<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.4.34.35.2.2.3</td>
<td>Variation 3: Iridium Catalysis</td>
<td>76</td>
</tr>
<tr>
<td>4.4.34.35.2.3</td>
<td>Method 3: Transition-Metal-Catalyzed (\alpha)-Hydrosilylation of Terminal Alkynes</td>
<td>77</td>
</tr>
<tr>
<td>4.4.34.35.2.3.1</td>
<td>Variation 1: Ruthenium Catalysis</td>
<td>77</td>
</tr>
<tr>
<td>4.4.34.35.2.3.2</td>
<td>Variation 2: Platinum Catalysis</td>
<td>79</td>
</tr>
<tr>
<td>4.4.34.35.2.4</td>
<td>Method 4: Transition-Metal-Catalyzed syn Hydrosilylation of Internal Alkynes</td>
<td>80</td>
</tr>
<tr>
<td>4.4.34.35.2.4.1</td>
<td>Variation 1: Platinum Catalysis</td>
<td>80</td>
</tr>
<tr>
<td>4.4.34.35.2.4.2</td>
<td>Variation 2: Palladium Catalysis</td>
<td>83</td>
</tr>
<tr>
<td>4.4.34.35.2.5</td>
<td>Method 5: Transition-Metal-Catalyzed anti Hydrosilylation of Internal Alkynes</td>
<td>84</td>
</tr>
<tr>
<td>4.4.34.35.2.6</td>
<td>Method 6: Lewis Acid Catalyzed Hydrosilylation</td>
<td>86</td>
</tr>
<tr>
<td>4.4.34.35.2.7</td>
<td>Method 7: Radical Hydrosilylation</td>
<td>87</td>
</tr>
<tr>
<td>4.4.34.35.3</td>
<td>Silylmetalation of Alkynes</td>
<td>87</td>
</tr>
<tr>
<td>4.4.34.35.3.1</td>
<td>Method 1: Silylcupration</td>
<td>88</td>
</tr>
<tr>
<td>4.4.34.35.3.1.1</td>
<td>Variation 1: Silylcupration Using Silyllithium Reagents</td>
<td>88</td>
</tr>
<tr>
<td>4.4.34.35.3.1.2</td>
<td>Variation 2: Silylcupration Using Silylboronic Ester Reagents</td>
<td>89</td>
</tr>
<tr>
<td>4.4.34.35.3.2</td>
<td>Method 2: Copper-Catalyzed Silylmetalation</td>
<td>94</td>
</tr>
<tr>
<td>4.4.34.35.3.3</td>
<td>Method 3: Silylzincation</td>
<td>95</td>
</tr>
<tr>
<td>4.4.34.35.3.4</td>
<td>Method 4: Silylrhodation</td>
<td>95</td>
</tr>
<tr>
<td>4.4.34.35.4</td>
<td>Addition to Alkynylsilanes</td>
<td>97</td>
</tr>
<tr>
<td>4.4.34.35.4.1</td>
<td>Method 1: Hydrogenation</td>
<td>98</td>
</tr>
<tr>
<td>4.4.34.35.4.2</td>
<td>Method 2: Hydrometalation</td>
<td>98</td>
</tr>
<tr>
<td>4.4.34.35.4.2.1</td>
<td>Variation 1: Hydrometalation Followed by Protodemetalation</td>
<td>98</td>
</tr>
<tr>
<td>4.4.34.35.4.2.2</td>
<td>Variation 2: Hydrometalation Followed by Halogenation</td>
<td>100</td>
</tr>
<tr>
<td>4.4.34.35.4.2.3</td>
<td>Variation 3: Hydrometalation Followed by Alkylation</td>
<td>101</td>
</tr>
<tr>
<td>4.4.34.35.4.3</td>
<td>Method 3: Carbometalation</td>
<td>104</td>
</tr>
<tr>
<td>4.4.34.35.5</td>
<td>Intermolecular Coupling of Alkynylsilanes</td>
<td>104</td>
</tr>
<tr>
<td>4.4.34.35.5.1</td>
<td>Method 1: Ruthenium-Catalyzed Alder-Ene Reaction</td>
<td>104</td>
</tr>
<tr>
<td>4.4.34.35.5.2</td>
<td>Method 2: Reductive Coupling</td>
<td>108</td>
</tr>
<tr>
<td>4.4.34.35.5.3</td>
<td>Method 3: Enyne Cross Metathesis</td>
<td>112</td>
</tr>
<tr>
<td>4.4.34.35.6</td>
<td>Ring-Closing Metathesis of (\alpha)-Substituted Vinyllsilanes</td>
<td>113</td>
</tr>
<tr>
<td>4.4.34.35.7</td>
<td>Dehydrogenative Silylation of Alkenes</td>
<td>115</td>
</tr>
<tr>
<td>4.4.34.35.7.1</td>
<td>Method 1: Reaction with Silanes</td>
<td>115</td>
</tr>
<tr>
<td>4.4.34.35.7.2</td>
<td>Method 2: Reaction with Halosilanes or Silyl Trifluoromethanesulfonates</td>
<td>116</td>
</tr>
<tr>
<td>4.4.34.35.7.3</td>
<td>Method 3: Transfer Silylation</td>
<td>118</td>
</tr>
<tr>
<td>4.4.34.35.7.4</td>
<td>Method 4: Reaction with Siletanes</td>
<td>118</td>
</tr>
<tr>
<td>4.4.34.35.8</td>
<td>Carbometalation of Vinyllsilanes</td>
<td>119</td>
</tr>
<tr>
<td>4.4.34.35.8.1</td>
<td>Method 1: Heck Reaction with Aryl Halides</td>
<td>119</td>
</tr>
<tr>
<td>4.4.34.35.8.2</td>
<td>Method 2: Heck-Type Reaction with Benzonitriles</td>
<td>121</td>
</tr>
<tr>
<td>4.4.34.35.8.3</td>
<td>Method 3: Iron-Catalyzed Oxidative Arylation</td>
<td>122</td>
</tr>
<tr>
<td>4.4.34.35.9</td>
<td>Addition to Carbonyl Compounds</td>
<td>122</td>
</tr>
<tr>
<td>4.4.34.35.9.1</td>
<td>Method 1: Reaction with (Dihalomethyl)silane Reagents</td>
<td>122</td>
</tr>
</tbody>
</table>
Table of Contents

