Volume 44:
Cumulenes and Allenes

Preface .. V

Volume Editor’s Preface ... VII

Table of Contents .. XI

Introduction
N. Krause .. 1

44.1 Product Class 1: Cumulenes
M. Ogasawara .. 9

44.2 Product Class 2: Linear Allenes

44.2.1 Synthesis by Substitution
H. Ohno and K. Tomioka .. 71

44.2.2 Synthesis by Elimination
V. Gandon and M. Malacria .. 175

44.2.3 Synthesis by Addition
K. K. Wang ... 229

44.2.4 Synthesis by Rearrangement
A. S. K. Hashmi ... 287

44.2.5 Synthesis from Other Allenes
H.-U. Reissig and R. Zimmer ... 301

44.2.6 Applications of Allenes in Organic Synthesis
M. A. Tius .. 353

44.3 Product Class 3: Cyclic Allenes
T. Kawase .. 395

Keyword Index .. 451

Author Index .. 485

Abbreviations ... 503
Table of Contents

Introduction
N. Krause

Introduction .. 1

44.1 Product Class 1: Cumulenes
M. Ogasawara

Product Class 1: Cumulenes .. 9

Product Subclass 1: [6]- and Higher Cumulenes 10

Synthesis of Product Subclass 1 .. 10

Synthesis by Elimination .. 10

Method 1: Reduction of \(\alpha,\omega \)-Dihydroxypolynes 10

Method 2: Double Elimination of Methanol from 1,7-Dimethoxy-hepta-2,4-diynes .. 11

Product Subclass 2: Hexapentaenes ([5]Cumulenes) 12

Synthesis of Product Subclass 2 .. 12

Synthesis by Elimination .. 12

Method 1: Dehydroxylation of Hexa-2,4-diyn-1,6-diols 12

Method 2: Debromination of 3,4-Dibromohexa-1,2,4,5-tetraenes 13

Method 3: Other Methods Involving Elimination 14

Synthesis Mediated by Carbene Species .. 15

Method 1: Dimerization of Allenylidene Species 15

Variation 1: Dimerization of Allenylidene Species Generated from Propargylic Precursors .. 15

Variation 2: Dimerization of Allenylidene Species Generated from Bromoallenes .. 17

Variation 3: Dimerization of Allenylidene–Chromium Species 17

Method 2: Trapping of Hexapentaenylidene Species 17

Synthesis of Product Subclass 3 .. 18

Synthesis by Substitution .. 18

Method 1: Lithiation and Silylation of Hexa-2,4-diynes 18

Method 2: \(S_N2 \)” Substitution on Penta-2,4-diynyl Esters 19

Synthesis by Elimination .. 20

Method 1: Double Dehydrobromination of 2,4-Dibromopenta-1,4-diienes 20

Method 2: 1,2- and 1,4-Elimination from 5-Methoxypent-2-yn-1-ols 20
<table>
<thead>
<tr>
<th>Section</th>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>44.1.3.2.3</td>
<td>Method 3</td>
<td>Oxidation of Hexapentaenes Followed by Carbon Monoxide Elimination</td>
</tr>
<tr>
<td>44.1.3.2.4</td>
<td>Method 4</td>
<td>Reductive 1,4-Dechlorination of a 2,5-Dichloropent-1-en-3-yne</td>
</tr>
<tr>
<td>44.1.3.2.5</td>
<td>Method 5</td>
<td>1,1-Dehalogenation and Rearrangement of 1,1-Dihalocyclopropanes</td>
</tr>
<tr>
<td>44.1.3.2.6</td>
<td>Method 6</td>
<td>Sulfur Elimination from Penta-1,2,3,4-tetraene Episulfides</td>
</tr>
<tr>
<td>44.1.3.2.7</td>
<td>Method 7</td>
<td>Wittig Reaction</td>
</tr>
<tr>
<td>44.1.3.2.7.1</td>
<td>Variation 1</td>
<td>Wittig Reaction of Carbon Suboxide with Alkylidenephosphoranes</td>
</tr>
<tr>
<td>44.1.3.2.7.2</td>
<td>Variation 2</td>
<td>Wittig Reaction of Alka-2,3-dienoyl Chlorides with Alkylidenephosphoranes</td>
</tr>
<tr>
<td>44.1.3.2.8</td>
<td>Method 8</td>
<td>Retro-Diels–Alder Reaction</td>
</tr>
</tbody>
</table>

Product Subclass 4: Butatrienes ([3]Cumulenes)

Synthesis of Product Subclass 4

44.1.4.1 Synthesis by Substitution

1. **Method 1**: S_n^2 Substitution on Pent-4-en-2-ynyl Derivatives and Related Reactions
 - Variation 1: On Pent-4-en-2-ynyl Methanesulfinites with Alkylsilver(I) Reagents
 - Variation 2: On 2-(But-3-en-1-ynyl)oxiranes with Alkylsilver(I) Reagents
 - Variation 3: Reduction of Alka-4,5-dien-2-ynols or Related Alcohols by Lithium Aluminum Hydride

2. **Method 2**: S_n^2 Substitution on 2-Bromo-1-en-3-yne
 - Variation 1: With Alkylcopper Reagents
 - Variation 2: With Soft Carbon Nucleophiles Catalyzed by a Palladium Complex

