl Radicals (Nitrooxides)</td>
<td>A. Studer and T. Vogler</td>
<td>845</td>
</tr>
<tr>
<td>40.3</td>
<td>Product Class 3: Amine N-Oxides</td>
<td>I. O’Neil</td>
<td>855</td>
</tr>
<tr>
<td>40.4</td>
<td>Product Class 4: N-Haloamines</td>
<td>U. Wille</td>
<td>893</td>
</tr>
<tr>
<td>40.5</td>
<td>Product Class 5: Hydroxylamines</td>
<td>D. Geffken and M. A. Köllner</td>
<td>937</td>
</tr>
<tr>
<td>40.6</td>
<td>Product Class 6: 1-Oxa-2-azacycloalkanes</td>
<td>D. Geffken and M. A. Köllner</td>
<td>1083</td>
</tr>
<tr>
<td>40.7</td>
<td>Product Class 7: Hydrazines and Hydrazinium Salts</td>
<td>P. Rademacher</td>
<td>1133</td>
</tr>
<tr>
<td>40.8</td>
<td>Product Class 8: 1,2-Diazacycloalkanes</td>
<td>W. Maison</td>
<td>1211</td>
</tr>
<tr>
<td>40.9</td>
<td>Product Class 9: Triazanes and Tetrazanes</td>
<td>E. Schaumann</td>
<td>1253</td>
</tr>
<tr>
<td>40.10</td>
<td>Product Class 10: Amido Derivatives of Sulfanediol</td>
<td>S. R. Chemler</td>
<td>1259</td>
</tr>
<tr>
<td>40.11</td>
<td>Product Class 11: Amido Derivatives of Sulfurous Acid</td>
<td>S. R. Chemler</td>
<td>1269</td>
</tr>
<tr>
<td>40.12</td>
<td>Product Class 12: N-Alkylsulfamic Acids and Derivatives</td>
<td>E. S. Sherman and S. R. Chemler</td>
<td>1285</td>
</tr>
<tr>
<td>40.13</td>
<td>Product Class 13: Ammoniumsulfonates, Thiohydroxylamines, and Aminosulfonium Salts</td>
<td>E. Schaumann</td>
<td>1305</td>
</tr>
</tbody>
</table>
Table of Contents

40.2 **Product Class 2: Nitroxy Radicals (Nitroxides)**
A. Studer and T. Vogler

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>40.2</td>
<td>Product Class 2: Nitroxy Radicals (Nitroxides)</td>
<td>845</td>
</tr>
<tr>
<td>40.2.1</td>
<td>Synthesis of Product Class 2</td>
<td>846</td>
</tr>
<tr>
<td>40.2.1.1</td>
<td>Method 1: Oxidation of Amines</td>
<td>846</td>
</tr>
<tr>
<td>40.2.1.2</td>
<td>Method 2: Oxidation of Hydroxylamines</td>
<td>847</td>
</tr>
<tr>
<td>40.2.1.2.1</td>
<td>Variation 1: From Hydroxylamines</td>
<td>847</td>
</tr>
<tr>
<td>40.2.1.2.2</td>
<td>Variation 2: From Nitrones</td>
<td>848</td>
</tr>
<tr>
<td>40.2.1.3</td>
<td>Methods 3: Other Methods</td>
<td>848</td>
</tr>
<tr>
<td>40.2.2</td>
<td>Applications of Product Class 2 in Organic Synthesis</td>
<td>849</td>
</tr>
<tr>
<td>40.2.2.1</td>
<td>Method 1: Alcohol Oxidation</td>
<td>849</td>
</tr>
<tr>
<td>40.2.2.2</td>
<td>Method 2: Controlled Radical Polymerization</td>
<td>850</td>
</tr>
<tr>
<td>40.2.2.3</td>
<td>Method 3: Radical Carboaminoxylations</td>
<td>851</td>
</tr>
</tbody>
</table>

40.3 **Product Class 3: Amine N-Oxides**
I. O’Neil

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>40.3</td>
<td>Product Class 3: Amine N-Oxides</td>
<td>855</td>
</tr>
<tr>
<td>40.3.1</td>
<td>Synthesis of Product Class 3</td>
<td>860</td>
</tr>
<tr>
<td>40.3.1.1</td>
<td>Method 1: Reaction of Hydroxylamines with Alkylating Agents</td>
<td>860</td>
</tr>
<tr>
<td>40.3.1.2</td>
<td>Method 2: Oxidation of Tertiary Amines</td>
<td>861</td>
</tr>
<tr>
<td>40.3.1.2.1</td>
<td>Variation 1: Using Hydrogen Peroxide</td>
<td>862</td>
</tr>
<tr>
<td>40.3.1.2.2</td>
<td>Variation 2: Using Alkyl Hydroperoxides</td>
<td>865</td>
</tr>
<tr>
<td>40.3.1.2.3</td>
<td>Variation 3: Using Peracids</td>
<td>868</td>
</tr>
<tr>
<td>40.3.1.2.4</td>
<td>Variation 4: Using Molecular Oxygen</td>
<td>872</td>
</tr>
<tr>
<td>40.3.1.2.5</td>
<td>Variation 5: Using Ozone</td>
<td>872</td>
</tr>
<tr>
<td>40.3.1.2.6</td>
<td>Variation 6: Using Oxaziridines</td>
<td>873</td>
</tr>
<tr>
<td>40.3.1.2.7</td>
<td>Variation 7: Using Dimethyldioxirane</td>
<td>874</td>
</tr>
<tr>
<td>40.3.1.2.8</td>
<td>Variation 8: Using Magnesium Monoperoxyphthalate</td>
<td>875</td>
</tr>
<tr>
<td>40.3.1.2.9</td>
<td>Variation 9: Using Hypofluorous Acid–Acetonitrile Complex</td>
<td>875</td>
</tr>
<tr>
<td>40.3.1.2.10</td>
<td>Variation 10: Using Biomimetic Hydroperoxides</td>
<td>875</td>
</tr>
<tr>
<td>40.3.1.2.11</td>
<td>Variation 11: Using Enzymatic Transformations</td>
<td>877</td>
</tr>
<tr>
<td>40.3.1.3</td>
<td>Method 3: Reverse Cope Cyclization</td>
<td>878</td>
</tr>
<tr>
<td>40.3.1.4</td>
<td>Method 4: Synthesis of Enamine N-Oxides</td>
<td>885</td>
</tr>
</tbody>
</table>

40.4 **Product Class 4: N-Haloamines**
U. Wille

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>40.4</td>
<td>Product Class 4: N-Haloamines</td>
<td>893</td>
</tr>
<tr>
<td>40.4.1</td>
<td>Product Subclass 1: N-Fluoroamines</td>
<td>894</td>
</tr>
<tr>
<td>40.4.1.1</td>
<td>Synthesis of Product Subclass 1</td>
<td>894</td>
</tr>
</tbody>
</table>
40.4.1 Method 1: Synthesis of \(N\)-Fluoroalkanamines