4.4.34.35.9.2 Method 2: Reaction with Disilylmethyllithium Reagents .. 123
4.4.34.35.9.3 Method 3: Reaction with (Halomethyl) silane Reagents .. 124
4.4.34.35.9.4 Method 4: Reaction with (α-Silylallyl)borane Reagents .. 126
4.4.34.35.10 Rearrangements .. 127
4.4.34.35.10.1 Method 1: Gold-Catalyzed Rearrangement of Alkyl(alkynyl)silanes 128
4.4.34.35.10.2 Method 2: Rearrangement of (α-Hydroxypropargyl)silanes .. 129
4.4.34.35.10.3 Method 3: Rearrangement of Silyl Allenoates ... 130
4.4.34.35.11 Synthesis of Cyclic Vinylsilanes .. 131
4.4.34.35.11.1 Method 1: Intramolecular Hydrosilylation of Alkynes .. 131
4.4.34.35.11.1.1 Variation 1: Metal-Catalyzed syn-exo Hydrosilylation .. 131
4.4.34.35.11.1.2 Variation 2: Metal-Catalyzed anti-exo Hydrosilylation ... 132
4.4.34.35.11.1.3 Variation 3: Metal-Catalyzed endo-Hydrosilylation ... 133
4.4.34.35.11.1.4 Variation 4: Base-Promoted Hydrosilylation ... 135
4.4.34.35.11.2 Method 2: Cyclization of Vinylsilanes .. 136
4.4.34.35.11.2.1 Variation 1: By Ring-Closing Metathesis with Terminal Vinylsilanes 137
4.4.34.35.11.2.2 Variation 2: By Silylvinylation ... 138
4.4.34.35.11.3 Method 3: Cyclization of Alkynylsilanes ... 139
4.4.34.35.11.3.1 Variation 1: By Ring-Closing Enyne Metathesis ... 139
4.4.34.35.11.3.2 Variation 2: By Reductive Coupling of Alkynylsilanes ... 140
4.4.34.35.11.3.3 Variation 3: By Gold-Catalyzed Cyclization ... 141
4.4.34.35.11.3.4 Variation 4: By Semihydrogenation .. 142
4.4.34.35.11.4 Method 4: Three-Component Coupling .. 144
4.4.34.35.11.5 Method 5: Ring Contraction of Cyclic Vinylsilanes ... 145
4.4.34.35.12 Synthesis from Acylsilanes ... 146
4.4.34.35.13 Synthesis from Allenes .. 148
4.4.34.35.13.1 Method 1: Hydrosilylation ... 149
4.4.34.35.13.2 Method 2: Silylmetalation ... 150