3. **Method 3**: Synthesis of Phosphinobutatrienes from 2-Vinyl-1H-phosphirenes and Alkyl lithium Reagents

44.1.4.2 Synthesis by Elimination

1. **Method 1**: Dehydrohalogenation
 - Variation 1: Single Dehydrohalogenation of Haloallenes
 - Variation 2: Double Dehydrohalogenation of 2,3-Dihalobut-2-enes
 - Variation 3: Double Dehydrohalogenation of 1,4-Dihalobut-2-enes
 - Variation 4: Double Dehydrochlorination and Ring Opening of 1,1-Dichlorocyclopropanes

2. **Method 2**: Dehydration
 - Variation 1: 1,2-Dehydration of Alka-2,3-dienols
 - Variation 2: Rearrangement and Dehydration of Epoxyalkynols

3. **Method 3**: Elimination of Alcohols and Related Reactions
 - Variation 1: 1,4-Elimination of Alcohols
 - Variation 2: 1,6-Elimination of Alcohols

4. **Method 4**: Pyrolysis of Hexakis(trimethylsilyl)but-2-yne

5. **Method 5**: Dehalogenation
 - Variation 1: 1,4-Dehalogenation of 1,4-Dihaloalk-2-ynes
 - Variation 2: 1,2-Dehalogenation of 2,3-Dihalo-1,3-dienes
44.1.4.1.2.6 Method 6: 1,1-Dehalogenation and Rearrangement of 2-Alkenylidene-1,1-dihalocyclopropanes ... 40

44.1.4.1.2.7 Method 7: Dehydroxylation of Alk-2-yn-1,4-diols ... 41

44.1.4.1.2.8 Method 8: 1,4-Elimination from 4-Hydroxybut-2-ynylsilanes or -stannanes 42

44.1.4.1.2.8.1 Variation 1: From 4-Hydroxybut-2-ynylsilanes ... 42

44.1.4.1.2.8.2 Variation 2: From 4-Hydroxybut-2-ynylstannanes ... 44

44.1.4.1.2.9 Method 9: Desulfurization of Cyclic Trithiocarbonates ... 44

44.1.4.1.2.10 Method 10: Sulfur Elimination from Alkylidenecyclopropanethiones ... 45

44.1.4.1.2.11 Method 11: Wittig and Related Reactions ... 46

44.1.4.1.2.11.1 Variation 1: Wittig Reaction of Aldehydes or Ketones with Allenylidenephosphoranes 46

44.1.4.1.2.11.2 Variation 2: Double Wittig Reaction of a Phosphorus Diylide with an Aldehyde 47

44.1.4.1.2.11.3 Variation 3: Horner–Emmons-Type Reactions of Aldehydes or Ketones 48

44.1.4.1.2.11.4 Variation 4: Wittig Reaction of a Ketene with a Vinylidenephosphorane 49

44.1.4.1.2.12 Method 12: Base-Induced Borane Elimination from Bis(1-iodoalkenyl)boranes 50

44.1.4.1.2.13 Method 13: Retro-Diels–Alder Reactions ... 50

44.1.4.1.2.14 Method 14: Thermal Decomposition of a Disodium Salt of a Cyclobutane-1,3-dione Bis(tosylhydrazone) ... 51

44.1.4.1.3 Synthesis by Addition... 51

44.1.4.1.3.1 Method 1: Electrophilic 1,4-Addition to 1,3-Diynes .. 51

44.1.4.1.3.2 Method 2: 1,4-Disilylation of 1,4-Disilyl-1,3-dienes .. 52

44.1.4.1.3.2.1 Variation 1: 1,4-Disilylation of 1,4-Disilyl-1,3-dienes by a Silylmanganese Reagent 52

44.1.4.1.3.2.2 Variation 2: Palladium-Catalyzed 1,4-Disilylation of 1,4-Disilyl-1,3-dienes 53

44.1.4.1.3.3 Method 3: Palladium-Catalyzed Double Arylation of 1,4-Diaryl-1,3-dienes 54

44.1.4.1.3.4 Method 4: 1,6-Addition of Bromine to 1,5-Dien-3-yne ... 54

44.1.4.1.4 Synthesis by Rearrangement ... 55

44.1.4.1.4.1 Method 1: Base-Promoted Rearrangement of a Conjugated Bisallene to an Alkenylbutatriene ... 55

44.1.4.1.4.2 Method 2: Photorearrangement of Vinylidenecyclopropanes to Butatriene Derivatives 55

44.1.4.1.5 Synthesis Mediated by Carbene Species .. 56

44.1.4.1.5.1 Method 1: Dimerization of Vinylidene Species or Vinylidene Equivalents 56

44.1.4.1.5.1.1 Variation 1: Dimerization of Vinylidene Species or Vinylidene Equivalents Generated from gem-Dihaloalkanes ... 56

44.1.4.1.5.1.2 Variation 2: Dimerization of Vinylidene Species or Vinylidene Equivalents Generated from 1-Halo-1-hydroalkanes ... 57