40.4.1.1 Variation 1: From Imines

40.4.1.1.1 Variation 2: From Amides

40.4.1.1.2 Variation 3: From Amines

40.4.1.2 Method 2: Synthesis of Acyclic \(N\)-Fluoro dialkylamines

40.4.1.2.1 Variation 1: From Imines

40.4.1.2.2 Variation 2: From Secondary Amines

40.4.1.3 Method 3: Synthesis of 1-Fluoroaziridines

40.4.1.4 Method 4: Synthesis of Higher \(N\)-Fluoroazacyclanes

40.4.2 Product Subclass 2: \(N\)-Chloroamines

40.4.2.1 Synthesis of Product Subclass 2

40.4.2.1.1 Method 1: Synthesis of \(N\)-Chloroalkanamines

40.4.2.1.1.1 Variation 1: Using Primary Amines Using Chlorine

40.4.2.1.1.2 Variation 2: Using Primary Amines Using a Metal Hypochlorite

40.4.2.1.1.3 Variation 3: Using Primary Amines Using tert-Butyl Hypochlorite

40.4.2.1.1.4 Variation 4: Using Primary Amines Using \(N\)-Chlorosuccinimide

40.4.2.1.1.5 Variation 5: Using \(N\)-(Trimethylsilyl)ethanamine

40.4.2.1.2 Method 2: Synthesis of Acyclic \(N\)-Chlorodialkylamines

40.4.2.1.2.1 Variation 1: From Secondary Amines Using Metal Hypochlorites

40.4.2.1.2.2 Variation 2: From Secondary Amines Using tert-Butyl Hypochlorite

40.4.2.1.2.3 Variation 3: From Secondary Amines Using \(N\)-Chloroamides

40.4.2.1.2.4 Variation 4: From (Trialkylsilyl)amines

40.4.2.1.2.5 Variation 5: From Imines and Alkenes

40.4.2.1.2.6 Variation 6: From Aziridines

40.4.2.1.3 Method 3: Synthesis of 1-Chloroaziridines

40.4.2.1.3.1 Variation 1: Using Chlorine

40.4.2.1.3.2 Variation 2: Using a Metal Hypochlorite

40.4.2.1.3.3 Variation 3: Using tert-Butyl Hypochlorite

40.4.2.1.3.4 Variation 4: Using \(N\)-Chlorosuccinimide

40.4.2.1.4 Method 4: Synthesis of 1-Chloroazetidines

40.4.2.1.5 Method 5: Synthesis of Higher \(N\)-Chloroazacyclanes

40.4.2.1.5.1 Variation 1: From Azacyclanes Using Chlorine

40.4.2.1.5.2 Variation 2: From Azacyclanes Using Hypochlorites

40.4.2.1.5.3 Variation 3: From Azacyclanes Using \(N\)-Chlorosuccinimide

40.4.2.1.5.4 Variation 4: From Cyclic Imines

40.4.2.1.6 Method 6: Synthesis of Higher \(N\)-Chloroazacyclanes

40.4.3 Product Subclass 3: \(N\)-Bromoamines

40.4.3.1 Synthesis of Product Subclass 3

40.4.3.1.1 Method 1: Synthesis of \(N\)-Bromoalkanamines

40.4.3.1.1.1 Variation 1: Using Bromine

40.4.3.1.1.2 Variation 2: Using Sodium Hypobromite

40.4.3.1.2 Method 2: Synthesis of Acyclic \(N\)-Bromodialkylamines

40.4.3.1.2.1 Variation 1: From Secondary Amines

40.4.3.1.2.2 Variation 2: From \(N\)-Silylamines

40.4.3.1.2.3 Variation 3: From Imines

40.4.3.1.3 Method 3: Synthesis of 1-Bromoaziridines

40.4.3.1.3.1 Variation 1: Using Bromine

40.4.3.2 Method 4: Synthesis of Higher \(N\)-Bromoazacyclanes
40.4.3.1.2 Variation 2: Using N-Bromosuccinimide 924
40.4.3.1.4 Method 4: Synthesis of 1-Bromoazetidines 925
40.4.3.1.5 Method 5: Synthesis of Higher N-Bromoazacyclanes 925
40.4.3.1.5.1 Variation 1: From Azacyclanes Using Bromine 925
40.4.3.1.5.2 Variation 2: From Azacyclanes Using Hypobromite 925
40.4.3.1.5.3 Variation 3: From Azacyclanes Using N-Bromosuccinimide 926
40.4.3.1.5.4 Variation 4: From Cyclic Imines 926
40.4.3.1.5.5 Variation 5: From Tertiary Cyclic Amines 927

40.4.4 Product Subclass 4: N-Iodoamines .. 928
40.4.4.1 Synthesis of Product Subclass 4 ... 928
40.4.4.1.1 Method 1: Synthesis of N-Iodoalkanamines 928
40.4.4.1.2 Method 2: Synthesis of Acyclic N-Iododialkylamines 928
40.4.4.1.2.1 Variation 1: From Secondary Amines 928
40.4.4.1.2.2 Variation 2: From N-(Trimethylsilyl)amines 929
40.4.4.1.3 Method 3: Synthesis of Higher N-Iodoazacyclanes 930
40.4.4.1.3.1 Variation 1: From Cyclic Amines 930
40.4.4.1.3.2 Variation 2: From Cyclic Imines 930

40.5 Product Class 5: Hydroxylamines
D. Geffken and M. A. Köllner

40.5 Product Class 5: Hydroxylamines .. 937
40.5.1 Product Subclass 1: Acyclic N-Alkylhydroxylamines, N,N-Dialkylhydroxylamines, and Alkoxyammonium Salts .. 937
40.5.1.1 Synthesis of Product Subclass 1 .. 937
40.5.1.1.1 Acyclic N-Alkylhydroxylamines 937
40.5.1.1.1.1 Method 1: Alkylation of Hydroxylamines 937
40.5.1.1.1.1.1 Variation 1: Direct Alkylation of Hydroxylamine 937
40.5.1.1.1.1.2 Variation 2: Alkylation of O,N-Diprotected Hydroxylamines 937
40.5.1.1.1.1.3 Variation 3: Alkylation of N-(Benzyloxy)-4-toluenesulfonamide 941
40.5.1.1.1.1.4 Variation 4: Addition to Multiple Bonds 942
40.5.1.1.1.1.5 Variation 5: Alkylation of Ethyl 3-Methyl-5-oxo-2,5-dihydroisoxazole-4-carboxylate ... 942
40.5.1.1.1.2 Method 2: Reduction of Oximes 943
40.5.1.1.1.2.1 Variation 1: Using Borohydride or Cyanoborohydride 943
40.5.1.1.1.2.2 Variation 2: Using Pyridine–Borane 948
40.5.1.1.1.2.3 Variation 3: Using Diborane .. 950
40.5.1.1.1.2.4 Variation 4: Using Borane–Trialkylamines 950
40.5.1.1.1.3 Method 3: Reaction of Organometallic Reagents with Oximes .. 951
40.5.1.1.1.3.1 Variation 1: Addition of Organolithium Reagents to Oximes 951
40.5.1.1.1.3.2 Variation 2: Addition of Organomagnesium Reagents to Oximes 951
40.5.1.1.1.3.3 Variation 3: Reaction of O-Trimethylsilyl Oxime Ethers with Ketene Acetals 952
40.5.1.1.1.3.4 Variation 4: Addition of Allylboronates to Oximes 953
40.5.1.1.1.4 Method 4: Synthesis from Nitrones and Organometallic Reagents 953
40.5.1.1.1.5 Method 5: Alkylation of Oximes 955
40.5.1.1.1.6 Method 6: Synthesis from O-Benzylhydroxylamines 956

