Volume 41:
Nitro, Nitroso, Azo, Azoxy, and Diazonium Compounds, Azides, Triazenes, and Tetrazenes

Preface .. V

Volume Editor’s Preface .. VII

Table of Contents ... XI

Introduction
K. Banert .. 1

41.1 Product Class 1: Nitroalkanes
R. A. Aitken and K. M. Aitken ... 9

41.2 Product Class 2: Nitrosoalkanes and Nitroso Acetals (N,N-Dialkoxyamines)
H.-U. Reissig, B. Dugović, and R. Zimmer 259

41.3 Product Class 3: N-Nitroamines
U. Jahn .. 371

41.4 Product Class 4: N-Nitrosoamines
M. M. K. Boysen ... 437

41.5 Product Class 5: Aliphatic Azoxy Compounds (Aliphatic Diazene Oxides)
M. M. K. Boysen ... 449

41.6 Product Class 6: Aliphatic Azo Compounds
S. Kempa, L. Wallach, and K. Rück-Braun 459

41.7 Product Class 7: Diazonium Compounds
S. Kubik ... 507

41.8 Product Class 8: Azidoalkanes
S. Bräse, B. Lesch, and V. Zimmermann 543

41.9 Product Class 9: Alkyltriazenes
N. Jung and S. Bräse ... 613

41.10 Product Class 10: Alkyltetrazenes
N. Jung and S. Bräse ... 641

41.11 Product Class 11: N,N-Dihaloamines
S. J. Collier and W. Xiang .. 651

Keyword Index ... 681

Author Index .. 721

Abbreviations ... 765
Table of Contents

Introduction

K. Banert

Introduction

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

41.1 Product Class 1: Nitroalkanes

R. A. Aitken and K. M. Aitken

41.1 Product Class 1: Nitroalkanes

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>9</td>
</tr>
</tbody>
</table>

41.1.1 Synthesis by Substitution

<table>
<thead>
<tr>
<th>Variation</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>12</td>
</tr>
<tr>
<td>4</td>
<td>13</td>
</tr>
<tr>
<td>5</td>
<td>13</td>
</tr>
<tr>
<td>6</td>
<td>13</td>
</tr>
<tr>
<td>7</td>
<td>14</td>
</tr>
</tbody>
</table>

41.1.2 Method 2: Substitution of Hydrogen Using Metal Nitrates

<table>
<thead>
<tr>
<th>Variation</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>15</td>
</tr>
<tr>
<td>2</td>
<td>15</td>
</tr>
</tbody>
</table>

41.1.3 Method 3: Substitution of Hydrogen Using Sulfuric Acid and Ammonium Nitrate

<table>
<thead>
<tr>
<th>Variation</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>15</td>
</tr>
</tbody>
</table>

41.1.4 Method 4: Substitution of Hydrogen Using Nitrogen Dioxide

<table>
<thead>
<tr>
<th>Variation</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>15</td>
</tr>
<tr>
<td>2</td>
<td>16</td>
</tr>
<tr>
<td>3</td>
<td>17</td>
</tr>
</tbody>
</table>

41.1.5 Method 5: Substitution of Hydrogen Using Sodium Nitrite and Silver(I) Nitrate

<table>
<thead>
<tr>
<th>Variation</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>17</td>
</tr>
</tbody>
</table>

41.1.6 Method 6: Substitution of Hydrogen Using Alkyl Nitrates

<table>
<thead>
<tr>
<th>Variation</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>17</td>
</tr>
</tbody>
</table>

41.1.7 Method 7: Substitution of Hydrogen Using Alkyl Nitrates with a Base

<table>
<thead>
<tr>
<th>Variation</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>17</td>
</tr>
</tbody>
</table>

41.1.8 Method 8: Substitution of Hydrogen Using 2,4,6-Trichloro-N-nitroaniline

<table>
<thead>
<tr>
<th>Method</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>20</td>
</tr>
</tbody>
</table>

41.1.9 Method 9: Substitution of Lithium

<table>
<thead>
<tr>
<th>Method</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>20</td>
</tr>
</tbody>
</table>

41.1.10 Method 10: Substitution of Potassium

<table>
<thead>
<tr>
<th>Method</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>20</td>
</tr>
</tbody>
</table>

41.1.11 Method 11: Substitution of Magnesium

<table>
<thead>
<tr>
<th>Method</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>20</td>
</tr>
</tbody>
</table>

41.1.12 Method 12: Substitution of Mercury

<table>
<thead>
<tr>
<th>Method</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>21</td>
</tr>
</tbody>
</table>