44.1.4.1.5.1.3 Variation 3: Formation of a Butatriene from 2-Nitro-1,1-diphenylethene 58

44.1.4.1.5.1.4 Variation 4: Dimerization of Alkenylidene Species Generated from Dialkenylcuprates 59

44.1.4.1.5.1.5 Variation 5: Desulfurization–Dimerization of Dithioacetals with Hexacarbonyltungsten(0) ... 59

44.1.4.1.5.1.6 Variation 6: Dimerization of Vinylidene–Tungsten Species .. 59

44.1.4.1.5.2 Method 2: Reactions Involving Allenylidene Species .. 60
44.1.5.2.1 Variation 1: Reactions of Allenylidene Species with Diazoalkanes 60
44.1.5.2.2 Variation 2: Reactions of Allenylidene–Rhodium Complexes with Diazomethane .. 60
44.1.5.3 Method 3: Reactions of 1,2,3-Trienyldene Species 61
44.1.5.3.1 Variation 1: Reactions of 1,2,3-Trienyldene Species with Alkenes 61
44.1.5.3.2 Variation 2: Reactions of 1,2,3-Trienyldene Species with Group 14 Hydrides .. 61
44.1.6 Other Methods for the Synthesis of Butatrienes 62
44.1.6.1 Method 1: Dimerization of Terminal Alkynes by Transition-Metal Catalysts .. 62
44.1.6.2 Method 2: Coupling Reactions between 1,1-Dichloroalkenes and Terminal Alkenes .. 64
44.1.6.3 Method 3: Zirconium-Mediated Coupling Reactions of 1,3-Diynes with Aldehydes or Ketones ... 64
44.1.6.3.1 Variation 1: Reactions of Zirconacycles with Aldehydes To Form Butatrienyl Monoalcohols .. 64
44.1.6.3.2 Variation 2: Reactions of Zirconacycles with Ketones To Form Butatrienyl Diols .. 65

44.2 Product Class 2: Linear Allenes

44.2.1 Synthesis by Substitution

44.2.1 Synthesis by Substitution .. 71
44.2.1.1 Method 1: Organocopper-Mediated Reactions of Propargylic and Related Substrates .. 71
44.2.1.1.1 Variation 1: Reactions of Various Propargylic Substrates 75
44.2.1.1.2 Variation 2: Reactions Using Various Copper Nucleophiles 81
44.2.1.1.3 Variation 3: Synthesis of Enantiomerically Enriched Allenes 83
44.2.1.1.4 Variation 4: Ring-Opening Reactions .. 94
44.2.1.1.5 Variation 5: 1,5-Substitution Reactions 100
44.2.1.1.6 Variation 6: Halogenation of Propargylic Substrates 101
44.2.1.2 Method 2: Aluminum-Mediated Reactions of Propargylic Substrates .. 102
44.2.1.2.1 Variation 1: Reactions of Propargylic Halides 102
44.2.1.2.2 Variation 2: Reactions of Propargylic Alcohols 103
44.2.1.2.3 Variation 3: Reactions of Propargylic Sulfonates 106
44.2.1.2.4 Variation 4: Reactions of Propargylic Ethers 108
44.2.1.2.5 Variation 5: Reactions of Propargylic Amine Derivatives 110
44.2.1.2.6 Variation 6: Ring-Opening Reactions 111
44.2.1.2.7 Variations 7: Miscellaneous Reactions 115
44.2.1.3 Method 3: Lithium-, Magnesium-, or Zinc-Mediated Reactions of Propargylic and Related Substrates 115
44.2.1.3.1 Variation 1: Lithium-Mediated Reactions 115
44.2.1.3.2 Variation 2: Magnesium-Mediated Reactions 117
44.2.1.3.3 Variation 3: Zinc-Mediated Reactions 119
44.2.1.4 Method 4: Borane- or Gallium-Mediated Reactions of Propargylic Substrates 120
44.2.1.4.1 Variation 1: Borane-Mediated Reactions 120
44.2.1.4.2 Variation 2: Gallium-Mediated Reactions 123
44.2.1.5 Method 5: Iron-Catalyzed Reactions of Propargylic Substrates 123
44.2.1.5.1 Variation 1: Ring-Opening Reactions of Epoxides 125
44.2.1.6 Method 6: Palladium-Catalyzed Reactions of Propargylic Substrates 126
44.2.1.6.1 Variation 1: Reactions with Grignard Reagents 127
44.2.1.6.2 Variation 2: Reactions with Zinc Reagents 127
44.2.1.6.3 Variation 3: Reactions with Borane Reagents 129
44.2.1.6.4 Variation 4: Reactions with Aluminum or Tin Reagents 130
44.2.1.6.5 Variation 5: Reactions with Copper Acetylenes 131
44.2.1.6.6 Variation 6: Reactions with Samarium Reagents 132
44.2.1.6.7 Variation 7: Carbonylation Reactions 133
44.2.1.6.8 Variation 8: Reactions with Hydride Reagents 134
44.2.1.6.9 Variations 9: Miscellaneous Reactions 138
44.2.1.7 Methods 7: Miscellaneous Reactions of Propargylic Substrates 145
44.2.1.7.1 Variation 1: Reactions with Nitrogen Nucleophiles 145
44.2.1.7.2 Variation 2: Reactions with Enol Ethers 146
44.2.1.7.3 Variation 3: Chromium-Catalyzed Reactions 146
44.2.1.7.4 Variation 4: Nickel-Mediated Reactions 147
44.2.1.7.5 Variation 5: Reactions with Copper Cyanide 147
44.2.1.7.6 Variation 6: Zirconocene-Mediated Reactions 148
44.2.1.7.7 Variation 7: Ruthenium-Catalyzed Reactions 148
44.2.1.7.8 Variation 8: Samarium-Mediated Reactions 149
44.2.1.8 Method 8: Substitution of Haloallenes 150
44.2.1.8.1 Variation 1: Copper-Mediated Reactions 150
44.2.1.8.2 Variation 2: Palladium-Catalyzed Reactions 155
44.2.1.8.3 Variation 3: Other Reactions with Carbon Nucleophiles 161
44.2.1.8.4 Variation 4: Reactions with Nitrogen Nucleophiles 163
44.2.1.8.5 Variation 5: Reactions with Oxygen Nucleophiles 166
44.2.1.8.6 Variation 6: Reactions with Sulfur Nucleophiles 166
44.2.1.9 Method 9: Substitution of 2-Halobuta-1,3-dienes and Related Compounds .. 166
44.2.1.9.1 Variation 1: Copper-Mediated Reactions 166
44.2.1.9.2 Variation 2: Palladium-Catalyzed Reactions 167