Science of Synthesis Original Edition Volume 40b
© Georg Thieme Verlag KG
40.5.1.1.7 Method 7: Synthesis from α-Chloro-α-nitroso Compounds

956

40.5.1.1.8 Method 8: Reduction of Nitroalkanes

959

40.5.1.1.8.1 Variation 1: By Catalytic Hydrogenation

959

40.5.1.1.8.2 Variation 2: Using Diborane or Borohydrides

959

40.5.1.1.8.3 Variation 3: Using Aluminum Amalgam

960

40.5.1.1.8.4 Variation 4: Using Zinc

961

40.5.1.1.8.5 Variation 5: Using Tin(II) Compounds

961

40.5.1.1.8.6 Variation 6: Using Samarium(II) Iodide

962

40.5.1.1.8.7 Variation 7: Using Sodium Dithionite

962

40.5.1.1.8.8 Variation 8: By Electrochemical Reduction

963

40.5.1.1.8.9 Variation 9: By Palladium-Catalyzed Hydrogenation with Triethylsilane

964

40.5.1.1.9 Method 9: Synthesis from Nitroso Compounds

964

40.5.1.1.10 Method 10: Oxidation of Primary Amines

965

40.5.1.1.10.1 Variation 1: Using Peroxy Acids or Peroxy Acid Anhydrides

965

40.5.1.1.10.2 Variation 2: Using Hydrogen Peroxide and Sodium Tungstate

966

40.5.1.1.10.3 Variation 3: Using Oxone/Silica Gel

967

40.5.1.1.10.4 Variation 4: Using Dimethyldioxirane

968

40.5.1.1.11 Method 11: Hydrolysis of Oxaziridines

968

40.5.1.1.12 N,N-Dialkylhydroxylamines

969

40.5.1.1.12.1 Method 1: Alkylation of Hydroxylamines

970

40.5.1.1.12.1.1 Variation 1: Using Alkyl Halides

970

40.5.1.1.12.1.2 Variation 2: By Alkylation–Hydrogenolysis of N-Alkyl-O-benzylhydroxylamines

970

40.5.1.1.12.1.3 Variation 3: Using Organosulfonic Acid Esters

971

40.5.1.1.12.1.4 Variation 4: By Addition of N-Alkylhydroxylamines to Activated Double Bonds

972

40.5.1.1.12.1.5 Variation 5: By Reaction of N-Alkylhydroxylamines with Epoxides

974

40.5.1.1.12.1.6 Variation 6: By Reaction of N,N-Bis(benzotriazol-1-ylmethyl)hydroxylamine with Organometallic Reagents

975

40.5.1.1.12.1.7 Variation 7: By Palladium(0)-Catalyzed Hydroxyamination of Allyl Esters

975

40.5.1.1.12.1.8 Variation 8: By Cyclic Alkylation of N-(Pent-4-enyl)hydroxylamines

976

40.5.1.1.12.1.9 Variation 9: From N-Substituted Hydroxylamines and Sugar Derivatives

976

40.5.1.1.12.2 Method 2: Reduction of N-Hydroxymides and N-Hydroxylactams

978

40.5.1.1.12.3 Method 3: Reductive Alkylation of Oximes with Carboxylic Acids

978

40.5.1.1.12.4 Method 4: Reduction of Nitrones

979

40.5.1.1.12.4.1 Variation 1: Using Complex Metal Hydrides

979

40.5.1.1.12.4.2 Variation 2: Using Trichlorosilane

980

40.5.1.1.12.4.3 Variation 3: By Asymmetric Hydrogenation Using Iridium Catalysts

980

40.5.1.1.12.4.4 Variation 4: By Asymmetric Hydrosilylation with a Ruthenium(II)–Phosphine Complex Catalyst

981

40.5.1.1.12.5 Method 5: Synthesis from Nitrones and Organometallic Reagents

981

40.5.1.1.12.6 Method 6: Synthesis from Nitrones Using Vinylboronic Esters and Dimethylzinc

990

40.5.1.1.12.7 Method 7: Addition of Organometallic Reagents to Organic Nitro Compounds

990

40.5.1.1.12.8 Method 8: Pyrolysis of Tertiary Amine Oxides

991

40.5.1.1.12.9 Method 9: Rearrangement of O-Allyl-N-benzylhydroxylamines

994
40.5.1.2.10 Method 10: Oxidation of Secondary Amines 995
 40.5.1.2.10.1 Variation 1: Using Dibenzoyl Peroxide 995
 40.5.1.2.10.2 Variation 2: By Catalytic Oxidation with Hydrogen Peroxide 996
 40.5.1.2.10.3 Variation 3: Using Dimethyldioxirane 996
 40.5.1.2.10.4 Variation 4: Using Oxone ... 997
40.5.1.2.11 Method 11: Samarium(II) Iodide Induced Reductive Cross Coupling of Nitrones with Aldehydes and Ketones 997

40.5.1.3 N-Alkoxyammonium Salts .. 998
 40.5.1.3.1 Method 1: Alkylation of Tertiary Amine Oxides with Haloalkanes 998
 40.5.1.3.2 Method 2: Alkylation of Tertiary Amine Oxides with Sultones or Glycolog Sulfites .. 999
 40.5.1.3.3 Method 3: Alkylation of O,N,N-Trisubstituted Hydroxylamines with Haloalkanes .. 1000
 40.5.1.3.4 Method 4: Alkylation of O,N,N-Trisubstituted Hydroxylamines with Methyl Trifluoromethanesulfonate 1001
 40.5.1.3.5 Method 5: Exhaustive Methylation of O-Alkylhydroxylamines 1002
 40.5.1.3.6 Method 6: Synthesis from 3-(Bromomethyl)-3-phenyl-1,2-dioxetane and Tertiary Amines .. 1002