41.1.13 Method 13: Substitution of a Carboxy Group

<table>
<thead>
<tr>
<th>Method</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>21</td>
</tr>
</tbody>
</table>
41.1.1.14 Method 14: Substitution of a Cyano Group .. 22
41.1.1.15 Method 15: Substitution of Chlorine Using Sodium Nitrite 22
41.1.1.15.1 Variation 1: Without Additional Reagents 23
41.1.1.15.2 Variation 2: With Urea .. 23
41.1.1.15.3 Variation 3: With Benzene-1,3,5-triol 24
41.1.1.16 Method 16: Substitution of Chlorine Using Potassium Nitrite 24
41.1.1.16.1 Variation 1: In the Presence of a Base 24
41.1.1.16.2 Variation 2: With Crown Ethers .. 25
41.1.1.17 Method 17: Substitution of Chlorine Using Silver(I) Nitrite 25
41.1.1.17.1 Variation 1: Without Additional Reagents 25
41.1.1.17.2 Variation 2: With Urea .. 26
41.1.1.18 Method 18: Substitution of Chlorine Using Mercury(I) Nitrite 27
41.1.1.19 Method 19: Substitution of Chlorine Using Polymer-Supported Nitrite 27
41.1.1.20 Method 20: Substitution of Bromine Using Sodium Nitrite 27
41.1.1.20.1 Variation 1: Without Additional Reagents 27
41.1.1.20.2 Variation 2: With Benzene-1,2-diol 29
41.1.1.20.3 Variation 3: With Benzene-1,3,5-triol 29
41.1.1.20.4 Variation 4: With Urea .. 31
41.1.1.20.5 Variation 5: With Urea and Benzene-1,3,5-triol 32
41.1.1.20.6 Variation 6: With a Phase-Transfer Catalyst 34
41.1.1.20.7 Variation 7: With an Ionic Liquid ... 34
41.1.1.21 Method 21: Substitution of Bromine Using Potassium Nitrite 34
41.1.1.22 Method 22: Substitution of Bromine Using Silver(I) Nitrite 35
41.1.1.23 Method 23: Substitution of Bromine Using Ammonium Nitrites 38
41.1.1.24 Method 24: Substitution of Bromine Using Polymer-Supported Nitrite 39
41.1.1.25 Method 25: Substitution of Iodine Using Sodium Nitrite 39
41.1.1.25.1 Variation 1: Without Additional Reagents 40
41.1.1.25.2 Variation 2: With Benzene-1,3,5-triol 41
41.1.1.25.3 Variation 3: With Urea .. 41
41.1.1.25.4 Variation 4: With Urea and Benzene-1,3,5-triol 42
41.1.1.26 Method 26: Substitution of Iodine Using Silver(I) Nitrite 43
41.1.1.27 Method 27: Substitution of Iodine Using Ammonium Nitrites 46
41.1.1.28 Method 28: Substitution of Iodine Using Polymer-Supported Nitrite 46
41.1.1.29 Method 29: Substitution of Sulfates .. 46
41.1.1.30 Method 30: Substitution of Sulfonates 47
41.1.1.31 Method 31: Substitution of Oxonium Tetrafluoroborates 48
41.1.1.32 Method 32: Substitution of Nitrogen in Azo Compounds 48
41.1.1.33 Method 33: Oxidation of a Primary Amino Group Using Caro’s Acid 49
41.1.1.34 Method 34: Oxidation of a Primary Amino Group Using Hypofluorous Acid ... 49
41.1.1.35 Method 35: Oxidation of a Primary Amino Group Using Organic Peroxides ... 50
41.1.1.36 Method 36: Oxidation of a Primary Amino Group Using tert-Butyl Hydroperoxide and Chromium Silicalite 52
<table>
<thead>
<tr>
<th>Method</th>
<th>Variation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>41.1.2.3</td>
<td>Variation 3</td>
<td>Using tert-Butyl Hydroperoxide and Zirconium(IV) tert-Butoxide</td>
</tr>
<tr>
<td>41.1.2.3</td>
<td>Variation 4</td>
<td>Using Oxaziridinium Salts</td>
</tr>
<tr>
<td>41.1.2.4</td>
<td>Method 4</td>
<td>Oxidation of a Primary Amino Group Using Organic Peroxy Acids</td>
</tr>
<tr>
<td>41.1.2.4.1</td>
<td>Variation 1</td>
<td>Using Peracetic Acid</td>
</tr>
<tr>
<td>41.1.2.4.2</td>
<td>Variation 2</td>
<td>Using 3-Chloroperoxybenzoic Acid</td>
</tr>
<tr>
<td>41.1.2.5</td>
<td>Method 5</td>
<td>Oxidation of a Primary Amino Group Using Ozone</td>
</tr>
<tr>
<td>41.1.2.6</td>
<td>Method 6</td>
<td>Oxidation of an Azido Group Using Hypofluorous Acid</td>
</tr>
<tr>
<td>41.1.2.7</td>
<td>Method 7</td>
<td>Oxidation of an Azido Group Using Ozone and a Phosphine</td>
</tr>
<tr>
<td>41.1.2.8</td>
<td>Method 8</td>
<td>Oxidation of a Hydroxyamino Group Using Nitric Acid</td>
</tr>
<tr>
<td>41.1.2.8.1</td>
<td>Variation 1</td>
<td>Without Additional Reagents</td>
</tr>
<tr>
<td>41.1.2.8.2</td>
<td>Variation 2</td>
<td>With Ammonium Nitrate</td>
</tr>
<tr>
<td>41.1.2.9</td>
<td>Method 9</td>
<td>Oxidation of a Hydroxyamino Group Using Potassium Permanganate in Sulfuric Acid</td>
</tr>
<tr>
<td>41.1.2.10</td>
<td>Method 10</td>
<td>Oxidation of a Nitroso Group Using Nitric Acid</td>
</tr>
<tr>
<td>41.1.2.10.1</td>
<td>Variation 1</td>
<td>With Ammonium Nitrate</td>
</tr>
<tr>
<td>41.1.2.10.2</td>
<td>Variation 2</td>
<td>With Acetic Acid</td>
</tr>
<tr>
<td>41.1.2.11</td>
<td>Method 11</td>
<td>Oxidation of a Nitroso Group Using Hydrogen Peroxide</td>
</tr>
<tr>
<td>41.1.2.11.1</td>
<td>Variation 1</td>
<td>Without Additional Reagents</td>
</tr>
<tr>
<td>41.1.2.11.2</td>
<td>Variation 2</td>
<td>With Sulfuric Acid</td>
</tr>
<tr>
<td>41.1.2.12</td>
<td>Method 12</td>
<td>Oxidation of a Nitroso Group Using Manganese(VII)</td>
</tr>
<tr>
<td>41.1.2.12.1</td>
<td>Variation 1</td>
<td>Using Potassium Permanganate in Acetone</td>
</tr>
<tr>
<td>41.1.2.12.2</td>
<td>Variation 2</td>
<td>Using Manganese(VII) Oxide</td>
</tr>
<tr>
<td>41.1.2.13</td>
<td>Method 13</td>
<td>Oxidation of a Nitroso Group Using Chromium(VI)</td>
</tr>
<tr>
<td>41.1.2.13.1</td>
<td>Variation 1</td>
<td>Using Chromium(VI) Oxide Alone</td>
</tr>
<tr>
<td>41.1.2.13.2</td>
<td>Variation 2</td>
<td>Using Chromium(VI) Oxide and Acetic Acid</td>
</tr>
<tr>
<td>41.1.2.13.3</td>
<td>Variation 3</td>
<td>Using Chromium(VI) Oxide with Acetic and Sulfuric Acids</td>
</tr>
<tr>
<td>41.1.2.14</td>
<td>Method 14</td>
<td>Oxidation of a Nitroso Group Using Lead(IV) Oxide</td>
</tr>
<tr>
<td>41.1.2.15</td>
<td>Method 15</td>
<td>Oxidation of a Nitroso Group Using Oxidizing Gases</td>
</tr>
<tr>
<td>41.1.2.15.1</td>
<td>Variation 1</td>
<td>Using Air</td>
</tr>
<tr>
<td>41.1.2.15.2</td>
<td>Variation 2</td>
<td>Using Oxygen</td>
</tr>
<tr>
<td>41.1.2.15.3</td>
<td>Variation 3</td>
<td>Using Nitrogen Dioxide/Dinitrogen Tetroxide</td>
</tr>
<tr>
<td>41.1.2.16</td>
<td>Method 16</td>
<td>Oxidation of a Nitroso Group Using Organic Peroxy Acids</td>
</tr>
<tr>
<td>41.1.2.16.1</td>
<td>Variation 1</td>
<td>Using Trifluoroperoxyacetic Acid</td>
</tr>
<tr>
<td>41.1.2.16.2</td>
<td>Variation 2</td>
<td>Using 3-Chloroperoxybenzoic Acid</td>
</tr>
<tr>
<td>41.1.2.17</td>
<td>Method 17</td>
<td>Photochemical Oxidation of a Nitroso Group</td>
</tr>
<tr>
<td>41.1.2.18</td>
<td>Method 18</td>
<td>Oxidation of a Nitroso Group Using Iodosylbenzene</td>
</tr>
<tr>
<td>41.1.2.19</td>
<td>Method 19</td>
<td>Oxidation of an Oxime Group Using Nitric Acid</td>
</tr>
<tr>
<td>41.1.2.19.1</td>
<td>Variation 1</td>
<td>Without Other Reagents</td>
</tr>
<tr>
<td>41.1.2.19.2</td>
<td>Variation 2</td>
<td>With Sulfuric Acid</td>
</tr>