44.2.2 Synthesis by Elimination
V. Gandon and M. Malacria

44.2.2 Synthesis by Elimination ... 175
44.2.2.1 1,3-Elimination from Substituted Vinylic or Allylic Derivatives 176
44.2.2.1.1 Method 1: Dehydrohalogenation of 2-Haloalkanes 176
44.2.2.1.1.1 Variation 1: From Nonactivated Substrates 176
44.2.2.1.1.2 Variation 2: From α,β-Unsaturated Substrates 178
44.2.2.1.2 Method 2: Dehydroisilylation of Silyl Enol Ethers 178
44.2.2.1.3 Method 3: Dehydroarsinoylation of Vinyl Trifluoromethanesulfonates 180
Table of Contents

44.2.2.1.4 Method 4: Dehydration of Allylic Alcohols 181
44.2.2.1.5 Method 5: Elimination from Vinyl Sulfoxides and Vinyl Sulfones 182
44.2.2.1.6 Method 6: Elimination from Phenyl Vinyl Selenoxides 182
44.2.2.1.6.1 Variation 1: Oxidation with 3-Chloroperoxybenzoic Acid 182
44.2.2.1.6.2 Variation 2: Asymmetric Elimination Using Sharpless Oxidation 183
44.2.2.1.6.3 Variation 3: Asymmetric Elimination Using Chiral Diferrocenyl Diselenides 185
44.2.2.1.7 Method 7: Elimination from Enol Phosphates 186
44.2.2.1.8 Method 8: Elimination from Vinylsilanes and Vinylstannanes 188
44.2.2.1.9 Method 9: Peterson Reaction .. 190
44.2.2.1.10 Method 10: Elimination from Vinyl- and Allylmetal Intermediates 192
44.2.2.1.10.1 Variation 1: Vinylcopper and Vinylvanadium Intermediates from Propargyl Ethers and Organocopper and Organomagnesium Reagents ... 192
44.2.2.1.10.2 Variation 2: Allylzinc Intermediates from Alkynyl Sulfoxides and Alkynyl Sulfones .. 194
44.2.2.1.10.3 Variation 3: Vinylpalladium Intermediates from N-Propargylsulfonamides 194
44.2.2.1.10.4 Variation 4: Vinylzirconium and Vinytlutanium Intermediates from Propargyl Ethers and Propargyl Bromides ... 195
44.2.2.1.11 Method 11: Dehalogenation of 2,3-Dihaloalkanes and Deoxyhalogenation of β-Haloallyl Alcohol Derivatives 197
44.2.2.1.12 Method 12: Debrumosulfonilzation of 1-(Bromomethyl)vinyl Sulfoxides and Sulfimides .. 197
44.2.2.1.12.1 Variation 1: Using Tributyltin Hydride 198
44.2.2.1.12.2 Variation 2: Using Tris(trimethylsilyl)silane 199
44.2.2.1.13 Method 13: Debrumosulfonilzation from 1-(Bromomethyl)vinyl Sulfoxides 200
44.2.2.1.14 Method 14: Elimination from β-Sulfinylallyl Alcohol Derivatives and 1-(Sulfinylalkyl)vinyl Trifluoromethanesulfonates 201
44.2.2.1.14.1 Variation 1: Elimination from 1-(Sulfinylalkyl)vinyl Trifluoromethane-sulfonates .. 201
44.2.2.1.14.2 Variation 2: Elimination from β-Sulfinylallyl Alcohol Derivatives 202
44.2.2.2 Wittig Alkenations and Related Reactions .. 203
44.2.2.2.1 Method 1: Synthesis Using or via (Hydroxyalkenyl)phosphonate and (Hydroxyalkenyl)phosphine Oxide Intermediates 204
44.2.2.2.1.1 Variation 1: Baylis–Hillman-Type Reaction of Alkenylphosphorus Compounds with Aldehydes 204
44.2.2.2.1.2 Variation 2: Sulfanyl-, Selanyl-, or Carbometalation of Alkynylphosphine Oxides and Reaction with Aldehydes 205
44.2.2.2.2 Method 2: Synthesis via β-Hydroxyallylphosphonate Derivatives Prepared from Ketenes or Ketene Equivalents 207
44.2.2.2.2.1 Variation 1: Using Acid Chlorides ... 208
44.2.2.2.2.2 Variation 2: Using Aryl Esters ... 209
44.2.2.3 Metal–Vinylidene Routes to Allenes .. 211
44.2.2.3.1 Method 1: Synthesis from 1,1-Dimetalloalkenes 211
44.2.2.3.2 Method 2: Synthesis via Alkenyltinocene Derivatives 212
44.2.2.3.3 Method 3: Double Alkenation Using Titanium-Substituted Ylides 214
44.2.2.3.4 Method 4: Synthesis via Alkenyldienemagnesium Intermediates 215
44.2.4 Elimination from 1,1-Disubstituted Cyclopropane Derivatives