40.5.2 Product Subclass 2: Acyclic O-Alkyl-, O,N-Dialkyl-, and Trialkylhydroxylamines .. 1003
 40.5.2.1 Synthesis of Product Subclass 2 ... 1003
 40.5.2.1.1 Acyclic O-Alkylhydroxylamines .. 1003
 40.5.2.1.1.1 Method 1: Synthesis from O-Alkylloximes 1003
 40.5.2.1.1.2 Method 2: Synthesis from O-Alkyl Hydroxamates 1006
 40.5.2.1.1.3 Method 3: Synthesis from Cyclic N-Hydroxyimides by Alkylation with Organic Halides .. 1007
 40.5.2.1.1.4 Method 4: Synthesis from Cyclic N-Hydroxyimides by Alkylation with Alcohols .. 1018
 40.5.2.1.1.5 Method 5: Synthesis from N-Hydroxycarbamates 1027
 40.5.2.1.1.6 Method 6: Synthesis from Ethyl N-Hydroxyimidates 1030
 40.5.2.1.1.7 Method 7: Electrophilic Amination of Alkoxides 1032
 40.5.2.1.1.8 Method 8: Synthesis from Hydroxylamine-N,N-disulfonic Acid 1034
 40.5.2.1.2 Acyclic O,N-Dialkylhydroxylamines 1035
 40.5.2.1.2.1 Method 1: Alkylation of Hydroxylamine 1036
 40.5.2.1.2.2 Method 2: Alkylation of O-Alkylhydroxylamines 1036
 40.5.2.1.2.3 Method 3: Alkylation of N-Alkoxy carbamates 1038
 40.5.2.1.2.4 Method 4: Alkylation of Hydroxamic Acids 1041
 40.5.2.1.2.5 Method 5: Alkylation of N-Alkoxyureas 1042
 40.5.2.1.2.6 Method 6: Alkylation of O-Benzyl-N-(diethoxyphosphoryl)hydroxylamine .. 1042
 40.5.2.1.2.7 Method 7: Synthesis from Quaternized Oximes 1043
 40.5.2.1.2.8 Method 8: Reduction of Oxime Ethers 1044
 40.5.2.1.2.9 Method 9: Carbon Radical Addition to Aldoxime Ethers 1048
 40.5.2.1.2.10 Method 10: Addition of Organometallic Reagents to Oxime Ethers 1049
40.5.2.1.2.11 Method 11: Oxidation of Tertiary Alkyl Lithium Amides with tert-Butyl Peroxybenzoate .. 1052
40.5.2.1.2.12 Method 12: Electorereductive Coupling of Ketones with Oxime Ethers 1052
40.5.2.1.3 Method 13: O,N,N-Trialkylhydroxylamines ... 1053
40.5.2.1.3.1 Method 1: Alkylation of O-Alkylhydroxylamines 1053
40.5.2.1.3.2 Method 2: Alkylation of O,N-Dialkylhydroxylamines 1054
40.5.2.1.3.3 Method 3: Alkylation of N,N-Dialkylhydroxylamines 1055
40.5.2.1.3.4 Method 4: Reductive Alkylation of O,N-Dialkylhydroxylamines with Ketones or Aldehydes 1056
40.5.2.1.3.5 Method 5: Addition of Carbon Radicals to Nitrooxides 1058
40.5.2.1.3.6 Method 6: Synthesis from Tertiary Amine Oxides by Meisenheimer Rearrangement 1060
40.5.2.1.3.7 Method 7: Synthesis from 2,2-Disubstituted Isoxazolidinium Salts 1063
40.5.2.1.3.8 Method 8: Synthesis from Acyclic Oxyiminium Ions 1063
40.5.2.1.3.9 Method 9: Reduction of Weinreb Amides ... 1064
40.5.2.1.3.10 Method 10: Direct Amination of Alkenes ... 1065

40.6 Product Class 6: 1-Oxa-2-azacycloalkanes
D. Geffken and M. A. Köllner

40.6 Product Class 6: 1-Oxa-2-azacycloalkanes .. 1083
40.6.1 Synthesis of Product Class 6 ... 1083
40.6.1.1 Method 1: Synthesis from Hydroxylamine and 2,4-Dibromo- 2,4-dimethylpentan-3-one 1083
40.6.1.2 Method 2: Intramolecular Cyclization of N-Alkylhydroxylamines 1083
40.6.1.3 Method 3: Synthesis from Phorone with Hydroxylamine 1084
40.6.1.4 Method 4: Alkylation of Alkyl N-Hydroxycarbamates 1084
40.6.1.5 Method 5: Synthesis from N-Hydroxypthalimide 1086
40.6.1.6 Method 6: Synthesis from Benzohydroxamic Acid 1088
40.6.1.7 Method 7: Synthesis from N-Allylhydroxylamines 1089
40.6.1.8 Method 8: Synthesis from N-Homoallylic Hydroxylamines 1089
40.6.1.9 Method 9: Synthesis from O-Allylic Hydroxylamines 1090
40.6.1.10 Method 10: Synthesis from O-Homoallylic Hydroxylamines 1091
40.6.1.11 Method 11: Synthesis from N-Alka-2,3-dienylhydroxylamines 1092
40.6.1.12 Method 12: Synthesis from O-Allyloximes by Selenocyclization 1093
40.6.1.13 Method 13: Ring-Closing Metathesis of N,O-Dialkenyl-Substituted Hydroxylamines ... 1094
40.6.1.14 Method 14: Reduction of 5,6-Dihydro-4H-1,2-oxazines 1097
40.6.1.15 Method 15: Reduction of 4,5-Dihydroisoxazolium Tetrafluoroborates 1098
40.6.1.16 Method 16: Boron Trifluoride Assisted Alkylation of 4,5-Dihydroisoxazoles ... 1098
40.6.1.17 Method 17: Synthesis from 5,6-Dihydro-4H-oxazinium Salts 1099
40.6.1.18 Method 18: Allylation of Isoxazolidin-5-ols ... 1100
40.6.1.19 Method 19: Synthesis from Organonitroso Compounds by Cycloaddition 1100
40.6.1.19.1 Variation 1: Synthesis from Perfluoronitrosoalkanes 1100
40.6.1.19.2 Variation 2: Synthesis from Acylnitroso Compounds 1101
40.6.1.19.3 Variation 3: Synthesis from α-Chloronitroso Compounds 1105
40.6.1.20 Method 20: Rearrangement of Cyclic N-Oxides (Meisenheimer Rearrangement) .. 1107
40.6.1.21 Method 21: Synthesis from Nitrones by 1,3-Dipolar Cycloaddition 1111
40.6.1.21.1 Variation 1: Synthesis from Achiral Nitrones 1111
40.6.1.21.2 Variation 2: Synthesis from Chiral Nitrones 1119
40.6.1.21.3 Variation 3: Addition of Lithiated Methoxyallene to Chiral Nitrones .. 1121
40.6.1.21.4 Variation 4: In Situ Conversion of Oximes into Nitrones Followed by 1,3-Cycloaddition ... 1122
40.6.1.21.5 Variation 5: Palladium-Catalyzed Allene Insertion Coupled with Nitrone 1,3-Dipolar Cycloaddition 1124
40.6.1.21.6 Variation 6: Synthesis from Nitrones via [3 + 3] Dipolar Cycloaddition with Cyclopropane-1,1-dicarboxylates 1124
40.6.1.22 Method 22: Synthesis from Nitrones and α-Lithiated Aryloxiranes 1126
40.6.1.23 Method 23: Synthesis from Nitrones and Lithiated 2-(1-Chloroethyl)-4,5-dihydrooxazoles 1127
40.6.1.24 Method 24: Synthesis from Oxaziridines and Alkenes 1128