<tr>
<td>41.1.2.20</td>
<td>Method 20</td>
<td>Oxidation of an Oxime Group Using Peroxysulfates</td>
</tr>
<tr>
<td>41.1.2.20.1</td>
<td>Variation 1</td>
<td>Using Caro’s Acid</td>
</tr>
<tr>
<td>41.1.2.20.2</td>
<td>Variation 2</td>
<td>Using Oxone</td>
</tr>
<tr>
<td>Method Number</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>---------------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>41.1.2.21</td>
<td>Oxidation of an Oxime Group Using Hydrogen Peroxide with Urea and Methyltrioxorhenium(VII) Catalyst</td>
<td></td>
</tr>
<tr>
<td>41.1.2.22</td>
<td>Oxidation of an Oxime Group Using Lead(IV) Acetate</td>
<td></td>
</tr>
<tr>
<td>41.1.2.23</td>
<td>Oxidation of an Oxime Group with Potassium Permanganate</td>
<td></td>
</tr>
<tr>
<td>41.1.2.24</td>
<td>Oxidation of an Oxime Group with Sodium Perborate</td>
<td></td>
</tr>
<tr>
<td>41.1.2.25</td>
<td>Oxidation of an Oxime Group Using Organic Peroxy Acids</td>
<td></td>
</tr>
<tr>
<td>41.1.2.25.1</td>
<td>Variation 1: Using Trifluoroper oxyacetic Acid</td>
<td></td>
</tr>
<tr>
<td>41.1.2.25.2</td>
<td>Variation 2: Using 3-Chloroper oxybenzoic Acid</td>
<td></td>
</tr>
<tr>
<td>41.1.2.26</td>
<td>Oxidation of an Oxime Group Using Dinitrogen Tetroxide</td>
<td></td>
</tr>
<tr>
<td>41.1.2.27</td>
<td>Enzymatic Oxidation of an Oxime Group</td>
<td></td>
</tr>
<tr>
<td>41.1.3.1</td>
<td>Oxidative Nitrosation of an Oxime Group</td>
<td></td>
</tr>
<tr>
<td>41.1.3.2</td>
<td>Oxidative Nitration of an Oxime Using Nitric Acid</td>
<td></td>
</tr>
<tr>
<td>41.1.3.2.1</td>
<td>Variation 1: Without Additional Reagents</td>
<td></td>
</tr>
<tr>
<td>41.1.3.2.2</td>
<td>Variation 2: Followed by Hydrogen Peroxide</td>
<td></td>
</tr>
<tr>
<td>41.1.3.2.3</td>
<td>Variation 3: With Acetic Acid, Followed by Hydrogen Peroxide</td>
<td></td>
</tr>
<tr>
<td>41.1.3.3</td>
<td>Oxidative Nitration of an Oxime Using Nitrogen Oxides</td>
<td></td>
</tr>
<tr>
<td>41.1.3.3.1</td>
<td>Variation 1: Using Nitrogen Dioxide/Dinitrogen Tetroxide</td>
<td></td>
</tr>
<tr>
<td>41.1.3.3.2</td>
<td>Variation 2: Using Nitrogen Dioxide and Magnesium Sulfate</td>
<td></td>
</tr>
<tr>
<td>41.1.3.3.3</td>
<td>Variation 3: Using Dinitrogen Pentoxide</td>
<td></td>
</tr>
<tr>
<td>41.1.3.4</td>
<td>Oxidative Chlorination of an Oxime Using Chlorine</td>
<td></td>
</tr>
<tr>
<td>41.1.3.4.1</td>
<td>Variation 1: Using Chlorine Followed by Ozone</td>
<td></td>
</tr>
<tr>
<td>41.1.3.4.2</td>
<td>Variation 2: Using Chlorine with Hydrochloric, Nitric, and Acetic Acids</td>
<td></td>
</tr>
<tr>
<td>41.1.3.5</td>
<td>Oxidative Chlorination of an Oxime Using Sodium Hypochlorite</td>
<td></td>
</tr>
<tr>
<td>41.1.3.6</td>
<td>Oxidative Chlorination of an Oxime Using Sodium Chloride, Oxone, and Alumina</td>
<td></td>
</tr>
<tr>
<td>41.1.3.7</td>
<td>Oxidative Chlorination of an Oxime Using Hydrochloric Acid and Hydrogen Peroxide</td>
<td></td>
</tr>
<tr>
<td>41.1.3.8</td>
<td>Oxidative Bromination of an Oxime Using Sodium Hypobromite Followed by Nitric Acid</td>
<td></td>
</tr>
<tr>
<td>41.1.3.9</td>
<td>Oxidative Bromination of an Oxime Using N-Bromoacetamide</td>
<td></td>
</tr>
<tr>
<td>41.1.3.10</td>
<td>Oxidative Bromination of an Oxime Using N-Bromosuccinimide and Potassium Carbonate</td>
<td></td>
</tr>
<tr>
<td>41.1.3.11</td>
<td>Oxidative Bromination of an Oxime Using Sodium Bromide, Oxone, and Alumina</td>
<td></td>
</tr>
<tr>
<td>41.1.3.12</td>
<td>Oxidative Acetoxylation of an Oxime Using Lead(IV) Acetate, Hydrogen Peroxide, and Sodium Nitrite</td>
<td></td>
</tr>
<tr>
<td>41.1.3.13</td>
<td>Addition of Nitrous Acid to an Alkene</td>
<td></td>
</tr>
<tr>
<td>41.1.3.13.1</td>
<td>Variation 1: Using Sodium Nitrite and Acetic Acid</td>
<td></td>
</tr>
<tr>
<td>41.1.3.13.2</td>
<td>Variation 2: Using Sodium Nitrite and Hydrochloric Acid</td>
<td></td>
</tr>
<tr>
<td>41.1.3.14</td>
<td>Addition of Tetranitromethane to an Alkene</td>
<td></td>
</tr>
</tbody>
</table>
41.1.3.15 Method 15: Nitrofluorination of an Alkene .. 84
41.1.3.15.1 Variation 1: Using Nitric and Hydrofluoric Acids 84
41.1.3.15.2 Variation 2: Using Nitril Fluoride ... 85
41.1.3.15.3 Variation 3: Using Nitronium Tetrafluoroborate and Pyridinium Fluoride .. 85
41.1.3.16 Method 16: Nitrochlorination of an Alkene 86
41.1.3.16.1 Variation 1: Using Nitrosyl Chloride 86
41.1.3.16.2 Variation 2: Using Nitrosyl Chloride, Nitrogen Dioxide, and Oxygen .. 87
41.1.3.16.3 Variation 3: Using Nitril Chloride ... 88
41.1.3.16.4 Variation 4: Using Nitrogen Dioxide and Boron Trifluoride 89
41.1.3.16.5 Variation 5: Using Nitrogen Dioxide and Chlorine 89
41.1.3.16.6 Variation 6: Using Nitrogen Dioxide, Phosphorus Trichloride, and Oxygen .. 90
41.1.3.17 Method 17: Nitrobromination of an Alkene 90
41.1.3.17.1 Variation 1: Using Sodium Nitrite, Mercury(II) Chloride, and Bromine ... 90
41.1.3.17.2 Variation 2: Using Nitrosyl Bromide 91
41.1.3.17.3 Variation 3: Using Nitrogen Dioxide and Bromine 92
41.1.3.17.4 Variation 4: Using Nitrogen Dioxide, Phosphorus Tribromide, and Oxygen .. 92
41.1.3.18 Method 18: Nitroiodination of an Alkene 92
41.1.3.18.1 Variation 1: Using Silver(I) Nitrite and Iodine 92
41.1.3.18.2 Variation 2: Using Nitrogen Dioxide and Iodine 93
41.1.3.19 Method 19: Nitroacetamidation of an Alkene 94
41.1.3.20 Method 20: Nitronitrosation of an Alkene (Synthesis of \(\gamma \)-Nitrosites) ... 94
41.1.3.20.1 Variation 1: Using Sodium Nitrite and Sulfuric Acid 95
41.1.3.20.2 Variation 2: Using Sodium Nitrite and Hydrochloric Acid 96
41.1.3.20.3 Variation 3: Using Sodium Nitrite and Acetic Acid 96
41.1.3.20.4 Variation 4: Using Sodium Nitrite and Phosphoric Acid 97
41.1.3.20.5 Variation 5: Using Nitric Oxide with Catalysts 97
41.1.3.20.6 Variation 6: Using Nitric Oxide with Air 98
41.1.3.21 Method 21: 1,2-Dinitration of an Alkene 99
41.1.3.21.1 Variation 1: Using Pentyl Nitrite and Acetic Acid 99
41.1.3.21.2 Variation 2: Using Nitrogen Dioxide 99
41.1.3.21.3 Variation 3: Using Nitrogen Dioxide and Oxygen 101
41.1.3.22 Method 22: Nitrohydroxylation of an Alkene 101
41.1.3.22.1 Variation 1: Using Nitric Acid ... 101
41.1.3.22.2 Variation 2: Using Nitric and Sulfuric Acids 102
41.1.3.22.3 Variation 3: Using Sodium Nitrate and Ammonium Cerium(IV) Nitrate .. 102
41.1.3.22.4 Variation 4: Using Dinitrogen Trioxide 103
41.1.3.22.5 Variation 5: Using Nitrogen Dioxide 103
41.1.3.22.6 Variation 6: Using Organic Nitrating Agents 104
41.1.3.23 Method 23: Nitromethoxylation of an Alkene Using Tetranitromethane and Methanol .. 105
41.1.3.24 Method 24: Addition of a Nitro Group and a Nitrate Group to an Alkene .. 105
1.3.24 Method 24: Nitroacetoxylation of an Alkene