Volume 31:
Arene—X (X = Hal, O, S, Se, Te, N, P)

31.1

Product Class 1: Fluoroarenes

31.1.2

Fluoroarenes

A. Harsányi and G. Sandford

31.1.2.1

Synthesis of Fluoroarenes ... 160
31.1.2.1.1

Synthesis by Substitution of Hydrogen .. 160
31.1.2.1.1.1

Method 1: Reaction with Hydrogen Fluoride–Pyridine Complex .. 160
31.1.2.1.1.2

Method 2: Reaction with Silver(II) Fluoride .. 161
31.1.2.1.1.3

Method 3: Reaction with Fluorinating Agents Mediated by Transition-Metal Catalysts 162

© Georg Thieme Verlag KG
Table of Contents

31.1 Substitution Methods

31.1.1 Synthesis by Substitution of Organometallic Groups

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>31.1.1.1</td>
<td>Method 1: Substitution of Boronic Acids and Esters</td>
<td>163</td>
</tr>
<tr>
<td>31.1.1.1.1</td>
<td>Variation 1: Reaction with Silver(I) Trifluoromethanesulfonate and Selectfluor</td>
<td>164</td>
</tr>
<tr>
<td>31.1.1.1.2</td>
<td>Variation 2: Reaction with Acetyl Hypofluorite</td>
<td>165</td>
</tr>
<tr>
<td>31.1.1.1.3</td>
<td>Variation 3: Palladium-Catalyzed Fluorodeboronation</td>
<td>166</td>
</tr>
<tr>
<td>31.1.1.1.4</td>
<td>Variation 4: Copper-Catalyzed Fluorodeboronation</td>
<td>167</td>
</tr>
<tr>
<td>31.1.1.2</td>
<td>Synthesis by Substitution of Halogens</td>
<td>167</td>
</tr>
<tr>
<td>31.1.1.2.1</td>
<td>Method 1: Reaction with Anhydrous Tetrabutylammonium Fluoride</td>
<td>168</td>
</tr>
<tr>
<td>31.1.1.2.2</td>
<td>Method 2: Reactions Catalyzed by Transition Metals</td>
<td>168</td>
</tr>
<tr>
<td>31.1.1.2.2.1</td>
<td>Variation 1: Palladium-Catalyzed Reactions</td>
<td>168</td>
</tr>
<tr>
<td>31.1.1.2.2.2</td>
<td>Variation 2: Copper-Catalyzed Reactions</td>
<td>169</td>
</tr>
<tr>
<td>31.1.1.2.3</td>
<td>Synthesis by Substitution of Nitrogen</td>
<td>170</td>
</tr>
<tr>
<td>31.1.1.2.4</td>
<td>Synthesis by Substitution of Oxygen</td>
<td>170</td>
</tr>
<tr>
<td>31.1.1.2.4.1</td>
<td>Method 1: Palladium-Catalyzed Displacement of Trifluoromethanesulfonate by Cesium Fluoride</td>
<td>170</td>
</tr>
<tr>
<td>31.1.1.2.4.2</td>
<td>Method 2: Deoxyfluorination Using PhenoFluor</td>
<td>172</td>
</tr>
</tbody>
</table>