40.7 Product Class 7: Hydrazines and Hydrazinium Salts

P. Rademacher

40.7 Product Class 7: Hydrazines and Hydrazinium Salts 1133
40.7.1 Product Subclass 1: Acyclic Alkylhydrazines 1133
40.7.1.1 Synthesis of Product Subclass 1 ... 1135
40.7.1.1.1 Method 1: Direct Substitution (Alkylation) of Free Hydrazine and Alkylhydrazines ... 1135
40.7.1.1.1.1 Variation 1: Using Alkyl Halides 1136
40.7.1.1.1.2 Variation 2: Using Alcohols .. 1137
40.7.1.1.1.3 Variation 3: Using Cyclic Carboxylates (Lactones) 1137
40.7.1.1.1.4 Variation 4: Using Alkyl Sulfonates 1138
40.7.1.1.1.5 Variation 5: Using Sultones .. 1139
40.7.1.1.1.6 Variation 6: Using Dialkyl Sulfates 1139
40.7.1.1.1.7 Variation 7: Using Oxiranes .. 1140
40.7.1.1.1.8 Variation 8: Using Thiiranes ... 1141
40.7.1.1.1.9 Variation 9: Using Aziridines .. 1141
40.7.1.1.1.10 Variation 10: Using Sulfones 1142
40.7.1.1.1.11 Variation 11: Using Alkylamines 1143
40.7.1.1.1.12 Variation 12: Using Diazirenolates 1144
40.7.1.1.1.12 Variation 1: Using Alkenes 1144
40.7.1.1.1.2 Variation 2: Using Hydrazines 1145
40.7.1.1.1.2 Variation 3: Using Hydrazides 1145
40.7.1.1.1.2 Variation 3: Reductive Alkylation of Hydrazides 1147
40.7.1.1.1.4 Variation 4: Alkylation of Azines 1147
40.7.1.1.1.5 Variation 5: Alkylation of tert-Butyl Isopropylidenehydrazinecarboxylate 1148
40.7.1.1.1.6 Variation 6: Alkylation of P,P-Diphenylphosphinic Hydrazide 1150
40.7.1.1.1.7 Variation 7: Alkylation of Di-tert-butyl Hydrazine-1,2-dicarboxylate ... 1151
40.7.1.1.1.8 Variation 8: Alkylation of Tri-tert-butyl Hydrazine-1,1,2-tricarboxylate .. 1153
40.7.1.1.1.9 Variation 9: Alkylation of Orthogonally Triprotected Hydrazines 1154
40.7.1.3 Method 3: Addition of Hydrazines to Activated Alkenes 1155
40.7.1.4 Method 4: Reduction of Hydrazones 1158
40.7.1.4.1 Variation 1: Catalytic Hydrogenation 1158
40.7.1.4.2 Variation 2: Using Complex Hydrides 1159
40.7.1.5 Method 5: Reduction of Azines .. 1161
40.7.1.5.1 Variation 1: Catalytic Hydrogenation 1161
40.7.1.5.2 Variation 2: Using Metals ... 1162
40.7.1.5.3 Variation 3: Using Complex Hydrides 1162
40.7.1.6 Method 6: Reduction of Hydrazides 1163
40.7.1.7 Method 7: Addition of Organometallic Compounds to Hydrazones
(C-Alkylation) .. 1165
40.7.1.7.1 Variation 1: Using Grignard Reagents 1165
40.7.1.7.2 Variation 2: Using Aryllithium Reagents 1166
40.7.1.7.3 Variation 3: Stereoselective Addition of Organometallic Compounds
(C-Alkylation) 1166
40.7.1.7.4 Variation 4: Stereoselective Addition of Radicals 1168
40.7.1.8 Method 8: Reductive Coupling of Phenylhydrazones 1168
40.7.1.9 Method 9: Amination of Amines 1169
40.7.1.9.1 Variation 1: Using N-Chloro(alkyl)amines with Amines and Metalated
Amines .. 1169
40.7.1.9.2 Variation 2: Using Hydroxylamine-O-sulfonic Acids 1171
40.7.1.9.3 Variation 3: Using Oxaziridines 1171
40.7.1.10 Method 10: Amination of Amines via Diaziridines 1172
40.7.1.10.1 Variation 1: Using Hydroxylamine-O-sulfonic Acid 1172
40.7.1.10.2 Variation 2: Using Hypochlorite 1173
40.7.1.11 Method 11: Synthesis from Ureas 1174
40.7.1.12 Method 12: Synthesis from N-Alkylsulfamides 1175
40.7.1.13 Method 13: Synthesis from Phosphonic Acid Diamides 1176
40.7.1.14 Method 14: Tetraalkylhydrazines by Anodic Oxidation of Secondary
Amine Anions ... 1176
40.7.1.15 Method 15: Hydrolysis of Nitrogen Heterocycles 1176
40.7.1.15.1 Variation 1: Of Dihydropyrazolium Compounds 1177
40.7.1.15.2 Variation 2: Of Pyrazolidin-3-ones 1177
40.7.1.15.3 Variation 3: Of Diaziridines 1178
40.7.1.15.4 Variation 4: Of Diaziridinones 1179
40.7.1.15.5 Variation 5: Of Sydnones ... 1180
40.7.1.16 Method 16: Hydrolysis of Alkylhydrazones 1180
40.7.1.17 Method 17: Hydrolysis of Acylated Alkylhydrazines 1181
40.7.1.18 Method 18: 1,1-Dialkylhydrazines by Reduction of DialkylNitrosamines 1181
40.7.1.18.1 Variation 1: Using Catalytic Hydrogenation 1181
40.7.1.18.2 Variation 2: Using Metals .. 1182
40.7.1.18.3 Variation 3: Using Complex Hydrides 1183
40.7.1.18.4 Variation 4: Using Metal Salts 1184
40.7.1.18.5 Variation 5: Using Sodium Bisulfite 1184
40.7.1.18.6 Variation 6: Electrochemical Reduction 1184
40.7.1.19 Method 19: Monoalkylhydrazines by Reduction of N-Alkyl-N-nitrosoureas 1185
40.7.1.20 Method 20: Monoalkylhydrazines by Reduction of N-Nitrosoamides 1185
40.7.1.21 Method 21: Monoalkylhydrazines by Reduction of N-Alkyl-N-nitrosohydroxylamines 1186
<table>
<thead>
<tr>
<th>Section</th>
<th>Method</th>
<th>Synthesis Details</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>40.7.1.22</td>
<td>Method 22:</td>
<td>1,2-Dialkylhydrazines by Reduction of Dialkyl diazenes</td>
<td>1187</td>
</tr>
<tr>
<td>40.7.1.23</td>
<td>Method 23:</td>
<td>Trialkylhydrazines from 1,1,1-Trialkylhydrazinium Salts</td>
<td>1187</td>
</tr>
<tr>
<td>40.7.1.24</td>
<td>Method 24:</td>
<td>Tetraalkylhydrazines by Thermolysis of Tetraaz-2-enes</td>