1.3.24.1 Variation 1: Using Nitric Acid

105

1.3.24.2 Variation 2: Using Nitrogen Dioxide and Oxygen

105

1.3.24.3 Variation 3: Using Dinitrogen Pentoxide

106

1.3.25 Method 25: Nitroacetoxylation of an Alkene

1.3.25.1 Variation 1: Using Acetyl Nitrate

108

1.3.25.2 Variation 2: Using Nitric and Sulfuric Acids Followed by Acetic Anhydride

109

1.3.26 Method 26: Addition of a Nitro Group and a Perchlorate Group to an Alkene

109

1.3.27 Method 27: Addition of a Nitro Group and an Ethyl Sulfate Group to an Alkene

110

1.3.28 Method 28: Conversion of Alkenes into \(-\)Nitro Ketones

1.3.28.1 Variation 1: Using Nitrogen Dioxide and Oxygen in Dimethyl Sulfoxide

110

1.3.28.2 Variation 2: Using Chlorotrimethylsilane, Silver(I) Nitrate, and Chromium(VI) Oxide

111

1.3.28.3 Variation 3: Using Chlorotrimethylsilane, Silver(I) Nitrate, and Dimethyl Sulfoxide

112

1.3.29 Method 29: Nitration of Silyl Enol Ethers

1.3.29.1 Variation 1: Using Tetranitromethane

112

1.3.29.2 Variation 2: Using Nitronium Ethyl Sulfate

113

1.3.30 Method 30: Destructive Nitration

113

1.4 Synthesis by Rearrangement or Disproportionation

1.4.1 Method 1: Rearrangement of Alkyl Nitrates

115

1.4.2 Method 2: Disproportionation Reactions

116

1.5 Synthesis with Retention of the Nitro Group

1.5.1 Method 1: Alkylation of Nitroalkanes with Alkyl Halides

117

1.5.1.1 Variation 1: With Fluoroalkanes

117

1.5.1.2 Variation 2: With Chloroalkanes

117

1.5.1.3 Variation 3: With Bromoalkanes

119

1.5.1.4 Variation 4: With Iodoalkanes

121

1.5.2 Method 2: Alkylation of Nitroalkanes with Alkylammonium Salts

122

1.5.3 Method 3: Alkylation of Nitroalkanes with Alkyl(phenyl)iodonium Reagents

122

1.5.4 Method 4: Alkylation of Nitroalkanes with Alkyl Arenesulfonates

123

1.5.5 Method 5: Alkylation of Nitroalkanes with Alkyl Aryl Sulfones

124

1.5.6 Method 6: Alkylation of Nitroalkanes with Hydrates or Hemiacetals of Aldehydes

125

1.5.7 Method 7: Alkylation of Nitroalkanes with Alkyl Azides

126

1.5.8 Method 8: Alkylation of Nitroalkanes with an Alkyl Difluoromethyl Nitrite

126

1.5.9 Method 9: Vinylation of Nitroalkanes

126

1.5.10 Method 10: Arylation of Nitroalkanes

127

1.5.11 Method 11: Allylation of Nitroalkanes

129

1.5.11.1 Variation 1: Nucleophilic Substitution

129

1.5.11.2 Variation 2: Palladium-Catalyzed Allylation

131
41.1.5.12 Method 12: Reaction of Nitroalkyl Anions with Aldehydes and Ketones (Henry Reaction) 133
41.1.5.13 Method 13: Aza-Henry Reaction ... 137
41.1.5.14 Method 14: Reaction of Nitroalkyl Anions with Carboxylic and Carbonic Acid Derivatives 139
41.1.5.14.1 Variation 1: With Acid Halides ... 139
41.1.5.14.2 Variation 2: With Esters ... 140
41.1.5.14.3 Variation 3: With Anhydrides .. 140
41.1.5.14.4 Variation 4: With Carbonates .. 141
41.1.5.14.5 Variation 5: With Carbamoyl Chlorides 141
41.1.5.14.6 Variation 6: With Isatoic Anhydride 142
41.1.5.14.7 Variation 7: With Benzotriazole Derivatives 142
41.1.5.15 Method 15: Reaction of Nitroalkyl Anions with Reactive Alkenes Not Conjugated to a Carbonyl Group 143
41.1.5.16 Method 16: Reaction of Nitroalkyl Anions with Alkylmercury Compounds ... 144
41.1.5.17 Method 17: Substitution of Chlorine in α-Chloronitroalkanes by a Carbanion Prepared from a Ketone 144
41.1.5.18 Method 18: Substitution of Chlorine in α-Chloronitroalkanes by a Carbanion Prepared from a Nitroalkane 145
41.1.5.19 Method 19: Substitution of Chlorine in α-Chloronitroalkanes by a Carbanion Prepared from a Malonate 146
41.1.5.20 Method 20: Substitution of Chlorine in α-Chloronitroalkanes by a Carbanion Prepared from a 3-Oxo Ester 147
41.1.5.21 Method 21: Substitution of Chlorine in α-Chloronitroalkanes by a Carbanion Prepared from a 1,3-Diketone 148
41.1.5.22 Method 22: Substitution of Chlorine in α-Chloronitroalkanes by a Carbanion Prepared from a Nitrile 149
41.1.5.23 Method 23: Substitution of Chlorine in α-Chloronitroalkanes by a Carbanion Prepared from an (Alkoxycarbonyl)methyl Aryl Sulfone ... 149
41.1.5.24 Method 24: Substitution of Chlorine in α-Chloronitroalkanes by an Alkynyllithium Reagent ... 149
41.1.5.25 Method 25: Substitution of Chlorine in α-Chloronitroalkanes by an Organotin(IV) Reagent ... 150
41.1.5.26 Method 26: Substitution of Bromine in α-Bromonitroalkanes by a Carbanion Prepared from a Nitroalkane 150
41.1.5.27 Method 27: Substitution of Bromine in α-Bromonitroalkanes by a Carbanion Prepared from a Malonate 151
41.1.5.28 Method 28: Substitution of Bromine in α-Bromonitroalkanes by a Carbanion Prepared from a Nitrile 151
41.1.5.29 Method 29: Substitution of Bromine in α-Bromonitroalkanes by a Carbanion Prepared from a 3-Oxo Nitrile 152
41.1.5.30 Method 30: Substitution of Bromine in α-Bromonitroalkanes by a Carbanion Prepared from a 2-Cyano Ester 152
41.1.5.31 Method 31: Substitution of Bromine in α-Bromonitroalkanes by a Carbanion Prepared from an α-Cyanoalkyl Sulfone 153
<table>
<thead>
<tr>
<th>Section</th>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>41.1.5.32</td>
<td>Method 32</td>
<td>Substitution of Bromine in α-Bromonitroalkanes by a Carbanion Prepared from a Malononitrile</td>
</tr>
<tr>
<td>41.1.5.33</td>
<td>Method 33</td>
<td>Substitution of Bromine in α-Bromonitroalkanes by an Organotin(IV) Reagent</td>
</tr>
<tr>
<td>41.1.5.34</td>
<td>Method 34</td>
<td>Substitution of Iodine in α-Iodonitroalkanes by a Carbanion Prepared from a Nitroalkane</td>
</tr>
<tr>
<td>41.1.5.35</td>
<td>Method 35</td>
<td>Substitution of an Arylsulfonyl Group or Arylsulfanyl Group in Nitroalkanes by Carbon Nucleophiles</td>
</tr>
<tr>
<td>41.1.5.36</td>
<td>Method 36</td>
<td>Substitution of a Nitro Group in Geminal Dinitroalkanes by Carbon Nucleophiles</td>
</tr>
<tr>
<td>41.1.5.37</td>
<td>Method 37</td>
<td>Dimerization of Nitroalkanes</td>
</tr>
<tr>
<td>41.1.5.37.1</td>
<td>Variation 1</td>
<td>Starting from Nitroalkanes</td>
</tr>
<tr>
<td>41.1.5.37.2</td>
<td>Variation 2</td>
<td>Starting from Halonitroalkanes</td>
</tr>
<tr>
<td>41.1.5.38</td>
<td>Method 38</td>
<td>Decarboxylation of 2-Nitro Acids</td>
</tr>
<tr>
<td>41.1.5.39</td>
<td>Method 39</td>
<td>Dehalogenation of α-Halonitroalkanes</td>
</tr>
<tr>
<td>41.1.5.39.1</td>
<td>Variation 1</td>
<td>Using Potassium Hydroxide</td>
</tr>
<tr>
<td>41.1.5.39.2</td>
<td>Variation 2</td>
<td>Using Sodium Borohydride</td>
</tr>
<tr>
<td>41.1.5.39.3</td>
<td>Variation 3</td>
<td>Using Catalytic Hydrogenation</td>
</tr>
<tr>
<td>41.1.5.39.4</td>
<td>Variation 4</td>
<td>Using Tributyltin Hydride</td>
</tr>
<tr>
<td>41.1.5.40</td>
<td>Method 40</td>
<td>Desulfonilation of Nitro Sulfones</td>
</tr>
<tr>
<td>41.1.5.41</td>
<td>Method 41</td>