31.2 Product Class 2: Chloroarenes

31.2.1 Synthesis of Chloroarenes

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>31.2.1.1</td>
<td>Synthesis by Substitution</td>
<td>175</td>
</tr>
<tr>
<td>31.2.1.1.1</td>
<td>Method 1: Electrophilic Chlorination</td>
<td>175</td>
</tr>
<tr>
<td>31.2.1.1.1.1</td>
<td>Variation 1: Of Phenols and Anisoles</td>
<td>175</td>
</tr>
<tr>
<td>31.2.1.1.1.2</td>
<td>Variation 2: Of Anilines, Acetanilides, and Related Compounds</td>
<td>178</td>
</tr>
<tr>
<td>31.2.1.1.1.3</td>
<td>Variation 3: Of Benzene and Alkylbenzene Derivatives</td>
<td>179</td>
</tr>
<tr>
<td>31.2.1.1.1.4</td>
<td>Variation 4: Of Electron-Deficient Benzene Derivatives</td>
<td>180</td>
</tr>
<tr>
<td>31.2.1.1.2</td>
<td>Method 2: Substitution of Boron</td>
<td>181</td>
</tr>
<tr>
<td>31.2.1.1.3</td>
<td>Method 3: Substitution of Bromine</td>
<td>182</td>
</tr>
<tr>
<td>31.2.1.2</td>
<td>Synthesis by Addition–Elimination</td>
<td>184</td>
</tr>
<tr>
<td>31.2.1.2.1</td>
<td>Method 1: Cross-Coupling Reactions</td>
<td>184</td>
</tr>
<tr>
<td>31.2.1.2.1.1</td>
<td>Variation 1: Synthesis of Biaryls</td>
<td>184</td>
</tr>
<tr>
<td>31.2.1.2.1.2</td>
<td>Variation 2: Synthesis of Arylalkenes</td>
<td>193</td>
</tr>
<tr>
<td>31.2.1.2.1.3</td>
<td>Variation 3: Synthesis of Arylalkynes</td>
<td>197</td>
</tr>
<tr>
<td>31.2.1.2.1.4</td>
<td>Variation 4: Synthesis of Arylalkanes</td>
<td>199</td>
</tr>
<tr>
<td>31.2.1.2.1.5</td>
<td>Variation 5: Carbonylation and Cyanation Reactions</td>
<td>200</td>
</tr>
<tr>
<td>31.2.1.2.1.6</td>
<td>Variation 6: Metal-Catalyzed Heterosubstitution Reactions</td>
<td>201</td>
</tr>
</tbody>
</table>
31.3 Product Class 3: Bromoarenes