<td>1188</td>
</tr>
<tr>
<td>40.7.1.25</td>
<td>Method 25:</td>
<td>Addition of Organometallic Compounds to Azodicarboxylic Esters (N-Alkylation)</td>
<td>1189</td>
</tr>
<tr>
<td>40.7.1.26</td>
<td>Method 26:</td>
<td>Synthesis from Dialkyl nitrosamines and Grignard Reagents</td>
<td>1189</td>
</tr>
<tr>
<td>40.7.1.27</td>
<td>Method 27:</td>
<td>Synthesis from N-Phthalimidoaziridines</td>
<td>1189</td>
</tr>
<tr>
<td>40.7.1.28</td>
<td>Method 28:</td>
<td>Addition to Azodicarboxylic Esters</td>
<td>1190</td>
</tr>
<tr>
<td>40.7.1.29</td>
<td>Method 29:</td>
<td>Synthesis from 1-Aminoaziridines</td>
<td>1191</td>
</tr>
<tr>
<td>40.7.1.30</td>
<td>Method 30:</td>
<td>Oxidative Coupling of Amines</td>
<td>1192</td>
</tr>
<tr>
<td>40.7.1.2</td>
<td>Applications of Product Subclass 1 in Organic Synthesis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40.7.2</td>
<td>Product Subclass 2: Hydrazinium Salts</td>
<td>Synthesis of Product Subclass 2</td>
<td>1193</td>
</tr>
<tr>
<td>40.7.2.1</td>
<td>Method 1:</td>
<td>Alkylation of Hydrazines and Alkylhydrazines</td>
<td>1193</td>
</tr>
<tr>
<td>40.7.2.1.1</td>
<td>Variation 1:</td>
<td>Using Alkyl Halides</td>
<td>1193</td>
</tr>
<tr>
<td>40.7.2.1.2</td>
<td>Variation 2:</td>
<td>Using Dialkyl Sulfates or Alkyl Sulfonates</td>
<td>1194</td>
</tr>
<tr>
<td>40.7.2.1.3</td>
<td>Method 2:</td>
<td>Amination of Tertiary Amines</td>
<td>1195</td>
</tr>
<tr>
<td>40.7.2.1.4</td>
<td>Variation 1:</td>
<td>Using N-Chloro(alkyl)amines</td>
<td>1195</td>
</tr>
<tr>
<td>40.7.2.1.5</td>
<td>Variation 2:</td>
<td>Using Hydroxylamine-O-sulfonic Acids</td>
<td>1196</td>
</tr>
<tr>
<td>40.7.2.1.6</td>
<td>Method 3:</td>
<td>Dicationic Hydrazinium Compounds by Protonation of Hydrazinium Compounds</td>
<td>1197</td>
</tr>
<tr>
<td>40.7.2.1.7</td>
<td>Method 4:</td>
<td>Dicationic Hydrazinium Compounds by Alkylation of Hydrazinium Compounds</td>
<td>1198</td>
</tr>
<tr>
<td>40.7.2.1.8</td>
<td>Method 5:</td>
<td>Ammoniumimines by Deprotonation of Hydrazinium Compounds</td>
<td>1198</td>
</tr>
<tr>
<td>40.7.2.1.9</td>
<td>Method 6:</td>
<td>(Ammonium)acylimines from 1,1-Dialkylhydrazines</td>
<td>1199</td>
</tr>
<tr>
<td>40.7.2.1.10</td>
<td>Variation 1:</td>
<td>Using Oxiranes and Carboxylic Acid Esters</td>
<td>1199</td>
</tr>
<tr>
<td>40.7.2.1.11</td>
<td>Variation 2:</td>
<td>Using Acyl Halides and Alkyl Halides</td>
<td>1199</td>
</tr>
<tr>
<td>40.7.2.1.12</td>
<td>Method 7:</td>
<td>(Ammonium)acylimines from 1,1,1-Trialkylhydrazinium Compounds</td>
<td>1201</td>
</tr>
<tr>
<td>40.7.2.1.13</td>
<td>Variation 1:</td>
<td>Using Acyl Halides</td>
<td>1201</td>
</tr>
<tr>
<td>40.7.2.1.14</td>
<td>Variation 2:</td>
<td>Acylation of (Trialkylammonium)imines–Bis(tert-butyl alcohol) Adducts</td>
<td>1202</td>
</tr>
<tr>
<td>40.7.2.1.15</td>
<td>Method 8:</td>
<td>(Ammonium)cyanoimines from Trialkylamines</td>
<td>1203</td>
</tr>
<tr>
<td>40.7.2.1.16</td>
<td>Method 9:</td>
<td>Synthesis of Hydrazinium C,N-Betaines</td>
<td>1203</td>
</tr>
<tr>
<td>40.7.2.2</td>
<td>Applications of Product Subclass 2 in Organic Synthesis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40.8</td>
<td>Product Class 8: 1,2-Diazacycloalkanes</td>
<td>W. Maison</td>
<td></td>
</tr>
<tr>
<td>40.8.1</td>
<td>Synthesis of Product Class 8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40.8.1.1</td>
<td>Method 1:</td>
<td>Alkylation of Hydrazines</td>
<td>1212</td>
</tr>
<tr>
<td>40.8.1.2</td>
<td>Variation 1:</td>
<td>Alkylation with Haloalkanes</td>
<td>1212</td>
</tr>
<tr>
<td>40.8.1.3</td>
<td>Variation 2:</td>
<td>Alkylation with Alkanesulfonates</td>
<td>1215</td>
</tr>
<tr>
<td>40.8.1.4</td>
<td>Variation 3:</td>
<td>Alkylation with Epoxides</td>
<td>1216</td>
</tr>
</tbody>
</table>
40.8.1.2 Method 2: Cyclization of N-Chloroalkanamines 1218
40.8.1.3 Method 3: Reduction of N=N Bonds 1218
40.8.1.4 Method 4: Reduction of C=N and C=O Bonds 1219
40.8.1.4.1 Variation 1: Reduction of Hydrazones and Azines 1219
40.8.1.4.2 Variation 2: Reduction of N-Acylhydrazines and N-Acylhydrazones 1220
40.8.1.4.3 Variation 3: Reductive Amination 1224
40.8.1.5 Method 5: Reductive Alkylation of Azo Compounds 1224
40.8.1.6 Method 6: Reductive α-Aminoalkylation 1224
40.8.1.7 Method 7: Reduction of Dialkyl Nitrosoamines 1229
40.8.1.8 Method 8: Synthesis by Cycloaddition 1230
40.8.1.8.1 Variation 1: [4+2] Cycloadditions of Azo Compounds 1230
40.8.1.8.2 Variation 2: [3+2] Cycloadditions 1234
40.8.1.8.3 Variation 3: Criss-Cross [3+2] Cycloadditions 1241
40.8.1.9 Method 9: Addition of Organometallic Reagents to N=N Bonds 1243
40.8.1.10 Method 10: Addition of Organometallic Reagents to C=N Bonds .. 1244
40.8.1.11 Method 11: Addition of Hydrazines to Activated Alkenes 1245
40.8.1.12 Method 12: Diazoenium Cyclization 1245
40.8.1.13 Method 13: Alkene Metathesis 1246