<td>Catalytic Reduction of Nitroalkenes</td>
</tr>
<tr>
<td>41.1.5.42</td>
<td>Method 42</td>
<td>Borohydride Reduction of Nitroalkenes</td>
</tr>
<tr>
<td>41.1.5.42.1</td>
<td>Variation 1</td>
<td>Using Sodium Borohydride</td>
</tr>
<tr>
<td>41.1.5.42.2</td>
<td>Variation 2</td>
<td>Using Lithium Borohydride</td>
</tr>
<tr>
<td>41.1.5.42.3</td>
<td>Variation 3</td>
<td>Using Zinc Borohydride</td>
</tr>
<tr>
<td>41.1.5.42.4</td>
<td>Variation 4</td>
<td>Using Sodium Trimethoxyborohydride</td>
</tr>
<tr>
<td>41.1.5.43</td>
<td>Method 43</td>
<td>Reduction of Nitroalkenes with Lithium Aluminum Hydride</td>
</tr>
<tr>
<td>41.1.5.44</td>
<td>Method 44</td>
<td>Enantioselective Reduction of Nitroalkenes with Silanes</td>
</tr>
<tr>
<td>41.1.5.45</td>
<td>Method 45</td>
<td>Reduction of Nitroalkenes Using Biological and Biomimetic Reducing Agents</td>
</tr>
<tr>
<td>41.1.5.46</td>
<td>Method 46</td>
<td>Hydrocyanation of a Nitroalkene Using Hydrogen Cyanide</td>
</tr>
<tr>
<td>41.1.5.47</td>
<td>Method 47</td>
<td>Hydrocyanation of a Nitroalkene Using Potassium Cyanide</td>
</tr>
<tr>
<td>41.1.5.48</td>
<td>Method 48</td>
<td>Addition to a Nitroalkene by Electrophilic Aromatic Substitution</td>
</tr>
<tr>
<td>41.1.5.49</td>
<td>Method 49</td>
<td>Addition to a Nitroalkene Using a Carbanion Prepared from an Aldehyde</td>
</tr>
<tr>
<td>41.1.5.50</td>
<td>Method 50</td>
<td>Addition to a Nitroalkene Using a Carbanion Prepared from a Ketone</td>
</tr>
<tr>
<td>41.1.5.51</td>
<td>Method 51</td>
<td>Addition to a Nitroalkene Using a Carbanion Prepared from an Ester</td>
</tr>
<tr>
<td>41.1.5.52</td>
<td>Method 52</td>
<td>Addition to a Nitroalkene Using a Carbanion Prepared from a Nitrile</td>
</tr>
<tr>
<td>Method</td>
<td>Addition to a Nitroalkene Using a Carbanion</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>Prepared from an Amide</td>
<td>182</td>
</tr>
<tr>
<td>54</td>
<td>Prepared from a 1,3-Diester</td>
<td>184</td>
</tr>
<tr>
<td>55</td>
<td>Prepared from a 1,3-Diketone</td>
<td>189</td>
</tr>
<tr>
<td>56</td>
<td>Prepared from a 3-Oxo Ester</td>
<td>191</td>
</tr>
<tr>
<td>57</td>
<td>Prepared from a 2-Cyano Ester</td>
<td>194</td>
</tr>
<tr>
<td>58</td>
<td>Prepared from a Dinitrile</td>
<td>195</td>
</tr>
<tr>
<td>59</td>
<td>Prepared from a Thioester</td>
<td>195</td>
</tr>
<tr>
<td>60</td>
<td>Prepared from a (2,2,6,6-Tetramethylpiperidin-1-yloxycarbonyl)alkane</td>
<td>196</td>
</tr>
<tr>
<td>61</td>
<td>Prepared from a 1,3-Oxazine</td>
<td>196</td>
</tr>
<tr>
<td>62</td>
<td>Prepared from a Silyl Enol Ether</td>
<td>197</td>
</tr>
<tr>
<td>63</td>
<td>Prepared from an Isocyanide</td>
<td>205</td>
</tr>
<tr>
<td>64</td>
<td>Prepared from a Nitroalkane</td>
<td>206</td>
</tr>
<tr>
<td>65</td>
<td>Prepared from a 2-Nitro Ester</td>
<td>207</td>
</tr>
<tr>
<td>66</td>
<td>Prepared from an (\alpha)-Cyano-(\alpha)-nitro Ester</td>
<td>208</td>
</tr>
<tr>
<td>67</td>
<td>Prepared from Organophosphorus Reagents</td>
<td>208</td>
</tr>
<tr>
<td>68</td>
<td>Prepared from Organolithium Reagent</td>
<td>210</td>
</tr>
<tr>
<td>69</td>
<td>Prepared from Organomagnesium Reagents</td>
<td>211</td>
</tr>
<tr>
<td>70</td>
<td>Prepared from Alkylmagnesium Chlorides</td>
<td>211</td>
</tr>
<tr>
<td>71</td>
<td>Prepared from Alkylmagnesium Bromides</td>
<td>212</td>
</tr>
<tr>
<td>72</td>
<td>Prepared from Alkylmagnesium Iodides</td>
<td>213</td>
</tr>
<tr>
<td>Method</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>72</td>
<td>Addition to a Nitroalkene Using an Alkylsamarium(II) Bromide</td>
<td></td>
</tr>
<tr>
<td>73</td>
<td>Addition to a Nitroalkene Using an Alkylmanganese(II) Chloride</td>
<td></td>
</tr>
<tr>
<td>74</td>
<td>Addition to a Nitroalkene Using an Alkylcopper Reagent</td>
<td></td>
</tr>
<tr>
<td>74.1</td>
<td>Variation 1: Using Alkylcoppers</td>
<td></td>
</tr>
<tr>
<td>74.2</td>
<td>Variation 2: Using Halozinc Alkylcyanocuprates</td>
<td></td>
</tr>
<tr>
<td>74.3</td>
<td>Variation 3: Using Alkylzinc Alkylcyanocuprates</td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>Addition to a Nitroalkene Using an Organozinc Reagent</td>
<td></td>
</tr>
<tr>
<td>75.1</td>
<td>Variation 1: Using Alkylzinc Chlorides</td>
<td></td>
</tr>
<tr>
<td>75.2</td>
<td>Variation 2: Using Alkylzinc Bromides</td>
<td></td>
</tr>
<tr>
<td>75.3</td>
<td>Variation 3: Using Dialkylzincs</td>
<td></td>
</tr>
<tr>
<td>76</td>
<td>Addition to a Nitroalkene Using an Arylboronic Acid</td>
<td></td>
</tr>
<tr>
<td>77</td>
<td>Addition to a Nitroalkene Using an Alkylaluminum Reagent</td>
<td></td>
</tr>
<tr>
<td>77.1</td>
<td>Variation 1: Using Trialkylaluminums</td>
<td></td>
</tr>
<tr>
<td>77.2</td>
<td>Variation 2: Using Tetraalkylaluminates</td>
<td></td>
</tr>
<tr>
<td>78</td>
<td>Addition to a Nitroalkene Using a Lithium Tetraalkylgallate</td>
<td></td>
</tr>
<tr>
<td>79</td>
<td>Addition to a Nitroalkene Using Triethoxy(phenyl)silane</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>Addition to a Nitroalkene Using a Tetraalkylstannane</td>
<td></td>
</tr>
<tr>
<td>81</td>
<td>Addition to a Nitroalkene Using Dialkyl Phosphites</td>
<td></td>
</tr>
<tr>
<td>82</td>
<td>[2 + 2]-Cycloaddition Reactions of Nitroalkenes</td>
<td></td>
</tr>
<tr>
<td>82.1</td>
<td>Variation 1: With Another Nitroalkene</td>
<td></td>
</tr>
<tr>
<td>82.2</td>
<td>Variation 2: With Enamines</td>
<td></td>
</tr>
<tr>
<td>82.3</td>
<td>Variation 3: With Tetramethoxyethene</td>
<td></td>
</tr>
<tr>
<td>83</td>
<td>[3 + 2]-Cycloaddition Reactions of Nitroalkenes</td>
<td></td>
</tr>
<tr>
<td>83.1</td>
<td>Variation 1: With Diazocompounds</td>
<td></td>
</tr>
<tr>
<td>83.2</td>
<td>Variation 2: With Methylene cyclopropanes</td>
<td></td>
</tr>
<tr>
<td>83.3</td>
<td>Variation 3: With Azides</td>
<td></td>
</tr>
<tr>
<td>83.4</td>
<td>Variation 4: With Azomethine Ylides</td>
<td></td>
</tr>
<tr>
<td>83.5</td>
<td>Variation 5: With Enamino Ketones</td>
<td></td>
</tr>
<tr>
<td>83.6</td>
<td>Variation 6: With Nitrones</td>
<td></td>
</tr>
<tr>
<td>84</td>
<td>[2 + 4]-Cycloaddition Reactions of Nitroalkenes with Dienes</td>
<td></td>
</tr>
<tr>
<td>85</td>
<td>Rearrangements in the Synthesis of Nitroalkanes from Other Nitro Compounds</td>
<td></td>
</tr>
<tr>
<td>85.1</td>
<td>Variation 1: Baylis–Hillman Reaction</td>
<td></td>
</tr>
<tr>
<td>85.2</td>
<td>Variation 2: Disproportionation</td>
<td></td>
</tr>
<tr>
<td>85.3</td>
<td>Variation 3: Thio-Claisen Rearrangement</td>
<td></td>
</tr>
<tr>
<td>85.4</td>
<td>Variation 4: Cope Rearrangement</td>
<td></td>
</tr>
</tbody>
</table>
41.2 Product Class 2: Nitrosoalkanes and Nitroso Acetals (N,N-Dialkoxyamines)
H.-U. Reissig, B. Dugović, and R. Zimmer