44.2.4.1 Method 1: Dehalogenation of 1,1-Dihalocyclopropanes through Carbenoid Intermediates

44.2.4.2 Method 2: Synthesis from 1-Halo-1-(phenylsulfinyl)cyclopropanes via Carbenoid Intermediates

44.2.5 Miscellaneous Methods

44.2.5.1 Method 1: Nitrogen Elimination by Oxidation of Pyrazol-3-ones Using Lead(IV) Acetate

44.2.5.2 Method 2: Dehydration of Ketones

44.2.3 Synthesis by Addition
K. K. Wang

44.2.3.1 Method 1: Reduction of Pent-2-en-4-yn-1-ols with Lithium Aluminum Hydride

44.2.3.2 Method 2: 1,4-Addition of Hydroboranes to Conjugated Enynes

44.2.3.3 Method 3: 1,4-Addition of Hydrosilanes to Conjugated Enynes

44.2.3.4 Method 4: 1,4-Addition of Hydrogen Halides and Halogens to Conjugated Enynes

44.2.3.5 Method 5: Conjugate Addition of Organometallic Reagents to Acceptor-Substituted Enynes

44.2.3.5.1 Variation 1: 1,6-Addition of Organometallic Reagents to Acceptor-Substituted Enynes

44.2.3.5.2 Variation 2: 1,8-, 1,10-, and 1,12-Addition of Organometallic Reagents to Acceptor-Substituted Enynes

44.2.3.6 Method 6: 1,4-Addition of Organometallic Reagents to Conjugated Enynes

44.2.3.7 Method 7: 1,4-Addition of Carbon Pronucleophiles to Conjugated Enynes

44.2.3.8 Method 8: Friedel–Crafts Acylation and Alkylation of Conjugated Enynes

44.2.3.9 Method 9: 1,4-Addition of Nucleophiles to Yrones and Ynoates

44.2.3.10 Method 10: Condensation of Propargylboranes with Carbonyl and Related Compounds

44.2.3.11 Method 11: Condensation of Propargylsilanes with Carbonyl and Related Compounds

44.2.3.12 Method 12: Condensation of Propargylstannanes with Carbonyl and Related Compounds

44.2.3.13 Method 13: Condensation of Other Propargylic Organometallic Reagents with Carbonyl Compounds

44.2.4 Synthesis by Rearrangement
A. S. K. Hashmi

44.2.4.1 Method 1: Prototropic Rearrangements

44.2.4.1.1 Variation 1: Stoichiometric Deprotonation Followed by Protonation
44.2.5 Synthesis from Other Allenes

H.-U. Reissig and R. Zimmer

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>44.2.5.1</td>
<td>Method 1: Substitution Reactions of Metalated Allenes</td>
<td>301</td>
</tr>
<tr>
<td>44.2.5.1.1</td>
<td>Variation 1: Of Nonactivated Allenes</td>
<td>301</td>
</tr>
<tr>
<td>44.2.5.1.2</td>
<td>Variation 2: Of Acceptor-Substituted Allenes</td>
<td>303</td>
</tr>
<tr>
<td>44.2.5.1.3</td>
<td>Variation 3: Of Donor-Substituted Allenes</td>
<td>304</td>
</tr>
<tr>
<td>44.2.5.1.4</td>
<td>Variation 4: Of α-Functionalized Allenes</td>
<td>307</td>
</tr>
<tr>
<td>44.2.5.2</td>
<td>Method 2: Transition-Metal-Catalyzed Cross-Coupling Reactions of Allenes</td>
<td>308</td>
</tr>
<tr>
<td>44.2.5.2.1</td>
<td>Variation 1: Alkylations</td>
<td>308</td>
</tr>
<tr>
<td>44.2.5.2.2</td>
<td>Variation 2: Arylations and Vinylations</td>
<td>310</td>
</tr>
<tr>
<td>44.2.5.2.3</td>
<td>Variation 3: Alkynylations</td>
<td>313</td>
</tr>
<tr>
<td>44.2.5.2.4</td>
<td>Variation 4: Reactions with CH-Acidic Compounds</td>
<td>313</td>
</tr>
<tr>
<td>44.2.5.2.5</td>
<td>Variation 5: Carbonylations</td>
<td>315</td>
</tr>
<tr>
<td>44.2.5.2.6</td>
<td>Variation 6: Amination, Amidation, and Imidation Reactions</td>
<td>315</td>
</tr>
<tr>
<td>44.2.5.3</td>
<td>Method 3: Substitution Reactions of Oxygen- and Halogen-Substituted Allenes</td>
<td>316</td>
</tr>
<tr>
<td>44.2.5.3.1</td>
<td>Variation 1: Of 1-Halogen-Substituted Allenes</td>
<td>316</td>
</tr>
<tr>
<td>44.2.5.3.2</td>
<td>Variation 2: Of α-Halogen-Substituted Allenes</td>
<td>318</td>
</tr>
<tr>
<td>44.2.5.3.3</td>
<td>Variation 3: Of 1-Oxygen-Substituted Allenes</td>
<td>319</td>
</tr>
<tr>
<td>44.2.5.3.4</td>
<td>Variation 4: Of α-Oxygen-Substituted Allenes</td>