40.9 Product Class 9: Triazanes and Tetrazanes
E. Schaumann

40.9 Product Class 9: Triazanes and Tetrazanes 1253
40.9.1 Synthesis of Product Class 9 .. 1253
40.9.1.1 Method 1: Synthesis of Triazanes by Addition of Amines to Azo Compounds .. 1253
40.9.1.2 Method 2: Synthesis of Triazanes by Ring Opening of Oxaziridines with Hydrazines ... 1254
40.9.1.3 Method 3: Synthesis of Triaziridines and Heteroatom Analogues . 1255
40.9.1.4 Method 4: Synthesis of Tetrazanes 1256

40.10 Product Class 10: Amido Derivatives of Sulfanediol
S. R. Chemler

40.10 Product Class 10: Amido Derivatives of Sulfanediol 1259
40.10.1 Product Subclass 1: Alkylaminesulfenyl Halides 1259
40.10.1.1 Synthesis of Product Subclass 1 1259
40.10.1.1.1 Method 1: Synthesis of Alkylaminesulfenyl Fluorides by Halide Exchange .. 1259
40.10.1.1.2 Method 2: Synthesis of Alkylaminesulfenyl Chlorides 1260
40.10.1.1.2.1 Variation 1: Using Sulfur Dichloride 1260
40.10.1.1.2.2 Variation 2: By Chlorination of the Corresponding Diamino Disulfides .. 1260
40.10.1.1.3 Method 3: Synthesis of Alkylaminesulfenyl Bromides and Alkylaminesulfenyl Iodides 1261
40.10.1.1.3.1 Variation 1: By Bromination of Bis(dialkylamino) Disulfides ... 1261
40.10.1.1.3.2 Variation 2: By Halide Exchange 1262
40.10.1.1.2 Applications of Product Subclass 1 in Organic Synthesis 1262
<table>
<thead>
<tr>
<th>Section</th>
<th>Class</th>
<th>Subclass</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>40.10.2</td>
<td>Subclass 2: Bis(alkylamino) Disulfides and Polysulfides</td>
<td></td>
<td></td>
<td>1263</td>
</tr>
<tr>
<td>40.10.2.1</td>
<td></td>
<td>Method 1:</td>
<td></td>
<td>1263</td>
</tr>
<tr>
<td>40.10.2.1.1</td>
<td></td>
<td>Synthesis of Bis(alkylamino) Disulfides</td>
<td></td>
<td>1263</td>
</tr>
<tr>
<td>40.10.2.1.2</td>
<td></td>
<td>Method 2:</td>
<td></td>
<td>1264</td>
</tr>
<tr>
<td>40.10.2.2</td>
<td></td>
<td>Synthesis of Bis(alkylamino) Trisulfides</td>
<td></td>
<td>1264</td>
</tr>
<tr>
<td>40.10.3</td>
<td>Subclass 3: Bis([alkylamino)sulfanyl]amines</td>
<td></td>
<td></td>
<td>1265</td>
</tr>
<tr>
<td>40.10.3.1</td>
<td></td>
<td>Synthesis of Product Subclass 3</td>
<td></td>
<td>1265</td>
</tr>
<tr>
<td>40.10.4</td>
<td>Subclass 4: Bis(alkylamino) Sulfides</td>
<td></td>
<td></td>
<td>1265</td>
</tr>
<tr>
<td>40.10.4.1</td>
<td></td>
<td>Synthesis of Product Subclass 4</td>
<td></td>
<td>1266</td>
</tr>
<tr>
<td>40.10.4.1.1</td>
<td></td>
<td>Method 1:</td>
<td></td>
<td>1266</td>
</tr>
<tr>
<td>40.11</td>
<td>Subclass 1: (Alkylamino)sulfinyl Halides, (Alkylamino)sulfur Trifluorides, and Bis(alkylamino)sulfur Difluorides</td>
<td></td>
<td></td>
<td>1269</td>
</tr>
<tr>
<td>40.11.1</td>
<td></td>
<td>Synthesis of Product Subclass 1</td>
<td></td>
<td>1269</td>
</tr>
<tr>
<td>40.11.1.1</td>
<td></td>
<td>Method 1:</td>
<td></td>
<td>1269</td>
</tr>
<tr>
<td>40.11.1.1.1</td>
<td></td>
<td>Synthesis of (Alkylamino)sulfinyl Fluorides from Thionyl Fluoride</td>
<td></td>
<td>1269</td>
</tr>
<tr>
<td>40.11.1.1.2</td>
<td></td>
<td>Method 2:</td>
<td></td>
<td>1270</td>
</tr>
<tr>
<td>40.11.1.1.3</td>
<td></td>
<td>Synthesis of (Alkylamino)sulfinyl Chlorides from Thionyl Chloride</td>
<td></td>
<td>1270</td>
</tr>
<tr>
<td>40.11.1.1.4</td>
<td></td>
<td>Method 3:</td>
<td></td>
<td>1271</td>
</tr>
<tr>
<td>40.11.1.1.5</td>
<td></td>
<td>Synthesis of (Alkylamino)sulfinyl Bromides from Thionyl Bromide</td>
<td></td>
<td>1271</td>
</tr>
<tr>
<td>40.11.1.1.6</td>
<td></td>
<td>Method 4:</td>
<td></td>
<td>1272</td>
</tr>
<tr>
<td>40.11.1.1.7</td>
<td></td>
<td>Synthesis of (Alkylamino)sulfur Trifluorides from Sulfur Tetrafluoride</td>
<td></td>
<td>1272</td>
</tr>
<tr>
<td>40.11.1.1.8</td>
<td></td>
<td>Method 5:</td>
<td></td>
<td>1272</td>
</tr>
<tr>
<td>40.11.1.1.9</td>
<td></td>
<td>Synthesis of Bis(alkylamino)sulfur Difluorides from (Alkylamino)sulfur Trifluorides</td>
<td></td>
<td>1272</td>
</tr>
<tr>
<td>40.11.1.2</td>
<td></td>
<td>Applications of Product Subclass 1 in Organic Synthesis</td>
<td></td>
<td>1272</td>
</tr>
<tr>
<td>40.11.2</td>
<td>Subclass 2: N-Alkylamidosulfurous Acids</td>
<td></td>
<td></td>
<td>1274</td>
</tr>
<tr>
<td>40.11.2.1</td>
<td></td>
<td>Synthesis of Product Subclass 2</td>
<td></td>
<td>1274</td>
</tr>
<tr>
<td>40.11.3</td>
<td>Subclass 3: N,N'-Sulfinylidiamines (N,N'-Dialkylsulfurous Diamides)</td>
<td></td>
<td></td>
<td>1274</td>
</tr>
<tr>
<td>40.11.3.1</td>
<td></td>
<td>Synthesis of Product Subclass 3</td>
<td></td>
<td>1274</td>
</tr>
<tr>
<td>40.11.3.1.1</td>
<td></td>
<td>Method 1:</td>
<td></td>
<td>1274</td>
</tr>
<tr>
<td>40.11.4</td>
<td>Subclass 4: N-Sulfinylalkanamines</td>
<td></td>
<td></td>
<td>1275</td>
</tr>
<tr>
<td>40.11.4.1</td>
<td></td>
<td>Synthesis of Product Subclass 4</td>
<td></td>
<td>1275</td>
</tr>
<tr>
<td>40.11.4.1.1</td>
<td></td>
<td>Method 1:</td>
<td></td>
<td>1275</td>
</tr>
<tr>
<td>40.11.4.2</td>
<td></td>
<td>Applications of Product Subclass 4 in Organic Synthesis</td>
<td></td>
<td>1277</td>
</tr>
<tr>
<td>40.11.5</td>
<td>Subclass 5: N-Thiosulfinylalkanamines</td>
<td></td>
<td></td>
<td>1278</td>
</tr>
<tr>
<td>40.11.5.1</td>
<td></td>
<td>Synthesis of Product Subclass 5</td>
<td></td>
<td>1278</td>
</tr>
</tbody>
</table>
40.11.5.1.1 Method 1: Synthesis via Reaction of Anilines with Disulfur Dichloride ... 1278
40.11.6 Product Subclass 6: \(N,N'\)-Dialklysulfur Diimides ... 1279
40.11.6.1 Synthesis of Product Subclass 6 .. 1279
40.11.6.1.1 Method 1: Synthesis of \(N,N'\)-Bis(methoxycarbonyl)sulfur Diimide 1279
40.11.6.1.2 Method 2: Synthesis of \(N,N'\)-Dialklysulfur Diimides from Sulfur Tetrafluoride ... 1280
40.11.6.1.3 Method 3: Synthesis of \(N,N'\)-Diarylsulfur Diimides via Amidosulfur Dichlorides .. 1281
40.11.6.2 Applications of Product Subclass 6 in Organic Synthesis ... 1281