41.2.1 Synthesis of Product Class 2 .. 259

41.2.1.1 Method 1: Substitution Reactions .. 259

41.2.1.1.1 Variation 1: Substitution of a Hydrogen Atom in Nonactivated
Compounds .. 260

41.2.1.1.2 Variation 2: Substitution of a Hydrogen Atom in Halogenated
Compounds .. 260

41.2.1.1.3 Variation 3: Substitution of a Hydrogen Atom in Acceptor-Substituted
Compounds .. 261

41.2.1.1.4 Variation 4: Substitution of Other Functional Groups 263

41.2.1.1.5 Variation 5: Substitution of Metals 264

41.2.1.2 Method 2: Addition Reactions ... 265

41.2.1.2.1 Variation 1: Addition to Alkenes 265

41.2.1.2.2 Variation 2: Addition to Electron-Rich Aromatic Compounds 269

41.2.1.3 Method 3: Elimination Reactions and Pyrolysis 269

41.2.1.4 Method 4: Oxidation Reactions .. 272

41.2.1.4.1 Variation 1: Oxidation of Amines 272

41.2.1.4.2 Variation 2: Oxidation of Hydroxylamines 275

41.2.1.4.3 Variation 3: Oxidation of Cyclic Nitrogen Compounds 276

41.2.1.5 Method 5: Reduction of Nitroalkanes 280

41.2.1.6 Method 6: Photochemical Reactions 280

41.2.1.7 Method 7: Rearrangements .. 284

41.2.1.8 Method 8: Conversions of Oximes 285

41.2.1.9 Method 9: Derivatization of Stable Nitrosoalkanes 296

41.2.1.10 Method 10: Synthesis of Metal-Coordinated Nitrosoalkanes 299

41.2.1.11 Method 11: Synthesis of Nitroso Acetals 302

41.2.2 Applications of Product Class 2 in Organic Synthesis 308

41.2.2.1 Method 1: Oxidation to Nitroalkanes 308

41.2.2.2 Method 2: Reduction to Amines ... 311

41.2.2.3 Method 3: Formation of Oximes and Derivatives 316

41.2.2.3.1 Variation 1: Formation of Oximes 316

41.2.2.3.2 Variation 2: Formation of Oxime Ethers and Phosphates 323

41.2.2.3.3 Variation 3: Formation of Hydroxamic Acid Derivatives 325

41.2.2.4 Method 4: Synthesis of Compounds with an N=X Functionality
(X = C, N, P) .. 327

41.2.2.4.1 Variation 1: Synthesis of Nitrones 327

41.2.2.4.2 Variation 2: Synthesis of Azoxy Compounds 327

41.2.2.4.3 Variation 3: Synthesis of Other N=X Compounds
(Imines and Azo Compounds) ... 329

41.2.2.4.4 Variation 4: Synthesis of N=P Compounds 330

41.2.2.5 Method 5: Conversion into Nitrosoalkenes 331
<table>
<thead>
<tr>
<th>Section</th>
<th>Method</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>41.2.6</td>
<td>Method 6:</td>
<td>Synthesis of Heterocycles</td>
<td>332</td>
</tr>
<tr>
<td>41.2.6.1</td>
<td>Variation 1:</td>
<td>Synthesis of Four-Membered Heterocycles</td>
<td>332</td>
</tr>
<tr>
<td>41.2.6.2</td>
<td>Variation 2:</td>
<td>Synthesis of Five-Membered Heterocycles</td>
<td>334</td>
</tr>
<tr>
<td>41.2.6.3</td>
<td>Variation 3:</td>
<td>Synthesis of Six-Membered Heterocycles</td>
<td>338</td>
</tr>
<tr>
<td>41.2.7</td>
<td>Method 7:</td>
<td>Synthesis of α-Carbonyl Hydroxylamines and N-Allyl Hydroxylamines</td>
<td>347</td>
</tr>
<tr>
<td>41.2.8</td>
<td>Method 8:</td>
<td>Reactions of Nitroso Acetals</td>
<td>352</td>
</tr>
<tr>
<td>41.3</td>
<td>Product Class 3:</td>
<td>N-Nitroamines</td>
<td>371</td>
</tr>
<tr>
<td>41.3.1</td>
<td>Product Subclass 1:</td>
<td>N-Alkyl-N-nitroamines</td>
<td>373</td>
</tr>
<tr>
<td>41.3.1.1</td>
<td>Synthesis of Product Subclass 1</td>
<td></td>
<td>373</td>
</tr>
<tr>
<td>41.3.1.2</td>
<td>Method 1:</td>
<td>Nitration of Amines with Cyanohydrin Nitrates</td>
<td>373</td>
</tr>
<tr>
<td>41.3.1.3</td>
<td>Method 2:</td>
<td>Nitration of Lithium Amides</td>
<td>374</td>
</tr>
<tr>
<td>41.3.1.4</td>
<td>Method 3:</td>
<td>Decacylation of N-Acyl-N-nitroamines and Related Reactions</td>
<td>374</td>
</tr>
<tr>
<td>41.3.1.5</td>
<td>Variation 1:</td>
<td>Of N-Nitrocarbamates</td>
<td>374</td>
</tr>
<tr>
<td>41.3.1.6</td>
<td>Variation 2:</td>
<td>Of N-Nitroureas</td>
<td>377</td>
</tr>
<tr>
<td>41.3.1.7</td>
<td>Variation 3:</td>
<td>Of N-Nitroguanidines</td>
<td>379</td>
</tr>
<tr>
<td>41.3.1.8</td>
<td>Variation 4:</td>
<td>Of N-Nitroamides</td>
<td>381</td>
</tr>
<tr>
<td>41.3.1.9</td>
<td>Variation 5:</td>
<td>Of N-Nitrosulfonamides</td>
<td>382</td>
</tr>
<tr>
<td>41.3.1.10</td>
<td>Method 4:</td>
<td>Substitution of N,N-Dichloroamines</td>
<td>383</td>
</tr>
<tr>
<td>41.3.1.11</td>
<td>Method 5:</td>
<td>Reduction of N-Nitroimines</td>
<td>384</td>
</tr>
<tr>
<td>41.3.1.12</td>
<td>Method 6:</td>
<td>Cleavage of Alkyl Groups in N,N-Dialkyl-N-nitroamines</td>
<td>386</td>
</tr>
<tr>
<td>41.3.2</td>
<td>Product Subclass 2:</td>
<td>N-Aryl-N-nitroamines</td>
<td>387</td>
</tr>
<tr>
<td>41.3.2.1</td>
<td>Synthesis of Product Subclass 2</td>
<td></td>
<td>388</td>
</tr>
<tr>
<td>41.3.2.2</td>
<td>Method 1:</td>
<td>Nitration of Anilines</td>
<td>388</td>
</tr>
<tr>
<td>41.3.2.3</td>
<td>Method 2:</td>
<td>Nitration of Metal Anilides</td>
<td>395</td>
</tr>
<tr>
<td>41.3.2.4</td>
<td>Method 3:</td>
<td>Decacylation of N-Acyl-N-nitroanilines</td>
<td>395</td>
</tr>
<tr>
<td>41.3.2.5</td>
<td>Method 4:</td>
<td>Oxidation of (E)-Diazenolates</td>
<td>396</td>
</tr>
<tr>
<td>41.3.3</td>
<td>Product Subclass 3:</td>
<td>N-Nitro-N-vinylamines</td>
<td>397</td>
</tr>
<tr>
<td>41.3.3.1</td>
<td>Synthesis of Product Subclass 3</td>
<td></td>
<td>397</td>
</tr>
<tr>
<td>41.3.3.2</td>
<td>Method 1:</td>
<td>Isomerization of N-Nitroimines</td>
<td>397</td>
</tr>
<tr>
<td>41.3.4</td>
<td>Product Subclass 4:</td>
<td>N,N-Dialkyl-N-nitroamines</td>
<td>399</td>
</tr>
<tr>
<td>41.3.4.1</td>
<td>Synthesis of Product Subclass 4</td>
<td></td>
<td>399</td>
</tr>
<tr>
<td>41.3.4.2</td>
<td>Method 1:</td>
<td>Nitration of Amines</td>
<td>399</td>
</tr>
<tr>
<td>41.3.4.3</td>
<td>Variation 1:</td>
<td>Using Nitric Acid</td>
<td>399</td>
</tr>
<tr>
<td>41.3.4.4</td>
<td>Variation 2:</td>
<td>Using Dinitrogen Pentoxide or Dinitrogen Tetroxide</td>
<td>403</td>
</tr>
<tr>
<td>41.3.4.5</td>
<td>Variation 3:</td>
<td>Using Cyanohydrin Nitrates</td>
<td>404</td>
</tr>
<tr>
<td>41.3.4.6</td>
<td>Variation 4:</td>
<td>Using Mesitylcarbonyl Nitrate</td>
<td>405</td>
</tr>
<tr>
<td>41.3.4.7</td>
<td>Variation 5:</td>
<td>Using Nitronium Salts</td>
<td>405</td>
</tr>
</tbody>
</table>
41.3.4.1.1.6 Variation 6: Using N-Methyl-N,N-dinitroamine 406
41.3.4.1.2 Method 2: Nitrolysis of Amides .. 406
41.3.4.1.2.1 Variation 1: Using Nitric Acid .. 406
41.3.4.1.2.2 Variation 2: Using Dinitrogen Pentoxide 408
41.3.4.1.2.3 Variation 3: Using Nitronium Salts ... 408
41.3.4.1.3 Method 3: Nitration of Sulfamates ... 409
41.3.4.1.4 Method 4: Substitution of tert-Butylamines 409
41.3.4.1.5 Method 5: Nitroso Group Exchange by Nitration 410
41.3.4.1.6 Method 6: Alkylation of N-Alkyl-N-nitroamines 411
41.3.4.1.6.1 Variation 1: Using Alkyl, Allyl, and Benzyl Halides, Dimethyl Sulfate, Activated Alcohols, or Activated Amines 411
41.3.4.1.6.2 Variation 2: Using Diazoalkanes ... 415
41.3.4.1.7 Method 7: Radical Cyclizations of N-Alkyl-N-nitroamines 416
41.3.5 Product Subclass 5: N-Alkyl-N-aryl-N-nitroamines 417
41.3.5.1 Synthesis of Product Subclass 5 ... 417
41.3.5.1.1 Method 1: Nitration of N-Alkylanilines 417
41.3.5.1.2 Method 2: Nitration of N,N-Dialkylanilines 422

41.4 Product Class 4: N-Nitrosoamines

41.4.1 Synthesis of Product Class 4 .. 438
41.4.1.1 Formation of the N—N Bond .. 438
41.4.1.1.1 Method 1: Nitrosation with Sodium Nitrite and Acids 438
41.4.1.1.1.1 Variation 1: Nitrosation with Sodium Nitrite and Aqueous Acids 438
41.4.1.1.1.2 Variation 2: Nitrosation with Sodium Nitrite and Solid Acids 439
41.4.1.1.2 Method 2: Nitrosation with Nitrogen Oxides 439
41.4.1.1.3 Method 3: Nitrosation with Nitrosyl Chloride 440
41.4.1.1.4 Method 4: Nitrosation with Nitrosonium Tetrafluoroborate 441
41.4.1.1.5 Method 5: Nitrosation with Alkyl Nitrites 442
41.4.1.1.6 Method 6: Dealkylating Nitrosation of Tertiary Amines 443
41.4.1.2 Formation of C—C Bonds .. 443
41.4.1.2.1 Method 1: α-Alkylation of N-Nitrosoamines 443
41.4.1.2.2 Method 2: Alkylation of Diazlenolates .. 445
41.4.1.3 Formation and Cleavage of N—O Bonds ... 446
41.4.1.3.1 Method 1: Reduction of N-Nitroamines 446
41.4.1.3.2 Method 2: Oxidation of 1,1-Disubstituted Hydrazines 446
41.5
Product Class 5: Aliphatic Azoxy Compounds (Aliphatic Diazene Oxides)
M. M. K. Boysen