<td>319</td>
</tr>
<tr>
<td>44.2.5.4</td>
<td>Method 4: Oxidation Reactions</td>
<td>320</td>
</tr>
<tr>
<td>44.2.5.4.1</td>
<td>Variation 1: Oxidation of α-Hydroxy-Substituted Allenes</td>
<td>320</td>
</tr>
<tr>
<td>44.2.5.4.2</td>
<td>Variation 2: Oxidation of Carboxy-Substituted Allenes</td>
<td>321</td>
</tr>
<tr>
<td>44.2.5.4.3</td>
<td>Variation 3: Oxidation of Heteroatom-Substituted Allenes</td>
<td>322</td>
</tr>
<tr>
<td>44.2.5.4.4</td>
<td>Variation 4: Oxidation of Alkynyl-Substituted Allenes</td>
<td>324</td>
</tr>
<tr>
<td>44.2.5.5</td>
<td>Method 5: Reductions of Allenes</td>
<td>325</td>
</tr>
<tr>
<td>44.2.5.5.1</td>
<td>Variation 1: Reduction of α-Carbonyl-Substituted Allenes</td>
<td>325</td>
</tr>
<tr>
<td>44.2.5.5.2</td>
<td>Variation 2: Reduction of Heteroatom-Substituted Allenes</td>
<td>326</td>
</tr>
<tr>
<td>44.2.5.5.3</td>
<td>Variation 3: Reduction of Alkynyl-Substituted Allenes</td>
<td>327</td>
</tr>
<tr>
<td>44.2.5.5.4</td>
<td>Variation 4: Reduction of Allenes Bearing an Epoxide Moiety</td>
<td>328</td>
</tr>
<tr>
<td>44.2.5.6</td>
<td>Method 6: Addition Reactions</td>
<td>328</td>
</tr>
</tbody>
</table>
44.2.5.6.1 Variation 1: Additions on α-Carbonyl-Substituted Allenes 328
44.2.5.6.2 Variation 2: Allenation Reactions .. 330
44.2.5.6.3 Variation 3: Additions to Heteroatom-Substituted Allenes 333
44.2.5.6.4 Variation 4: [2 + 1] Cycloadditions .. 333
44.2.5.6.5 Variation 5: [2 + 2] Cycloadditions .. 335
44.2.5.6.6 Variation 6: [3 + 2] Cycloadditions .. 336
44.2.5.6.7 Variation 7: [4 + 2] Cycloadditions .. 337
44.2.5.6.8 Variation 8: Aldol Additions of Allenyl Enolate 337
44.2.5.6.9 Variation 9: Hydrolysis of 1-Cyano-Substituted Allenes 338
44.2.5.7 Method 7: Elimination Reactions, Rearrangements, and Metathesis Reactions 339
44.2.5.7.1 Variation 1: Eliminations .. 339
44.2.5.7.2 Variation 2: Rearrangements .. 340
44.2.5.7.3 Variation 3: Metathesis and Cycloisomerization 341

44.2.6 Applications of Allenes in Organic Synthesis
M. A. Tius

44.2.6 Applications of Allenes in Organic Synthesis 353
44.2.6.1 Method 1: Diels–Alder Reactions of Allenes 353
44.2.6.1.1 Variation 1: Intermolecular Reactions To Form Carbocyclic Products 353
44.2.6.1.2 Variation 2: Intermolecular Reactions To Form Heterocyclic Products 355
44.2.6.1.3 Variation 3: Intramolecular Reactions 356
44.2.6.2 Method 2: [2 + 2]-Cycloaddition Reactions of Allenes 359
44.2.6.2.1 Variation 1: Using Photochemical Methods 359
44.2.6.2.2 Variation 2: Using Thermal Methods 360
44.2.6.3 Method 3: Nazarov Reactions .. 362
44.2.6.3.1 Variation 1: With Allenes .. 362
44.2.6.3.2 Variation 2: With Allenyl Ethers and Ketones 363
44.2.6.3.3 Variation 3: With Allenyl Ethers and Nitriles 364
44.2.6.3.4 Variation 4: With Allenyl Ethers and Amides 364
44.2.6.3.5 Variation 5: Oxidative Cyclizations of Enallenes 365
44.2.6.4 Method 4: Pauson–Khand Reactions of Allenes 366
44.2.6.5 Method 5: [3 + 2] Cycloadditions of Allenes 369
44.2.6.6 Method 6: [5 + 2] Cycloadditions of Allenes 374
44.2.6.7 Method 7: Claisen Rearrangement of Allenyl Ethers 375
44.2.6.8 Method 8: Allenes as Precursors 376
44.2.6.8.1 Variation 1: Of Acylsilanes ... 376
44.2.6.8.2 Variation 2: Of Lactones ... 378
44.2.6.8.3 Variation 3: Of Spiroketalts ... 379
44.2.6.8.4 Variation 4: OfSpirobisepoxides 380
44.2.6.8.5 Variation 5: Of Cyclic Ethers, Amines, and Sulfides 382
44.2.6.9 Method 9: Prins Reaction of Allenes 385
44.2.6.9.1 Variation 1: With Aldehydes ... 385
44.2.6.9.2 Variation 2: With Ketones ... 387
44.2.6.9.3 Variation 3: With Imines ... 388
44.2.6.10 Method 10: Ene Reactions ... 390
44.3 Product Class 3: Cyclic Allenes
T. Kawase