31.3.3 Bromoarenes
S. P. Stanforth

31.3.3.1 Synthesis of Bromoarenes

31.3.3.1.1 Synthesis by Substitution

31.3.3.1.1.1 Method 1: Electrophilic Bromination

31.3.3.1.1.2 Method 2: Synthesis from Organometallics

31.3.3.1.1.3 Method 3: Substitution of a Trifluoromethanesulfonate Group

31.3.3.2 Applications of Bromoarenes in Organic Synthesis

31.4 Product Class 4: Aryl Iodine Compounds

31.4.1.3 Hypervalent Iodoarenes and Aryliodonium Salts
V. V. Zhdankin

31.4.1.3.1 Synthesis of Hypervalent Iodoarenes and Aryliodonium Salts

31.4.1.3.1.1 Synthesis by Oxidative Addition to Iodoarenes

31.4.1.3.1.1.1 Method 1: Iodylarenes by Oxidation of Iodoarenes

31.4.1.3.1.1.2 Method 2: (Difluoroiodo)arenes by Fluorination of Iodoarenes
Table of Contents

31.4.1.3.1.2.1 Variation 1: (Difluoroiodo)arenes by One-Pot Synthesis from Arenes 237
31.4.1.3.1.3 Method 3: (Dichloroiodo)arenes by Chlorination of Iodoarenes 238
31.4.1.3.1.4 Method 4: [Bis(acyloxy)iodo]arenes by Oxidation of Iodoarenes in the Presence of a Carboxylic Acid 240
31.4.1.3.1.5 Method 5: Aryliodine(III) Sulfonates by Oxidation of Iodoarenes in the Presence of a Sulfonic Acid 241
31.4.1.3.1.6 Synthesis by Ligand Exchange of Hypervalent Iodine Compounds 242
31.4.1.3.1.6.1 Method 1: 1-Oxoo-1-(tosyloxy)-1H-1λ5-benzo[1,2-d][1,2]iodoxol-3-one from 2-Iodoxybenzoic Acid by Exchange with 4-Toluenesulfonic Acid 242
31.4.1.3.1.6.2 Method 2: [Bis(acyloxy)iodo]arenes from Other [Bis(acyloxy)iodo]arenes by Exchange with Carboxylic Acids 243
31.4.1.3.1.6.3 Method 3: Phenyliodine(III) Sulfate from (Diacetoxyiodo)benzene 244
31.4.1.3.1.6.4 Method 4: Iodosylarenes by Hydrolysis of [Bis(acyloxy)iodo]arenes 244
31.4.1.3.1.6.5 Method 5: Aryliodine(III) Amides from (Acyloxyiodo)arenes 245
31.4.1.3.1.6.6 Method 6: Iodosylarenes by Hydrolysis of [Bis(acyloxy)iodo]arenes 244
31.4.1.3.1.6.7 Method 7: Aryliodonium Tetrafluoroborates 246
31.4.1.3.1.6.8 Method 8: [Bis(acyloxy)iodo]arenes from Other [Bis(acyloxy)iodo]arenes by Exchange with Carboxylic Acids 243
31.4.1.3.1.6.9 Method 9: Aryliodonium Sulfonates 245
31.4.1.3.1.6.10 Method 10: Aryliodonium Halides 246
31.4.1.3.1.6.11 Method 11: Aryliodonium Ylides 247
31.4.1.3.1.6.12 Method 12: 1-Arylbenziodoxoles 248
31.4.1.3.1.6.13 Method 13: 1-[(Trifluoromethyl)benziodoxole by Trifluoromethylation of Other Benziodoxoles 249
31.4.1.3.1.6.14 Method 14: 1-Arylbenziodoxoles 250
31.4.1.3.1.6.15 Method 15: Aryliodonium Tetrafluoroborates 250
31.4.1.3.1.6.16 Method 16: Aryliodonium Tetrafluoroborates 250
31.4.1.3.1.6.17 Method 17: Aryliodonium Sulfonates 251
31.4.1.3.1.6.18 Method 18: Aryliodonium Halides 253
31.4.1.3.1.6.19 Method 19: Aryliodonium Ylides 255
31.4.1.3.1.6.20 Method 20: 1-(Trifluoromethyl)benziodoxoles by Trifluoromethylation of Other Benziodoxoles 256
31.4.1.3.1.6.21 Method 21: 1-Arylbenziodoxoles 257
31.4.1.3.2 Applications of Hypervalent Iodoarenes and Aryliodonium Salts in Organic Synthesis 259
31.4.1.3.2.1 Preparation of Products with a New C—C Bond 260