40.12 Product Class 12: N-Alkylsulfamic Acids and Derivatives
E. S. Sherman and S. R. Chemler

40.12.1 Product Subclass 1: N-Alkylsulfamoyl Halides .. 1285
40.12.1.1 Synthesis of Product Subclass 1 .. 1285
40.12.1.1.1 Method 1: Synthesis of N-Alkylsulfamoyl Fluorides ... 1285
40.12.1.1.1.1 Variation 1: From Amines and Sulfuryl Fluoride ... 1285
40.12.1.1.1.2 Variation 2: From Amines and Sulfuryl Chloride Fluoride 1286
40.12.1.1.1.3 Variation 3: From N-Alkylsulfamoyl Chlorides .. 1286
40.12.1.1.2 Method 2: Synthesis of N-Alkylsulfamoyl Chlorides ... 1287
40.12.1.1.2.1 Variation 1: From N-Alkylsulfamic Acids and Phosphorus Pentachloride 1287
40.12.1.1.2.2 Variation 2: From Amines and Sulfuryl Chloride ... 1287
40.12.1.1.3 Method 3: Synthesis of N-Alkylsulfamoyl Bromides ... 1288
40.12.2 Product Subclass 2: N-Alkylsulfamic Acids .. 1289
40.12.2.1 Synthesis of Product Subclass 2 .. 1289
40.12.2.1.1 Method 1: Synthesis from Amines and Chlorosulfonic Acid 1289
40.12.2.1.2 Method 2: Synthesis by Aminolysis of Amine–Sulfur Trioxide Complexes 1290
40.12.2.1.3 Method 3: Synthesis from Isocyanates and Sulfuric Acid 1290
40.12.2.1.4 Method 4: Synthesis by Hydrolysis of Aryl Sulfamates 1291
40.12.2.1.5 Method 5: Synthesis from N-Alkylsulfamoyl Chlorides 1292
40.12.2.1.6 Method 6: Synthesis by Hydrolysis of Sulfamoyl Azides 1292
40.12.3 Product Subclass 3: N-Alkylsulfamides .. 1292
40.12.3.1 Synthesis of Product Subclass 3 .. 1293
40.12.3.1.1 Method 1: Synthesis of Linear Sulfamides .. 1293
40.12.3.1.1.1 Variation 1: From N-Alkylsulfamoyl Chlorides .. 1293
40.12.3.1.1.2 Variation 2: From N-Alkylsulfamic Acid Esters .. 1293
40.12.3.1.1.3 Variation 3: From Chlorosulfonyl Isocyanate .. 1294
40.12.3.1.1.4 Variation 4: From N-Sulfamoyloxazolidinone Derivatives 1295
40.12.3.1.1.5 Variation 5: From Sulfamide and Amines .. 1297
40.12.3.1.2 Method 2: Synthesis of Cyclic Sulfamides .. 1297
40.12.3.1.2.1 Variation 1: From Amino Alcohols with Burgess-Type Reagents 1297
40.12.3.1.2.2 Variation 2: From Linear Sulfamides and Alkenes ... 1299
40.12.3.1.2.3 Variation 3: From N,N-Dimethylsulfamoylzairidines and Amines 1301
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>40.12.3.1.2.4</td>
<td>Variation 4: From α-Amino Acid Esters and Sulfamide</td>
<td>1302</td>
</tr>
<tr>
<td>40.13</td>
<td>Product Class 13: Ammoniumsulfonates, Thiohydroxylamines, and Aminosulfonium Salts</td>
<td>1305</td>
</tr>
<tr>
<td></td>
<td>E. Schaumann</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>40.13</td>
<td>Product Class 13: Ammoniumsulfonates, Thiohydroxylamines, and Aminosulfonium Salts</td>
<td>1305</td>
</tr>
<tr>
<td></td>
<td>Keyword Index</td>
<td>1309</td>
</tr>
<tr>
<td></td>
<td>Author Index</td>
<td>1339</td>
</tr>
<tr>
<td></td>
<td>Abbreviations</td>
<td>1371</td>
</tr>
</tbody>
</table>