44.3.1 Product Subclass 1: Cyclohexa-1,2-dienes

44.3.1.1 Method 1: Ring Enlargement by the Doering–Moore–Skattebøl Reaction

44.3.1.1.1 Variation 1: From 1,1-Dibromocyclopropanes

44.3.1.1.2 Variation 2: From 1-Bromo-1-fluorocyclopropanes

44.3.1.2 Method 2: Dehydrohalogenation of 1-Halocyclohexenes

44.3.1.2.1 Variation 1: Base-Promoted Reactions

44.3.1.2.2 Variation 2: Photochemical or Thermal Reaction of Intermediate Allyl Anions

44.3.1.3 Method 3: Dehalogenation of 2,3-Dihalocyclohexenes

44.3.1.4 Method 4: Elimination from 2-Halo-3-(trimethylsilyl)cyclohexenes

44.3.2 Product Subclass 2: Cyclohexa-1,2,4-trienes

44.3.2.1 Method 1: [4 + 2]-Cycloaddition Reactions

44.3.2.1.1 Variation 1: From Vinylalkynes and Alkynes

44.3.2.1.2 Variation 2: From Arylalkynes and Alkynes

44.3.2.1.3 Variation 3: From Diarylacetylenes and Alkynes

44.3.2.1.4 Variation 4: From Two Arylalkynes

44.3.2.2 Method 2: Electrocyclization of (Z)-Hexa-1,3-dien-5-ynes

44.3.2.3 Method 3: Ring Enlargement by the Doering–Moore–Skattebøl Reaction

44.3.2.4 Method 4: Dehydrohalogenation of 1-Halocyclohexa-1,4-dienes

44.3.3 Product Subclass 3: Bicyclo[4.4.0]deca-1,3,5,7,8-pentaenes

44.3.3.1 Method 1: [4 + 2]-Cycloaddition Reactions

44.3.3.1.1 Variation 1: Intermolecular [4 + 2]-Cycloaddition Reactions

44.3.3.1.2 Variation 2: Intramolecular [4+ 2]-Cycloaddition Reactions

44.3.3.2 Method 2: Ring Enlargement by the Doering–Moore–Skattebøl Reaction

44.3.3.3 Method 3: Dehydrohalogenation of 3-Bromo-1,2-dihydronaphthalenes

44.3.4 Product Subclass 4: Cyclohepta-1,2-dienes

44.3.4.1 Method 1: Ring Enlargement by the Doering–Moore–Skattebøl Reaction

44.3.4.1.1 Variation 1: From 1,1-Dihalocyclopropanes

44.3.4.1.2 Variation 2: From 7-Bromo-7-(trimethylstannyl)bicyclo[4.1.0]heptane

44.3.4.1.3 Method 3: Ring Enlargement by Cope Rearrangement from 1,2-Diethynylcyclopropanes

44.3.4.1.4 Method 4: Dehydrohalogenation of 1-Halocycloheptenes

44.3.4.1.5 Method 5: Dehalogenation of 1,7-Dihalocycloheptenes

44.3.4.1.6 Method 6: Synthesis from 2-Halo-3-(trimethylsilyl)cycloheptenes
44.3.5 **Product Subclass 5: Cyclohepta-1,2,4,6-tetraenes** 417

44.3.5.1 Synthesis of Product Subclass 5 .. 417

44.3.5.1.1 Method 1: Ring Enlargement by the Doering–Moore–Skattebøl Reaction 418

44.3.5.1.2 Method 2: Ring Enlargement by Extrusion of Nitrogen from Phenylidiazomethanes .. 419

44.3.5.1.3 Method 3: Ring Enlargement by Extrusion of Nitrogen from 7-Diazobicyclo[2.2.1]hepta-2,5-diene 421

44.3.5.1.4 Method 4: Ring Enlargement by Extrusion of Nitrogen from 2-Diazobicyclo[3.2.0]hepta-3,6-diene and Its Benzo Derivative .. 422

44.3.5.1.5 Method 5: Dehydrohalogenation of Halocycloheptatrienes 423

44.3.5.1.6 Method 6: Thermal and Photochemical Decomposition of Sodium Salts of Cyclohepta-2,4,6-trien-1-one Tosylydrazone 424

44.3.6 **Product Subclass 6: Cycloocta-1,2-dienes** .. 425

44.3.6.1 Synthesis of Product Subclass 6 .. 425

44.3.6.1.1 Method 1: Intramolecular Ene Reaction of Oct-1-ene-7-yne 425

44.3.6.1.2 Method 2: Electrocyclization of Octa-3,5-diene-1,7-diynes 425

44.3.6.1.3 Method 3: Base-Promoted Cyclization of 1-(3-Chloropropyl)-7-(3-phenylprop-2-ynyl)tricyclo[4.1.0.0^2,7]heptane 426