31.4.1.3.2.1.1 Method 1: Alkynylation Using 1-Alkynylbenziodoxoles 260
31.4.1.3.2.1.2 Method 2: Arylation Using Diaryliodonium Salts 261
31.4.1.3.2.1.3 Method 3: Trifluoromethylation Using (Trifluoromethyl)benziodoxoles 262
31.4.1.3.2.1.4 Method 4: Reactions of Aryliodonium Ylides 263
31.4.1.3.2.2 Preparation of Products with a New C—F Bond 265
31.4.1.3.2.2.1 Method 1: α-Fluorination of Carbonyl Compounds 265
31.4.1.3.2.2.2 Method 2: Fluorination of Aromatic Compounds 266
31.4.1.3.2.3 Preparation of Products with a New C—Cl Bond 266
31.4.1.3.2.3.1 Method 1: Chlorination of Unsaturated Compounds 266
31.4.1.3.2.4 Preparation of Products with a New C—I Bond 267
31.4.1.3.2.4.1 Method 1: Oxidative Iodination Using Hypervalent Iodoarenes 267
31.4.1.3.2.5 Oxidations and Oxidative Rearrangements .. 268
31.4.1.3.2.5.1 Reactions with Iodine(V) Reagents .. 268
31.4.1.3.2.5.1.1 Method 1: Oxidations with Iodylarenes 268
31.4.1.3.2.5.1.2 Method 2: Iodine(V)-Catalyzed Oxidations 269
31.4.1.3.2.5.1.2.1 Variation 1: Catalytic Oxidation of Alcohols to Carbonyl Compounds ... 269
31.4.1.3.2.5.1.2.2 Variation 2: Catalytic Oxidation at the Benzylic Position 270
31.4.1.3.2.5.1.2.3 Variation 3: Catalytic Preparation of α,β-Unsaturated Carbonyl Compounds ... 270
31.4.1.3.2.5.2 Reactions with Iodine(III) Reagents ... 271
31.4.1.3.2.5.2.1 Method 1: 2,2,6,6-Tetramethylpiperidin-1-oxyl-Catalyzed Oxidation of Alcohols ... 271
31.4.1.3.2.5.2.2 Method 2: Diacetoxylation of Alkenes ... 272
31.4.1.3.2.5.2.3 Method 3: Oxidative Dearomatization of Phenols and Phenol Ethers 273
31.4.1.3.2.5.2.3.1 Variation 1: Oxidation of 4-Substituted Phenols 273
31.4.1.3.2.5.2.3.2 Variation 2: Oxidation of 2-Substituted Phenols 275
31.4.1.3.2.5.2.4 Method 4: Iodine(III)-Catalyzed Oxidations 276
31.4.1.3.2.5.2.4.1 Variation 1: Catalytic α-Functionalization of Carbonyl Compounds 276
31.4.1.3.2.5.2.4.2 Variation 2: Catalytic Lactonization Reactions 277
31.4.1.3.2.5.2.4.3 Variation 3: Catalytic Stereoselective Diacetoxylation of Alkenes 277
31.4.1.3.2.5.2.4.4 Variation 4: Catalytic Oxidative Cleavage of Alkenes and Alkynes 278
31.4.1.3.2.5.2.4.5 Variation 5: Catalytic Spirocyclization of Aromatic Substrates 278
31.4.1.3.2.6 Preparation of Products with a New C—N Bond 280
31.4.1.3.2.6.1 Method 1: Azidations with Iodine(III) Reagents 280
31.4.1.3.2.6.2 Method 2: Aminations with Iodine(III) Reagents 280
31.4.1.3.2.6.3 Method 3: Reactions of Aryliodonium Imides 282
31.4.1.3.2.6.3.1 Variation 1: C—H Amidation ... 282
31.4.1.3.2.6.3.2 Variation 2: Aziridination of Alkenes ... 283
31.4.1.3.2.7 Oxidations at Nitrogen ... 283
31.4.1.3.2.7.1 Method 1: Hypervalent Iodoarenes as Reagents for Hofmann Rearrangement ... 283
31.4.1.3.2.7.1.1 Variation 1: Hypervalent Iodine Catalyzed Hofmann Rearrangement 284
31.4.1.3.2.7.2 Method 2: Hypervalent Iodoarenes as Reagents for Generation of Nitrile Oxides from Oximes ... 285
31.4.1.3.2.7.2.1 Variation 1: Synthesis of Dihydroisoxazoles via Hypervalent Iodine Catalyzed Generation of Nitrile Oxides 286