41.5.1
Synthesis of Product Class 5

41.5.1.1
Formation or Cleavage of N—O Bonds

41.5.1.2
Method 2: Oxidation of Hydrazones

41.5.1.3
Method 3: Oxidation of Hydrazines

41.5.1.4
Method 4: Reduction of Dimeric Nitroso Compounds

41.5.1.5
Formation of the N=N Bond

41.5.1.6
Method 1: Condensation of Hydroxylamines with Dimeric Nitroso Compounds

41.5.1.7
Method 2: Condensation of N,N-Dihaloamines with Nitroso Compounds

41.5.1.8
Method 3: Oxidation of Hydroxylamines

41.5.1.9
Formation of the C—N Bond

41.5.1.10
Method 1: Alkylation of Diazonolates

41.6
Product Class 6: Aliphatic Azo Compounds
S. Kempa, L. Wallach, and K. Rück-Braun

41.6.1
Synthesis by Formation of the N=N Bond

41.6.1.1
Method 1: Oxidative Coupling of Primary Amines

41.6.1.2
Method 2: Condensation of Nitrosoalkanes with Alkylamines

41.6.1.3
Method 3: Rearrangement of N,N'-Dialkylsulfamides

41.6.1.4
Variation 1: Rearrangement of N,N'-Dialkylureas

41.6.2
Synthesis from Compounds Containing an N—N Bond

41.6.2.1
Method 1: Oxidation of 1,2-Dialkylhydrazines

41.6.2.2
Variation 1: From Corresponding Ketazines

41.6.2.3
Method 2: Oxidation with Peracetic Acid

41.6.2.4
Method 3: Oxidation with (Diacetoxyiodo)benzene

41.6.2.5
Method 4: Oxidation of Ketazines with Lead(IV) Acetate

41.6.2.6
Method 5: Alkylation of Alkylhydrazones

41.6.2.7
Method 6: Isomerization of Alkylhydrazones

41.6.2.8
Method 7: Hydrogenation of Ketazines

41.6.2.9
Method 8: Chlorination of Ketazines
41.6.9 Method 9: Ring Opening of Heterocycles 497
41.6.10 Method 10: [2,3]-Sigmatropic Rearrangement of
1-Alkyl-1-allyldiazenes and 1-Alkyl-1-propargyldiazenes 500
41.6.11 Method 11: Reactions of 2-Diazo 1,3-Diketones with CH-Acidic
Compounds 501
41.6.12 Synthesis by Other Methods 502

41.7 Product Class 7: Diazonium Compounds
S. Kubik

41.7.1 Product Subclass 1: Alkanediazonium Compounds 507
41.7.1.1 Synthesis of Product Subclass 1 509
41.7.1.1.1 Method 1: Synthesis from Primary Amines 509
41.7.1.1.1.1 Variation 1: With Nitrous Acid 509
41.7.1.1.1.2 Variation 2: With Disodium Pentacyanonitrosylferrate(III) 510
41.7.1.1.1.3 Variation 3: With Alkyl Nitrites 510
41.7.1.1.1.4 Variation 4: With Nitrosyl Chloride 511
41.7.1.1.1.5 Variation 5: With Dinitrogen Tetroxide 511
41.7.1.1.2 Method 2: Synthesis from Triazenes 511
41.7.1.1.3 Method 3: Synthesis from N-Nitrosoamides 512
41.7.1.1.3.1 Variation 1: By Thermolysis 512
41.7.1.1.3.2 Variation 2: By Alkali Cleavage 513
41.7.1.1.4 Method 4: Synthesis from Diazoalkanes 514
41.7.1.1.5 Method 5: Miscellaneous Methods 514

41.7.2 Product Subclass 2: Alkenediazonium Compounds 514
41.7.2.1 Synthesis of Product Subclass 2 517
41.7.2.1.1 Method 1: Synthesis from Diazoalkanes 517
41.7.2.1.2 Method 2: Synthesis from 2-Diazocarbonyl Compounds 517
41.7.2.1.2.1 Variation 1: By O-Alkylation 518
41.7.2.1.2.2 Variation 2: By O-Sulfonylation or O-Benzoylation 520
41.7.2.1.3 Method 3: Synthesis from Hydrazones 521
41.7.2.1.3.1 Variation 1: From Aldehyde Hydrazones 522
41.7.2.1.3.2 Variation 2: From Ketone Hydrazones 524
41.7.2.1.4 Method 4: Synthesis from Alk-1-enyl Derivatives 525
41.7.2.1.4.1 Variation 1: From Enamines 525
41.7.2.1.4.2 Variation 2: From Alk-1-enyl Isocyanates 527
41.7.2.1.4.3 Variation 3: From Alk-1-enyltriazenes 528
41.7.2.1.4.4 Variation 4: From 1-(Tosylazo)alk-1-enes 529
41.7.2.1.5 Method 5: Synthesis from N-Nitrosooxazolidin-2-ones 529
41.7.2.1.6 Method 6: Synthesis from Other Alkenediazonium Compounds 531
41.7.2.2 Applications of Product Subclass 2 in Organic Synthesis 534
41.7.2.2.1 Method 1: Synthesis of Pyrazoles 534
41.7.2.2.2 Method 2: Synthesis of 1H-1,2,3-Triazoles 535
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>41.7.2.3</td>
<td>Method 3: Synthesis of 6H-1,3,4-Oxadiazines and 1,3,4-Oxadiazoles</td>
<td>536</td>
</tr>
<tr>
<td>41.7.2.4</td>
<td>Method 4: Synthesis of 2-Diazoimines</td>
<td>536</td>
</tr>
</tbody>
</table>