44.3.6.1.4 Method 4: Ring Enlargement by the Doering–Moore–Skattebøl Reaction 427

44.3.6.1.5 Method 5: Ring Enlargement by Cope Rearrangement from 1,2-Diethynylcyclobutane and 1-Ethynyl-2-vinylcyclobutane 428

44.3.6.1.6 Method 6: Ring Enlargement of Bicyclo[5.1.0]octa-3,5-dien-2-one 428

44.3.6.1.7 Method 7: Ring Enlargement of 2-(Diazomethyl)bicyclo[4.4.1]-undeca-1,3,5,7,9-pentaene .. 429

44.3.6.1.8 Method 8: Dehydrohalogenation of 1-Halocyclooctenes 430

44.3.6.1.9 Method 9: Dehydrohalogenation of 3-Bromocycloocto-3-en-1-one 430

44.3.7 **Product Subclass 7: Cyclonona-1,2-dienes** .. 431

44.3.7.1 Synthesis of Product Subclass 7 .. 431

44.3.7.1.1 Method 1: S_N^2 Substitution of Organocopper Reagents with a 3-Alkoxyalkyne .. 431

44.3.7.1.2 Method 2: Ring Enlargement by the Doering–Moore–Skattebøl Reaction 431

44.3.7.1.2.1 Variation 1: From 9,9-Dibromobicyclo[6.1.0]nonane Derivatives 431

44.3.7.1.2.2 Variation 2: From (trans-1-Bicyclo[6.1.0]non-9-yl)-1-nitrosourea 433

44.3.7.1.3 Method 3: Ring Enlargement by Photochemical Rearrangement of 2-Ethynylcycloheptanone .. 434

44.3.7.1.4 Method 4: Dehydrohalogenation of 1-Halocyclononanes 434

44.3.8 **Product Subclass 8: Cyclodeca-1,2-dienes** .. 435

44.3.8.1 Synthesis of Product Subclass 8 .. 435

44.3.8.1.1 Method 1: S_N^2 Substitution of Organocopper(I) Reagents with a 3-Alkoxyalkyne .. 435

44.3.8.1.2 Method 2: Ring Enlargement by the Doering–Moore–Skattebøl Reaction 435

44.3.8.1.3 Method 3: Dehydrohalogenation of 1-Halocyclodecenes 436
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>44.3.9</td>
<td>Product Subclass 9: Macrocyclic Allenes</td>
<td>437</td>
</tr>
<tr>
<td>44.3.9.1</td>
<td>Synthesis of Product Subclass 9</td>
<td>437</td>
</tr>
<tr>
<td>44.3.9.1.1</td>
<td>Method 1: Ring-Closure Reactions</td>
<td>437</td>
</tr>
<tr>
<td>44.3.9.1.1.1</td>
<td>Variation 1: Wittig-Type Alkenation from Aromatic Dialdehydes</td>
<td>437</td>
</tr>
<tr>
<td>44.3.9.1.1.2</td>
<td>Variation 2: Ring-Closing Alkene Metathesis by Using Grubbs’ First-Generation Catalyst</td>
<td>438</td>
</tr>
<tr>
<td>44.3.9.1.2</td>
<td>Method 2: Ring Transformations</td>
<td>439</td>
</tr>
<tr>
<td>44.3.9.1.2.1</td>
<td>Variation 1: Ring Enlargement by the Doering–Moore–Skattebøl Reaction</td>
<td>439</td>
</tr>
<tr>
<td>44.3.9.1.2.2</td>
<td>Variation 2: Extrusion of Nitrogen from an Aryldiazomethane</td>
<td>439</td>
</tr>
<tr>
<td>44.3.9.1.3</td>
<td>Method 3: Synthesis from 3-Oxo-, 3-Acetoxy-, or 3-Mesyloxy Cyclic Alkynes</td>
<td>440</td>
</tr>
<tr>
<td>44.3.9.1.3.1</td>
<td>Variation 1: Base-Promoted Hydrogen Transfer from a Cycloalk-3-ynone</td>
<td>440</td>
</tr>
<tr>
<td>44.3.9.1.3.2</td>
<td>Variation 2: S_nZ^\prime Substitution of Organocopper Reagents with 3-Acetoxy cycloalkynes</td>
<td>441</td>
</tr>
<tr>
<td>44.3.9.1.3.3</td>
<td>Variation 3: Palladium(0)-Catalyzed Carboxylation of a Macrocyclic Propargylic Methanesulfonate in the Presence of an Alcohol</td>
<td>441</td>
</tr>
<tr>
<td>44.3.9.1.4</td>
<td>Method 4: Substituent Modification</td>
<td>442</td>
</tr>
<tr>
<td>44.3.9.1.4.1</td>
<td>Variation 1: From 1,1,3,3-Tetraalkyllallenes</td>
<td>442</td>
</tr>
<tr>
<td>44.3.9.1.4.2</td>
<td>Variation 2: From 1,3-Diarylallenes</td>
<td>443</td>
</tr>
<tr>
<td>44.3.9.1.4.3</td>
<td>Variation 3: From 1,3-Diethynyllallenes</td>
<td>444</td>
</tr>
</tbody>
</table>

Keyword Index | 451
Author Index | 485
Abbreviations | 503