31.41 Product Class 41: Arylphosphine Oxides

31.41.3 Arylphosphine Oxides and Heteroatom Derivatives 291
31.41.3.1 Arylphosphine Oxides ... 291
31.41.3.1.1 Synthesis of Arylphosphine Oxides ... 291
Table of Contents

31.41.3.1.1 Method 1: Oxidation of Phosphines and Derivatives 291
31.41.3.1.1.1 Variation 1: Oxidation with Dioxygen or Air 292
31.41.3.1.1.2 Variation 2: Catalytic Oxidation .. 292
31.41.3.1.1.3 Variation 3: Oxidation with Peroxides ... 295
31.41.3.1.1.4 Variation 4: Photooxidation .. 297
31.41.3.1.1.5 Variation 5: Oxidation with Miscellaneous Oxidants 297
31.41.3.1.1.6 Variation 6: Oxidation of Chalcogen Phosphine Derivatives and Phosphine–Boranes .. 300
31.41.3.1.1.2 Method 2: Addition of Secondary Phosphine Oxides to Unsaturated Bonds ... 301
31.41.3.1.1.2.1 Variation 1: Addition to Unsaturated Carbon—Carbon Bonds 301
31.41.3.1.1.2.2 Variation 2: Addition to Imines .. 303
31.41.3.1.1.2.3 Variation 3: Addition to Carbonyl Compounds 306
31.41.3.1.1.2.4 Variation 4: Conjugate Addition to Activated Alkenes 309
31.41.3.1.1.3 Method 3: Nucleophilic Substitution at the Phosphorus Atom 313
31.41.3.1.1.3.1 Variation 1: P–XBond Cleavage (X = Halogen) 313
31.41.3.1.1.3.2 Variation 2: P–OBond Cleavage .. 319
31.41.3.1.1.3.3 Variation 3: P–CBond Cleavage .. 321
31.41.3.1.1.3.4 Variation 4: Hydrolysis of Phosphonium Salts 323
31.41.3.1.1.3.5 Variation 5: Electrophilic Aromatic Substitution 327
31.41.3.1.1.4 Method 4: Nucleophilic Substitution with Phosphorus Nucleophiles 327
31.41.3.1.1.4.1 Variation 1: Michaelis–Becker Reactions 327
31.41.3.1.1.4.2 Variation 2: Michaelis–Arbuzov Reactions 329
31.41.3.1.1.5 Method 5: Transition-Metal-Mediated P–CBond Formation 332
31.41.3.1.1.5.1 Variation 1: Copper-Mediated Reactions .. 333
31.41.3.1.1.5.2 Variation 2: Nickel-Mediated Reactions .. 335
31.41.3.1.1.5.3 Variation 3: Palladium-Mediated Reactions 338
31.41.3.1.1.5.4 Variation 4: Other Metal-Mediated Reactions 343
31.41.3.1.1.6 Method 6: Other Reactions ... 345
31.41.3.1.1.6.1 Variation 1: Phosphinylation of Ortho Esters 345
31.41.3.1.1.6.2 Variation 2: Manganese(III)-Mediated Free-Radical Phosphinylation 346
31.41.3.1.1.6.3 Variation 3: Palladium-Catalyzed Intramolecular Dehydrogenative Cyclization ... 347
31.41.3.1.1.6.4 Variation 4: Reaction of Elemental Phosphorus 348
31.41.3.1.1.6.5 Variation 5: The Wittig Reaction .. 348
31.41.3.1.1.6.6 Variation 6: The Appel Reaction ... 349
31.41.3.1.1.6.7 Variation 7: The Mitsunobu Reaction ... 350
31.41.3.1.1.7 Method 7: Modification of Phosphine Oxides without Substitution at Phosphorus .. 351
31.41.3.1.1.7.1 Variation 1: Monoreduction of Bisphosphine Dioxides 351
31.41.3.1.1.7.2 Variation 2: Deprotonation Directed by the P=O Group 352
31.41.3.1.1.7.3 Variation 3: Nucleophilic Aromatic Substitution Promoted by the P=O Group ... 354
31.41.3.1.1.7.4 Variation 4: Alkene Metathesis .. 356
31.41.3.1.1.7.5 Variation 5: Cycloaddition Reactions .. 357
31.41.3.1.1.7.6 Variation 6: Annulation Reactions ... 360
31.41.3.1.1.7.7 Variation 7: Cross-Coupling Reactions .. 361
31.41.3.1.2 Applications of Arylphosphine Oxides in Organic Synthesis