41.8 Product Class 8: Azidoalkanes
S. Bräse, B. Lesch, and V. Zimmermann

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>41.8</td>
<td>Method 1: Synthesis from Benzyl Ethers or Related Compounds by Radical Substitution (C–H Activation)</td>
<td>543</td>
</tr>
<tr>
<td>41.8.1</td>
<td>Method 2: Synthesis from Carboxylic Acids by Azidative Decarboxylation</td>
<td>544</td>
</tr>
<tr>
<td>41.8.1.3</td>
<td>Method 3: Synthesis from Alkyl Halides by Radical Substitution</td>
<td>545</td>
</tr>
<tr>
<td>41.8.1.4</td>
<td>Method 4: Synthesis by Nucleophilic Substitution of Alkyl Halides</td>
<td>545</td>
</tr>
<tr>
<td>41.8.1.4.1</td>
<td>Variation 1: Classical Synthesis</td>
<td>545</td>
</tr>
<tr>
<td>41.8.1.4.2</td>
<td>Variation 2: Asymmetric Synthesis</td>
<td>548</td>
</tr>
<tr>
<td>41.8.1.4.3</td>
<td>Variation 3: 1,3-Substitution in Allyl Halides</td>
<td>550</td>
</tr>
<tr>
<td>41.8.1.5</td>
<td>Method 5: Synthesis by Nucleophilic Substitution of Alkyl Esters and Related Compounds</td>
<td>551</td>
</tr>
<tr>
<td>41.8.1.5.1</td>
<td>Variation 1: Classical Synthesis</td>
<td>551</td>
</tr>
<tr>
<td>41.8.1.5.2</td>
<td>Variation 2: Asymmetric Synthesis</td>
<td>554</td>
</tr>
<tr>
<td>41.8.1.6</td>
<td>Method 6: Synthesis by Nucleophilic Substitution of Alkanols and Related Compounds</td>
<td>556</td>
</tr>
<tr>
<td>41.8.1.6.1</td>
<td>Variation 1: Classical Synthesis</td>
<td>556</td>
</tr>
<tr>
<td>41.8.1.6.2</td>
<td>Variation 2: Asymmetric Synthesis</td>
<td>560</td>
</tr>
<tr>
<td>41.8.1.7</td>
<td>Method 7: Synthesis from Acetals</td>
<td>566</td>
</tr>
<tr>
<td>41.8.1.8</td>
<td>Method 8: Synthesis by Ring Opening of Epoxides, Aziridines, and Related Compounds</td>
<td>567</td>
</tr>
<tr>
<td>41.8.1.8.1</td>
<td>Variation 1: Classical Synthesis</td>
<td>567</td>
</tr>
<tr>
<td>41.8.1.8.2</td>
<td>Variation 2: Asymmetric Synthesis</td>
<td>577</td>
</tr>
<tr>
<td>41.8.1.9</td>
<td>Method 9: Electrophilic Azidation</td>
<td>578</td>
</tr>
<tr>
<td>41.8.1.10</td>
<td>Method 10: Synthesis by Addition to C=C Bonds</td>
<td>580</td>
</tr>
<tr>
<td>41.8.1.10.1</td>
<td>Variation 1: Nucleophilic Hydroazidation of C=C Bonds</td>
<td>580</td>
</tr>
<tr>
<td>41.8.1.10.2</td>
<td>Variation 2: Electrophilic Hydroazidation of C=C Bonds</td>
<td>581</td>
</tr>
<tr>
<td>41.8.1.10.3</td>
<td>Variation 3: Radical Hydroazidation of C=C Bonds</td>
<td>584</td>
</tr>
<tr>
<td>41.8.1.10.4</td>
<td>Variation 4: Carboazidation of C=C Bonds</td>
<td>585</td>
</tr>
<tr>
<td>41.8.1.10.5</td>
<td>Variation 5: Haloazidation of C=C Bonds</td>
<td>585</td>
</tr>
<tr>
<td>41.8.1.10.6</td>
<td>Variation 6: Azidoselanylazidation of C=C Bonds</td>
<td>590</td>
</tr>
<tr>
<td>41.8.1.11</td>
<td>Method 11: Synthesis by Addition to C=X Bonds</td>
<td>590</td>
</tr>
<tr>
<td>41.8.1.12</td>
<td>Method 12: Synthesis from Amines by Nitrogen Transfer</td>
<td>590</td>
</tr>
<tr>
<td>41.8.1.13</td>
<td>Method 13: Synthesis with Retention of Azide Functionality</td>
<td>591</td>
</tr>
<tr>
<td>41.8.2</td>
<td>Applications of Product Class 8 in Organic Synthesis</td>
<td>594</td>
</tr>
<tr>
<td>41.8.2.1</td>
<td>Method 1: Reactions with All-Carbon Functional Groups</td>
<td>594</td>
</tr>
<tr>
<td>41.8.2.1.1</td>
<td>Variation 1: [3 + 2]-Cycloaddition Reactions</td>
<td>594</td>
</tr>
<tr>
<td>Section</td>
<td>Method</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>--------</td>
<td>-------------</td>
</tr>
<tr>
<td>41.8.2.2</td>
<td>Method 2:</td>
<td>Hydrogenation and Reactions with Heteroatom-Containing Groups</td>
</tr>
<tr>
<td>41.8.2.2.1</td>
<td>Variation 1:</td>
<td>Reduction to Amines</td>
</tr>
<tr>
<td>41.8.2.2.2</td>
<td>Variation 2:</td>
<td>Schmidt and Boyer Reactions</td>
</tr>
<tr>
<td>41.8.2.2.3</td>
<td>Variation 3:</td>
<td>Staudinger Reductions</td>
</tr>
<tr>
<td>41.8.2.2.4</td>
<td>Variation 4:</td>
<td>Staudinger Ligations</td>
</tr>
<tr>
<td>41.8.2.2.5</td>
<td>Variation 5:</td>
<td>Aza-Wittig Reactions</td>
</tr>
<tr>
<td>41.8.2.2.6</td>
<td>Variation 6:</td>
<td>Miscellaneous Reactions</td>
</tr>
<tr>
<td>41.9</td>
<td>Product Class 9:</td>
<td>Alkyltriazenes</td>
</tr>
<tr>
<td>41.9.1</td>
<td>Synthesis of Product Class 9</td>
<td></td>
</tr>
<tr>
<td>41.9.1.1</td>
<td>Method 1:</td>
<td>Alkylation of Alkyl Azides</td>
</tr>
<tr>
<td>41.9.1.1.1</td>
<td>Variation 1:</td>
<td>By Grignard Reagents</td>
</tr>
<tr>
<td>41.9.1.1.2</td>
<td>Variation 2:</td>
<td>By Lithium Reagents</td>
</tr>
<tr>
<td>41.9.1.1.3</td>
<td>Method 2:</td>
<td>Alkylation or Acylation of Aryl- or Alkyltriazenes</td>
</tr>
<tr>
<td>41.9.1.1.2.1</td>
<td>Variation 1:</td>
<td>Alkylation</td>
</tr>
<tr>
<td>41.9.1.1.2.2</td>
<td>Variation 2:</td>
<td>Acylation</td>
</tr>
<tr>
<td>41.9.1.1.3</td>
<td>Method 3:</td>
<td>Reaction of Arenediazonium Salts with Primary Amines</td>
</tr>
<tr>
<td>41.9.1.2</td>
<td>Method 4:</td>
<td>Reaction of Diazonium Salts with Secondary Amines</td>
</tr>
<tr>
<td>41.9.1.2.1.1</td>
<td>Variation 1:</td>
<td>Diazotization of Arylamines and Reaction with Secondary Amines</td>
</tr>
<tr>
<td>41.9.1.2.2</td>
<td>Variation 2:</td>
<td>Preparation of Bistriazenes of Secondary Amines</td>
</tr>
<tr>
<td>41.9.1.2.4</td>
<td>Variation 4:</td>
<td>Preparation of Imidazolytriazenes</td>
</tr>
<tr>
<td>41.9.1.2.5</td>
<td>Variation 5:</td>
<td>Preparation of Indol-3-yltriazenes</td>
</tr>
<tr>
<td>41.9.1.2.6</td>
<td>Variation 6:</td>
<td>Preparation of Pyrrol-3-yltriazenes</td>
</tr>
<tr>
<td>41.9.1.2.7</td>
<td>Variation 7:</td>
<td>Preparation of Pyridyltriazenes</td>
</tr>
<tr>
<td>41.9.1.2.8</td>
<td>Variation 8:</td>
<td>Preparation of Pyrazolyltriazenes/Indazolyltriazenes</td>
</tr>
<tr>
<td>41.9.1.2.9</td>
<td>Variation 9:</td>
<td>Preparation of Acyl(alkyl)triazenes</td>
</tr>
<tr>
<td>41.9.1.3</td>
<td>Method 5:</td>
<td>Synthesis from N'‑Alkyl‑N‑aryl‑N‑nitrosoureas</td>
</tr>
<tr>
<td>41.9.1.3.1</td>
<td>Variation 1:</td>
<td>With Primary Amines/Secondary Amines</td>
</tr>
<tr>
<td>41.9.1.3.2</td>
<td>Variation 2:</td>
<td>By Decomposition</td>
</tr>
<tr>
<td>41.9.1.4</td>
<td>Method 6:</td>
<td>Synthesis from Nitroso‑Containing Compounds with Alkylhydrazines</td>
</tr>
<tr>
<td>41.9.1.5</td>
<td>Method 7:</td>
<td>Reaction of Arenediazonium Salts with Primary Amines and Formaldehde</td>
</tr>
<tr>
<td>41.9.1.6</td>
<td>Method 8:</td>
<td>Reaction of Arenediazonium Salts with Diamines and Formaldehde</td>
</tr>
<tr>
<td>41.9.1.7</td>
<td>Method 9:</td>
<td>Synthesis by Ring Opening of Cyclic Compounds</td>
</tr>
<tr>
<td>41.9.1.8</td>
<td>Variation 1:</td>
<td>Ring Opening of Triaziridines</td>
</tr>
<tr>
<td>41.9.1.9</td>
<td>Variation 2:</td>
<td>Ring Opening to 3-Alkyl-1-aryltriazenes</td>
</tr>
<tr>
<td>41.9.1.9.3</td>
<td>Variation 3:</td>
<td>Ring Opening of Spiro cyclic Triazoles</td>
</tr>
</tbody>
</table>
41.9.4 Variation 4: Ring Opening of Benzotriazoles 634
41.9.2 Applications of Product Class 9 in Organic Synthesis 635

41.10 Product Class 10: Alkyltetrazenes
N. Jung and S. Bräse

41.10 Product Class 10: Alkyltetrazenes .. 641
41.10.1 Product Subclass 1: Tetraz-1-enes 641
41.10.1.1 Synthesis of Product Subclass 1 .. 641
41.10.1.1.1 Method 1: Reaction of 1,1-Dialkylhydrazines with Diazonium Chlorides .. 641
41.10.2 Product Subclass 2: Tetraz-2-enes 642
41.10.2.1 Synthesis of Product Subclass 2 .. 642
41.10.2.1.1 Method 1: Symmetrical Oxidative Dimerization of Hydrazines 642
41.10.2.1.2 Method 2: Tetrazenes from \(N \)-Nitrosoamines 645
41.10.2.1.3 Method 3: Dimerization of Diazenes Generated from Amines 645
41.10.2.1.4 Method 4: Dimerization of Diazenes Generated from Hydrazones 646
41.10.2.1.5 Method 5: Synthesis of Unsymmetrical Tetrazenes 646
41.10.2.1.6 Method 6: Synthesis of Tetrazenes from Cyclic Precursors 647
41.10.2.1.7 Method 7: Synthesis of Vinyltetrazenes 648

41.11 Product Class 11: \(N,N \)-Dihaloamines
S. J. Collier and W. Xiang

41.11 Product Class 11: \(N,N \)-Dihaloamines .. 651
41.11.1 Product Subclass 1: \(N,N \)-Difluoroamines 651
41.11.1.1 Synthesis of Product Subclass 1 .. 653
41.11.1.1.1 Method 1: Direct Fluorination of Amines and Related Reactions 653
41.11.1.1.2 Method 2: Difluoroamination of Carbon Skeletons 655
41.11.1.1.2.1 Variation 1: With Tetrafluorohydrazine 655
41.11.1.1.1.2 Variation 2: With Difluoroamine and Related Reagents 659
41.11.1.1.1.3 Method 3: Other Methods ... 662
41.11.1.2 Product Subclass 2: \(N,N \)-Dichloroamines 663
41.11.1.2.1 Synthesis of Product Subclass 2 .. 665
41.11.1.2.1.1 Method 1: Direct Chlorination of Amines 665
41.11.1.2.1.2 Method 2: Chlorination of Nitriles and Related Reactions 666
41.11.1.2.1.3 Method 3: Dichloroamination of Carbon Skeletons 668
41.11.1.2.1.4 Method 4: Other Methods ... 669
41.11.1.3 Product Subclass 3: \(N,N \)-Dibromoamines 669
41.11.1.3.1 Synthesis of Product Subclass 3 .. 670
41.11.1.3.1.1 Method 1: Direct Bromination of Amines 670