31.41.3.2 Arylphosphine Sulfides

31.41.3.2.1 Synthesis of Arylphosphine Sulfides

31.41.3.2.1.1 Method 1: Sulfuration of Phosphines

31.41.3.2.1.1.1 Variation 1: Using Elemental Sulfur

31.41.3.2.1.2 Variation 2: Using Polysulfide Reagents

31.41.3.2.1.3 Variation 3: Using Other Sulfur Sources

31.41.3.2.1.4 Variation 4: Via Sulfuration of Phosphine–Borane Species

31.41.3.2.1.5 Variation 5: Via Sulfuration of Other Chalcogen Phosphine Derivatives

31.41.3.2.1.6 Method 2: Addition of Secondary Phosphine Sulfides to Unsaturated Bonds

31.41.3.2.1.6.1 Variation 1: Addition to Carbonyl Compounds

31.41.3.2.1.6.2 Variation 2: Addition to Alkenes

31.41.3.2.1.6.3 Variation 3: Conjugate Addition to Activated Alkenes

31.41.3.2.2 Method 3: Nucleophilic Substitution with Phosphorus Nucleophiles

31.41.3.2.2.1 Variation 1: Transition-Metal-Mediated Substitution

31.41.3.2.2.2 Variation 2: Thio-Michaelis–Arbuzov Reactions

31.41.3.2.2.3 Variation 3:

31.41.3.2.2.4 Variations 4:

31.41.3.2.2.5 Method 4: Other Reactions

31.41.3.2.2.5.1 Variation 1: Reaction of Sulfides with Elemental Phosphorus

31.41.3.2.2.5.2 Variation 2: Cycloaddition of Strained Cyclic Phosphine Sulfides with Dienes

31.41.3.2.2.5.3 Variation 3: Wittig Reaction with Thiocarbonyl Compounds

31.41.3.2.2.5.4 Variation 4: Reaction of Ylides with Elemental Sulfur and with Thiiranes

31.41.3.2.2.5.5 Variation 5: Cycloaddition of (Alkylsulfanyl)(chloro)phosphines

31.41.3.2.2.5.6 Variation 6: Reaction of Butadienylphosphine Sulfides

31.41.3.2.2.6 Method 6: Modification of Phosphine Sulfides without Substitution at Phosphorus

31.41.3.2.2.6.1 Variation 1:

31.41.3.2.2.6.2 Variation 2: Cycloaddition Reactions

31.41.3.2.2.6.3 Variation 3: Annulation Reactions

31.41.3.3 Applications of Arylphosphine Selenides in Organic Synthesis

31.41.3.3.1 Synthesis of Arylphosphine Selenides

31.41.3.3.1.1 Method 1: Selenation of Free Phosphines with Elemental Selenium

31.41.3.3.1.2 Method 2: Other Methods

31.41.3.3.2 Applications of Arylphosphine Selenides in Organic Synthesis
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>31.41.3.4</td>
<td>Aryl(imino)phosphoranes</td>
<td>393</td>
</tr>
<tr>
<td>31.41.3.4.1</td>
<td>Synthesis of Aryl(imino)phosphoranes</td>
<td>393</td>
</tr>
<tr>
<td>31.41.3.4.1.1</td>
<td>Method 1: The Staudinger Reaction of Free Phosphines and Azides</td>
<td>393</td>
</tr>
<tr>
<td>31.41.3.4.1.2</td>
<td>Method 2: Synthesis via Aminophosphonium Salts</td>
<td>395</td>
</tr>
<tr>
<td>31.41.3.4.2</td>
<td>Applications of Aryl(imino)phosphoranes in Organic Synthesis</td>
<td>396</td>
</tr>
</tbody>
</table>

Volume 35:
Chlorine, Bromine, and Iodine

35.2

Product Class 2: One Saturated Carbon—Bromine Bond

35.2.5.1.9

Synthesis by Addition across C=C Bonds

G. Dagousset and G. Masson

<table>
<thead>
<tr>
<th>Method</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>35.2.5.1.9.1</td>
<td>Method 1: Hydroxy- and Alkoxybromination of Alkenes</td>
<td>413</td>
</tr>
<tr>
<td>35.2.5.1.9.2</td>
<td>Method 2: Aminobromination of Alkenes</td>
<td>422</td>
</tr>
<tr>
<td>35.2.5.1.9.3</td>
<td>Method 3: Azidobromination of Alkenes</td>
<td>428</td>
</tr>
<tr>
<td>35.2.5.1.9.4</td>
<td>Method 4: Phosphobromination of Alkenes</td>
<td>429</td>
</tr>
<tr>
<td>35.2.5.1.9.5</td>
<td>Method 5: Catalytic Enantioselective Syntheses</td>
<td>430</td>
</tr>
<tr>
<td>35.2.5.1.9.5.1</td>
<td>Variation 1: Bromination of Alkenes</td>
<td>431</td>
</tr>
<tr>
<td>35.2.5.1.9.5.2</td>
<td>Variation 2: Hydroxy- and Alkoxybromination of Alkenes</td>
<td>432</td>
</tr>
<tr>
<td>35.2.5.1.9.5.3</td>
<td>Variation 3: Aminobromination of Alkenes</td>
<td>450</td>
</tr>
</tbody>
</table>

Author Index | 463 |

Abbreviations | 495 |